QEDS: Um Simulador Classico para Distin¢ao de
Elementos Quantico

QEDS: A Classical Simulator for Quantum Element
Distinctness

Alexandre Santiago de Abreu ! 2

Matheus Manzoli Ferreira 3 4
Luis Antonio Brasil Kowada 3 >
Franklin de Lima Marquezino !> ¢> 7

Data de submissdo: 11/06/2016, Data de aceite: 02/10/2016

Resumo: O problema de decidir se todos os N elementos em uma lista sdo distin-
tos requer Omega(IN) consultas no modelo classico. Um algoritmo quéntico baseado
em caminhada quéntica em um grafico de Johnson melhora este limite para O(N?2/3)
consultas. O algoritmo quantico para a disting@o de elementos executa vdrios célculos,
cada um envolvendo superposi¢cdes ndo triviais de estados. Por esta razdo, € dificil
estudar o algoritmo sem ferramentas apropriadas. Neste trabalho, apresentamos um
simulador numérico para o algoritmo de distin¢do de elementos e analisamos seu de-
sempenho. O objetivo principal de nosso simulador € servir como uma ferramenta
educacional. No entanto, como um software livre de cddigo aberto, ele pode ser facil-
mente estendido para uso profissional.

Palavras-chave: algoritmos quanticos, simulagdes, caminhadas quanticas,
distincao de elementos, computacao quantica, educacao

'Programa de Engenharia de Sistemas e Computacio (PESC), Instituto Alberto Luiz Coimbra de Pés-Graduagio e
Pesquisa em Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ) - Rio de Janeiro, RJ, Brasil.
2{santiago@cos.ufrj.br}

3Instituto de Computacdo (IC), Universidade Federal Fluminense (UFF) - Niter6i, RJ, Brasil.
4{matheusmanzoli@id.uff.br}

3{luis@ic.uff.br}

5Ntcleo Multidisciplinar de Pesquisa em Computacio (NUMPEX-Comp), Polo Avangado de Xerém, Universidade
Federal do Rio de Janeiro(UFRJ) - Duque de Caxias, RJ, Brasil.
7{franklin@cos.ufrj.br}{franklin@xerem.ufrj.br}

QEDS: Um Simulador Classico para Distin¢do de Elementos Quantico

Abstract: The problem of deciding whether all N elements in a list are distinct
requires (V) queries in the classical setting. A quantum algorithm based in quantum
walk on a Johnson graph improves this bound to O(N?/3) queries. The quantum al-
gorithm for element distinctness performs several steps of calculations each involving
nontrivial superpositions of states. For this reason, it is difficult to study the algorithm
without appropriate tools. In this work, we present a numerical simulator for the el-
ement distinctness algorithm and analyze its performance. The main purpose of our
simulator is to serve as an educational tool. However, as a free open-source software,
it can be easily extended for professional usage.

Keywords: quantum algorithms, simulations, quantum walks, element distinct-
ness, quantum computing education

1 Introduction

Building a general purpose quantum computer is still a technological challenge nowa-
days, even though important progress has been made in quantum hardware in the last few
years. For instance, Harvard researchers used a D-Wave quantum computer to solve the pro-
tein folding problem [1], and the IBM Quantum Experienc now provides free access to
IBM’s experimental cloud-enabled quantum computing platform. However, both approaches
were very different, and there is not a general agreement among experimentalists on which
technology will be most suitable to control a large amount of qubits for the time necessary
to perform useful computations. Nevertheless, understanding how quantum computers and
quantum algorithms work is essential for the development of new quantum algorithms that
outperform their classical counterparts. The simulation of quantum algorithms by classical
computers is a subject studied by many authors [2]][3][4][5][6][7] as a tool for understanding
important concepts of quantum computing, focusing on at least two main goals: (i) providing
an educational tool to learn how the algorithms would behave under certain conditions, and
(i) studying certain aspects of the algorithms where analytic results are very hard to obtain.

The problem of simulating quantum mechanics in classical computers usually have
exponential complexity, both in time and space. Even so, many simulation tools have been
developed to study the behavior of quantum systems, aiming at a variety of applications such
as quantum circuits [3]], quantum stabilizer formalism [8]], quantum walks on graphs [4],
quantum Hamiltonians [9] and so on. Those tools are very useful for the design of quan-
tum circuits and quantum algorithms, and also improves the understanding of the power and
limitations of the quantum paradigm.

The first quantum algorithm for element distinctness was first developed by Ambai-

8http://www.research.ibm.com/quantum/

52 Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v. 23 ¢ 1. 2 o p. 51]66]® novembro/2016

QEDS: Um Simulador Classico para Distin¢do de Elementos Quéantico

nis [10] and later improved for particular cases by Belovs ef al [11,[12]]. There are alternative
formulations. For instance, it is possible to apply Szegedy’s method directly on the Johnson
graph [13[14]. However, we describe the original formulation in this paper. Since Ambainis’
algorithm involves several steps of calculations with nontrivial superpositions of states, the
task of analytically studying the evolution of the quantum state becomes quite difficult even
for moderate-sized input lists. Moreover, Ambainis’ algorithms is based on a quantum walk
over a very particular graph, namely a Johnson graph, which makes other simulators such as
QWalk [4]] unsuitable for this simulation. The Johnson graph J(d, k), for 2 < 2d < k, is the
graph where the vertex set is composed by all subsets of 2, = (1, ..., k) of order d, for any
positive integer k. A pair of vertices are adjacent if their intersection has order d — 1 [[15].

Ambainis’ algorithm uses important concepts and techniques in quantum computing—
such as quantum walks, and search in graphs [[16]]. Notice that quantum walks had been suc-
cessfully applied as a strategy for the development of several quantum algorithms besides
the element distinctness algorithm [17]]. Moreover, a remarkable recent result in the field is
the proof that quantum walks are a universal model for quantum computing [[18], which im-
plies that the implementation of quantum walks may also contribute for the development of
quantum hardware in general [19]. Thus, it is fundamental that every student in the field of
quantum computing work through these concepts and techniques very carefully.

In this work, we develop a numeric simulator for the algorithm for element distinctness
and analyze its performance. To the best of our knowledge, there is no other simulator for
Ambainis’ algorithm available in the literature. The main purpose of our simulator is to serve
as an educational tool, simulating this particular algorithm and showing how the quantum
state evolves at each step. Since the source code of our simulator is freely available under
a GNU GPL license, it can be easily extended for other than didactic purposes, such as the
simulation of decoherence or noisy operations.

This paper is structured as follows. In Sec. [2] we introduce the notation that will be
used throughout the paper and review the problem of element distinctness. We also give a
detailed explanation of Ambainis’ algorithm [10]]. In Sec. 3] we describe technical aspects of
our simulator and explain how it can be used to study each step of the quantum algorithm for
element distinctness. In Sec.[d we show results of simulations performed with our tool and
give a report describing how memory consumption and elapsed time scale with the size of
the input list. Finally, in Sec.[5] we present our conclusions and discuss possibilities of future
work. We also include an appendix with the Ambainis’ algorithm.

2 Preliminary Notions

The mathematical background required for quantum computing is basically linear al-
gebra. Quantum mechanics can still be very frightening for a beginner. However, since we

Rev. Inform. Teor. Apl. (Online) @ Porto Alegre ® v. 23 e n. 2 e p. 51{66]e novembro/2016 53

QEDS: Um Simulador Classico para Distin¢do de Elementos Quantico

are only considering the application of quantum mechanics to computing, we can summarize
quantum mechanics to only four postulates. The first postulate claims that every quantum
state should be described by a unitary vector in the Hilbert space H. The second postulate
claims the the time evolution of a closed quantum system is described by a unitary matrix.
The third postulate claims that the composition of two or more quantum states is described
by the tensor product operation. Finally, the fourth postulate claims that the outcomes of
the measurement of a quantum system are described by the eigenvalues of a Hermitean ma-
trix, and that the state after the measurement is irreversibly collapsed to the corresponding
eigenspace. A more detailed review can be found, for instance, in Reference [20].

In this context, suppose we have a list of N elements, we want to know if all these
elements are distinct. In the classical setting, it is not difficult to find that a lower bound
for this problem is 2(N), since any algorithm should read all entries at least one time before
making a decision. In fact, assuming without loss of generality that every element x in the list
is bounded, i, < = < Tmax, then one can simply use a linear time search method such as
Bucket Sort, for instance, in order to solve the element distinctness problem in time O(N). In
the quantum setting, Ambainis [10] proposed an algorithm that decides in O(N k/ k+1) steps
if an input list has k& non-distinct elements. In our case, we have k = 2, resulting in O(N 2/ 3)
steps to solve this problem.

Let [N] denote {1, ..., N} and r = | N?/3|. We define a bipartite graph, as in Fig.
with (]X) + (7)]11) vertices, where each vertex corresponds to subsets of [N], as follows:
(i) vertices v, correspond to sets S C [N] of size r, and (ii) vertices v; correspond to sets
T = SU{i}, where i € [N]. A vertex v, is connected by an edge to another vertex v if the
corresponding set of v is a subset of corresponding set of v;. A vertex v, is marked if and

only if the elements of the list indexed by the elements of the set of v are repeated.

One could use Grover’s algorithm to search for this marked vertex and find it after
examining O(1/4/¢) vertices, where e is the fraction of marked elements. We can assume
that there is a k-tuple with k different indexes 41, ..., 4; € [N] such that z;, = ... = z;, . For
a S chosen randomly, we have |S| = N k/k+1 and the probability of vs be a marked vertex
is given by

k-2 k—1
Prliy € S|Prliy € Sliy € S]+ -+ + Prlig_1 € S| [i; € S|Prlix € S| [) i; € 8]
j=1 j=1
Nk/k+1 Nk/k+1 -1) 1
- Foot LA e (D
N N -1 (N — Nk/k+1 4 2) (N — Nk/k+1 4 1)
It follows that the probability of v, be a marked vertex is
N2k/k+1 1
0 <N2> =0 <Nz/k+1> 7 2)

54 Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v.23 en.2 e p. 510 novembro/2016

QEDS: Um Simulador Classico para Distin¢do de Elementos Quéantico

thus, 1/y/e = O(N'/*+1). Then, we would have to check if the resulting vertex is the
marked one by querying N*/*+1 items x;, for i € S, resulting in the final query complexity
being O(N/k+1 Nk/k+1) — O(N). Therefore, Grover’s algorithm gives no speedup when
compared to the classical method. The idea of Ambainis’ algorithm is to combine quantum
search in graphs with quantum walks. By doing that, we can re-use the information from
previous queries reducing the search space.

Figure 1. An example of Johnson graph built from the list L = {22, 34, 22, 55}.

Let us consider the values 1, ...,x, € [M]. Each partition of the graph represents
two Hilbert spaces, H and H', where the vertices v, and v; are respectively vertices in these
spaces. The space H has dimension (]X) M7"(N — r) and the basis states for this space
are given by |S,z,y), where S C [N],|S| = r,z € [M]",y € [N]\S. On the other
hand, the space 4’ has dimension (,},)M"*+!(r 4 1) with basis given by |5,), where
S CIN]I|S|=r+1,ze M|t yeS.

Let us describe each step of Ambainis’ algorithm. We present an example of quantum
state and we evolve it while describing each step. For simplicity, let us consider a single state
@|1,2)|3)|z1, 22), that represents the vertex {1,2} in Fig[l] of the superposition of states,
where |S) = |1,2), ly) = |3), |z) = |1, x2), and « is the quantum phase amplitude of this
state. In each step, we use r queries in all x;,% € S for the starting vertex v,. After that, we
start a loop that checks if the vertex is marked without using any query—because we already
know all the elements in this vertex. The next step consists in using a quantum walk to move

Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v.23 e n. 2 e p. 51{66] @ novembro/2016 55

QEDS: Um Simulador Classico para Distin¢do de Elementos Quantico

the walker from this vertex to an adjacent vertex v;, by querying x;,7 € T\ S. After that, we
know all the elements in 7". This algorithm alternates two kinds of transformations: changing
the phase if the current vertex is marked, and performing a quantum walk.

In the first step, the algorithm generates the uniform superposition of all vertices v,
1
N
()N = 7) Isi=rygs

T

15)1y)- 3)

and after we query all x; for ¢ € S, transforming the state to

— Y SRl @

(r)(N — 1) |S|=ry¢S ies

At the end of these two steps, our walker will be in a superposition of all vertices of
the partition of the space /. The next step is composed by two loops. The outer loop will
be repeated O((N/r)*/?) times. First, the vertex v,, which contains z;, = ... = =x;, for
distinct 41, ...,%; € S, is marked by a conditional phase flip, that will change the quantum
phase amplitude of the marked vertex. After that, the inner loop will be repeated O(+/r)
times, starting the quantum walk—which will be presented in details later on. This step
is responsible to increase the marked vertices’ phase and decrease the phases of the others
vertices. Finally, the measurement takes place. In this step, the marked vertex will have a
higher probability of being measured.

The quantum walk is structured in six steps, where the first three steps are responsible
for moving the walker from the space H to H’, while the final three steps move it back from
space H' to H.

In the first step of the quantum walk, we apply a transformation that maps |S)|y) to

'S><<—1+N2_r>y>ﬂv2_r > |y'>> ©

Yy &S,y #y

on S and y registers of the state 7{. For simplicity, we omitted the |x) register in this step,
since it is not affected. In our example, this transformation maps the state «|1,2)|3) to
a1]1,2)|3)|x1, z2) + 811, 2)|4)|z1, x2), where oy and 7 are quantum phases amplitudes.

In the second step of the quantum walk, the mapping between the spaces begins. It
is done by adding y to .S and changing z to a vector of length k& + 1 by introducing 0 in the
location corresponding to y, increasing the current Hilbert space. In our example, the state
a1]1,2)|3) + 1|1, 2)|4) is transformed in a1 |1, 2, 3)|3) |21, 2, 0) + 1|1, 2,4)|4) |21, 22, 0),
becoming a state in space H’.

56 Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v. 23 o n. 2 o p. 51]66]® novembro/2016

QEDS: Um Simulador Classico para Distin¢do de Elementos Quéantico

In the third step of the quantum walk, the |S) register has a new index for query, so
the third step we query for the x, and insert it into location of x corresponding to y. There-
after, the walker will be in 7’ space. Now, our example state is a1|1, 2, 3)|3)|z1, x2, x3) +
ﬂ1|1, 2,4>|4>|$1,$2,l‘4>.

In the fourth step of the quantum walk we apply a new transformation, modifying the
vertices’ phase. This transformation consists in mapping |S)|y) to

|S><<—1+Ti1>|y>+ri1)3 y'>>. ©

Yy ES, Y #y

In this step, our example state is transformed in |1, 2, 3) (a2|3) + @3|2) + a4|1)) |21, 22, x3) +
[1,2,4)(52]4) + 53]2) + B4|1))|x1, 2, 4), Where ;, §; are quantum phase amplitudes.

After that, the fifth step of the quantum walk continues the process of transforming
the state vector back to H space. It is done by erasing the element of x corresponding to new
¥, by using it as input to query for x,. Therefore, in our example, we now have the state

a2|1,2,3>\3)|x1,x2,0> + Oé3|1,2,3>|2>|$1,0,$3> +
+a4|172,3>|1>|0,w27x3> + ﬁ2|172,4>|4>|1‘17$2,0> + 7)
+63]1,2,4)[2)|21,0, 24) + Bal1,2,4)[1)|0, 22, 24).

Finally, to conclude the mapping, the sixth step of the quantum walk removes the 0
component corresponding to y from x and removes y from S, resulting, in our example, the
final state

a2|1,2>|3>|x1,x2) + a3|1,3>\2>|x1,x3) +
—|—a4|2, 3>|1>|x27x5> + ﬁ2|17 2>‘4>|£L’1,!L‘2> + (8)
+085|1,4)|12) |x1, x4) + Ba|2,4)|1) |2, 24).

With these six steps of the quantum algorithm the walker goes from partition .S to
partition 7', and then back to partition .S, completing one step of quantum walk.

Ambainis also described an algorithm to decide if all elements are distinct for the
case with multiple k-collision, however, it is out of the scope of this paper. See Appendix
for the complete algorithm as originally described by Ambainis, and see Ref. [[10] for extra
information about the algorithm, including its proof of correctness and analysis of complexity.

3 The Quantum Element Distinctness Simulator

We developed a numeric simulator to provide an easier way to analyze each step of
the algorithm for element distinctness. Analytically, performing each step of the algorithm

Rev. Inform. Teor. Apl. (Online) @ Porto Alegre ® v. 23 e n. 2 e p. 51{66]e novembro/2016 57

QEDS: Um Simulador Classico para Distin¢do de Elementos Quantico

becomes quite difficult even for a moderate-sized input list because the algorithm involves
several steps of calculations with nontrivial superpositions of states. In this work, we focused
on developing a simulator for educational purposes, due to the fact that Ambainis’ algorithm
uses essential concepts for the development of new quantum algorithms. Since the source
code of our simulator is freely available under a GNU GPL license, any user with knowledge
of the C++ programming language can modify our code. The source code itself is a helpful
object of study for undergraduate students beginning in this field.

The simulator was designed to work in any computer with a C++ compiler. Experi-
ments were performed in a Windows system and in a Linux Ubuntu system with success (see
Sec. |4) and without any substantial difference in time or memory performance. We estimate
that the simulator requires less than 10MB of memory to run simulations with moderate-sized
input list, as we can see in Sec. E} However, for more interesting simulations, with larger in-
put list, the RAM memory will be a limit. Our simulator does not use external programs,
working independently.

To install the simulator in a Linux environment, one needs to download the source
codeﬂ and save it at any folder. After that, one needs to compile the source code using the
command make or any C++ IDE. After that, there will be an executable file that can be
executed in the shell. The process of installing our simulator in a Windows environment is
also very simple. One must download the installer and follow the instructions. After that, he
or she can run the simulator by double-clicking the icon.

The program gives two options for the input list: generating random values, or man-
ually defining the values. After choosing any of these options, in the second step the user
must enter the list size. If the user had previously chosen the option of random input list,
the list will be automatically generated and the simulation will start immediately. If the user
had chosen the option for manually defining the input list, he or she will have to enter each
element of the list before the simulation starts. The simulator will show the execution of
Ambainis’ algorithm step by step. At the end of the simulation, the software will answer the
question of whether there is a 2-collision in the list, just like Ambainis’ algorithm does.

While the simulator is running, it continuously generates a report where each algo-
rithm’s step is described. The software shows the title of the step, the current generalization
of states, and each state’s phase. Thus, it allows the student to see how each state evolves and
how the phases vary over time.

It is important to pay attention to the amount of memory available on the computer.
As previously explained, for large input lists and not enough memory, the simulation can start
normally and then close without finishing.

% Available at http://bit.1y/1TJI3LCA

58 Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v. 23 ¢ 1. 2 o p. 51]66]® novembro/2016

http://bit.ly/1TJ3LCA

QEDS: Um Simulador Classico para Distin¢do de Elementos Quéantico

4 Experiments and Numerical Results

The testing environment is an Intel Core i7-2630QM CPU @ 2.00GHz (2.90 GHz -
turbo max), with 2.84 GB of available RAM memory, 320 GB of secondary memory, Mi-
crosoft Windows 10 and Ubuntu Linux 15.10. We chose a modest configuration for our
testing environment, corresponding to the equipment we expect an average student to have
access to. As expected, the elapsed time and memory consumption grow exponentially. It
happens because, in general, quantum simulations in a classical machine have exponential
complexity, both in time and memory. Thus, the vector spaces grow exponentially as the
input increases, which explains the memory growth.

The asymptotic complexity of our program is O(2") because we use an algorithm to
create the subsets that are represented by graph’s vertices, and this algorithm is exponential.
For small input lists, the simulator runs the algorithm for element distinctness very quickly.
However, for big input lists, it takes a lot of time.

We started the tests with the lowest nontrivial value, using four elements in our list
and then increased this value by adding new elements to the list. We varied the positions
of the collisions and, as expected, it did not influence the results. In Fig. 2] we have the
memory consumption in kilobytes (log scale) as function of the size of the input list used in
the simulation. We could only simulate up to 24 (twenty-four) elements, since larger lists
consumed more memory than the computer could handle. In Fig. [3] we have the elapsed time
in seconds (log scale) as function of the size of the input list used in the simulation.

10

108

s
10 (

10*

103

MemoryUsage (Kb - Logscale)
+

10?

10t

o} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 125

Input Size

Figure 2. Memory consumption in kilobytes (log scale) as function of the size of the input
list used in the simulation.

Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v.23 e n. 2 e p. 51{66] @ novembro/2016 59

QEDS: Um Simulador Classico para Distin¢do de Elementos Quantico

10
L
10* VS/
- J
=
. A
)
E 10! —
H s
g 109 //i>/
= |—®
3 a
I =
D—Q
. + "/'0/

10°
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Input Size

Figure 3. Simulation time in seconds (log scale) as function of the size of the input list used
in the simulation.

Notice that the memory consumption increases as

N+42
M~10"2 , €))
and the elapsed time grows as
N
T~10 7 . (10)

If we plot input size N = 13 in these equations, we estimate that the memory neces-
sary to make a simulation with this entry is 10 MB while the elapsed time will be less than
two seconds. On the other hand, if we just double this input size, setting N = 26, we estimate
that the memory consumption will be about 4 GB and the simulation will spend over an hour.

In Tab.[I] we have the probability of finding the searched vertex after the measurement
step, for every list size N that we tested.

Notice that running our simulation on a classical computer caused the elapsed time and
the memory consumption to be exponentially larger than would be required of the quantum
algorithm running directly on a quantum computer. This was the expected behavior—in fact,
the Hilbert space used by Ambainis’ algorithm grows exponentially with the input list size.
In general, the time and memory required for classically simulating quantum systems grow
exponentially with the number of particles being simulated [21]], and that is the reason why
the development of classical simulators of quantum algorithms is so challenging. To the best
of our knowledge, there is no other simulator designed specifically for Ambainis’ algorithm.

60 Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v.23 en.2 e p. 510 novembro/2016

QEDS: Um Simulador Classico para Distin¢do de Elementos Quéantico

N Pr(.)

4 5946 %
5 61.58%
6 5556%
7 5714 %
8 5322%
9 7953%
10 90.63 %
11 9274 %
12 78.66 %
13 8232 %
14 8241 %

15 7325 %

Table 1. Table showing the probability of measuring the marked vertex given that the list
has size N.

5 Discussions

In this paper we present a numerical simulator for the element distinctness algo-
rithm [10] with the main purpose of being used as a tool to study the behavior of quantum
computers and their algorithms. The problem of an analytic approach for learning the Ambai-
nis’ algorithm is that the amount of calculations usually scales exponentially with the input
size, making this approach impractical for most cases. Simulating quantum algorithms on a
classical computer is also a problem of exponential complexity, both in time and memory.
However, this kind of simulation is very helpful for educational purposes. For this reason,
many simulation tools have been developed although any of them directly addresses the spe-
cific case of the element distinctness algorithm.

The quantum algorithm for element distinctness, developed by Ambainis [10]], uses
important and complex concepts of quantum computing, such as quantum walks in a Johnson
graph and quantum search on graphs. For this reason, studying Ambainis’ algorithm can be
insightful in the developing of new algorithms and techniques for quantum computing. We
introduced a numeric simulator for this important algorithm with the purpose of serving as
an educational tool, showing how the quantum state evolves at each step.

As future work, the simulator could be generalized for arbitrary k values and multiple
k-collision, while keeping its pedagogical character. It would also be interesting to make it

Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v. 23 e n. 2 @ p. 51{66]e novembro/2016 61

QEDS: Um Simulador Classico para Distin¢do de Elementos Quantico

compatible with HiPerWalk for better performance.

Acknowledgments

A preliminary version of this work has been presented in the 5th Workshop-School
in Quantum Information and Computation (WECIQ), Campina Grande, PB, Brazil [22].
A.S.A. thanks CNPq for financial support. FL.M. acknowledges financial support from
CAPES/AUXPE, CNPg/Universal and CNPq/PQ grants.

Contribuicao dos autores:

- A.S. Abreu: Abordagem tedrica do algoritmo de distin¢do de elementos, desenvolvimento
do algoritmo para executar simulagdo, programacdo do simulador.

- M.M. Ferreira: Abordagem tedrica do algoritmo de distin¢do de elementos,
desenvolvimento do algoritmo para executar simulacio, programacdo do simulador.

- L.A.B. Kowada: Abordagem tedrica do algoritmo de distin¢do de elementos,
desenvolvimento do algoritmo para executar simulacao.

- EL. Marquezino: Abordagem tedrica do algoritmo de distin¢gdo de elementos,
desenvolvimento do algoritmo para executar simulacao.

References

[1] Alejandro Perdomo-Ortiz, Neil Dickson, Marshall Drew-Brook, Geordie Rose, and
Alan Aspuru-Guzik. Finding low-energy conformations of lattice protein models by
quantum annealing. Scientific reports, 2, 2012.

[2] Scott D Berry, Paul Bourke, and Jingbo B Wang. qwviz: Visualisation of quantum
walks on graphs. Computer Physics Communications, 182(10):2295-2302, 2011.

[3] Alexandre de Andrade Barbosa. Um simulador simbdlico de circuitos qudnticos. PhD
thesis, Universidade Federal de Campina Grande, 2007.

[4] Franklin L Marquezino and Renato Portugal. The Qwalk simulator of quantum walks.
Computer Physics Communications, 179(5):359-369, 2008.

[5] George F Viamontes, Igor L Markov, and John P Hayes. Graph-based simulation of
quantum computation in the density matrix representation. In Defense and Security,
pages 285-296. International Society for Optics and Photonics, 2004.

10 Available athttp://qubit.lncc.br/qwalk/|

62 Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v. 23 o 1. 2 @ p. 51]66]® novembro/2016

http://qubit.lncc.br/qwalk/

QEDS: Um Simulador Classico para Distin¢do de Elementos Quéantico

[6] George F Viamontes, Igor L Markov, and John P Hayes. Quantum circuit simulation.
Springer, 2009.

[7] Juliana Kaizer Vizzotto and Bruno Crestani Calegaro. Qjava: A monadic java library
for quantum programming. Revista de Informdtica Teorica e Aplicada, 22(1):242-266.

[8] Stephen D Bartlett, Barry C Sanders, Samuel L Braunstein, and Kae Nemoto. Efficient
classical simulation of continuous variable quantum information processes. In Quantum
Information with Continuous Variables, pages 47-55. Springer, 2002.

[9] Adam D Bookatz, Pawel Wocjan, and Lorenza Viola. Hamiltonian quantum simulation
with bounded-strength controls. New Journal of Physics, 16(4):045021, 2014.

[10] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on
Computing, 37(1):210-239, 2007.

[11] Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness. In
Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on,
pages 207-216, Oct 2012.

[12] Aleksandrs Belovs, Andrew M. Childs, Stacey Jeffery, Robin Kothari, and Frédéric
Magniez. Automata, Languages, and Programming: 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, chapter Time-Efficient
Quantum Walks for 3-Distinctness, pages 105-122. Springer, Berlin, Heidelberg, 2013.

[13] Mario Szegedy. Quantum speed-up of markov chain based algorithms. In Foundations
of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on, pages 32—
41. IEEE, 2004.

[14] Raqueline A. M. Santos. Cadeias de Markov Quénticas. Master’s thesis, National
Laboratory of Scientific Computing, Petrépolis, Brazil, 2010.

[15] Paul Terwilliger. The Johnson graph J(d, r) is unique if (d, r)#(2, 8). Discrete Mathe-
matics, 58(2):175-189, 1986.

[16] Renato Portugal. Quantum walks and search algorithms. Springer, 2013.

[17] Andris Ambainis. Quantum walks and their algorithmic applications. International
Journal of Quantum Information, 1(04):507-518, 2003.

[18] Andrew M Childs, David Gosset, and Zak Webb. Universal computation by multiparti-
cle quantum walk. Science, 339(6121):791-794, 2013.

[19] Renato Portugal, Marcos Cesar de Oliveira, and Jalil Khatibi Mogadam. Staggered
quantum walks with hamiltonians. arXiv preprint arXiv:1605.02774, 2016.

Rev. Inform. Teor. Apl. (Online) @ Porto Alegre ® v. 23 e n. 2 @ p. 51{66]e novembro/2016 63

QEDS: Um Simulador Classico para Distin¢do de Elementos Quantico

[20] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum informa-
tion. Cambridge university press, 2010.

[21] Richard P Feynman. Simulating physics with computers. International journal of the-
oretical physics, 21(6):467—488, 1982.

[22] Alexandre S. Abreu, Matheus M. Ferreira, Franklin L. Marquezino, and Luis A. B.
Kowada. Numeric simulation of quantum algorithm for element distinctness. In
V Workshop-School of Quantum Information and Computation (WECIQ), Campina
Grande/PB, pages 1-5, 2015.

[23] Lov K Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of Computing, pages
212-219. ACM, 1996.

A The Element Distinctness Algorithm

In order to make this paper as self contained as possible, we include below the original
element distinctness quantum algorithm as Ambainis proposed in his paper [10]. We focus on
the single-solution algorithm, although Ambainis had also considered the multiple collision
problem in his paper.

First, he gives an upper level description of his algorithm, which we reproduce as
Algorithm 1. In this algorithm, we have the preparation of the initial state, the initial query,
the outer loop and the final measurement. The detailed explanation for each of these steps
were given in Sec. [2] of our paper.

Finally, Ambainis details the quantum walk step of his algorithm, which we reproduce
as Algorithm 2. In this sub-routine, we have six steps that move the walker between the
Hilbert spaces, i.e., between the partitions of graph. The detailed explanation for each of
these steps were given in Sec. [2]of our paper.

64 Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v.23 en.2 e p. 510 novembro/2016

QEDS: Um Simulador Classico para Distin¢do de Elementos Quéantico

Algorithm 1: Single-solution algorithm.

1 Generate the uniform superposition

— LY 9w

MYV =) 515myes

r

2 Query all z; for ¢ € S. This transforms the state to

Y 1Rl

(r>(N —7) |S|=ry¢s i€s

3 t1 = O((&)*/2) times repeat:
(a) Apply the conditional phase flip (the transformation
IS) ly) |z) — —|S) |y) |«)) for S such that ;, = x;, = ... = x;, for k distinct
Ty .oyt € S.
(b) Perform to = O(/r) of the quantum walk (Algorithm .

4 Measure the final state. Check if .S contains a k-collision and answer “there is a
k-collision” or “there is no k-collision”, according to the result.

Rev. Inform. Teor. Apl. (Online) @ Porto Alegre ® v. 23 e n. 2 e p. 51{66]e novembro/2016 65

QEDS: Um Simulador Classico para Distin¢do de Elementos Quantico

Algorithm 2: One step of quantum walk.

1 Apply the transformation mapping |S) |y) to

'5><(—1+N2_r)'y>w2_r > |y'>>.

Y &Sy #y

on the S and y registers of the state in . (This transformation is a variant of
“diffusion transformation” in [23[])
2 Map the state from H to H', adding y to S and changing x to a vector of length
k + 1 by introducing 0 in the location corresponding to .
Query for z,, and insert it into location of = corresponding to y.
Apply the transformation mapping |.S) |y) to

|s><(1+7_’i1)|y>+rjl > |y’>>.

Yy €Sy #y

L)

on the y register.

5 Erase the element of x corresponding to new y by using it as the input to query
for x,,.

6 Map the state back to H by removing the O component corresponding to y from x
and removing y from S.

66

Rev. Inform. Teor. Apl. (Online) ® Porto Alegre ® v.23 en.2 e p. 510 novembro/2016

	Introduction
	Preliminary Notions
	The Quantum Element Distinctness Simulator
	Experiments and Numerical Results
	Discussions
	The Element Distinctness Algorithm

