
Automating mobile application development:
UML-based code generation for Android and Windows

Phone
Abilio G. Parada 1

Milena R. S. Marques 2

Lisane B. de Brisolara 2

Data submissão: 01.06.2015
Data aceitação: 01.11.2015

Abstract: This paper proposes a MDD approach for mobile application
development, which includes modeling and code generation strategies for An-
droid and Windows Phone. UML class and sequence diagrams are employed
for modeling mobile applications and code is generated from this model. To
support the automatic code generation, GenCode was re-structured and ex-
tended to meet the particularities of these two platforms. As result, GenCode’s
current version is able to automatically generate Java-Android and C# codes,
according to the specified application model and target platform. Finally, case
studies are used to demonstrate the proposed approach, as well as to validate
the code generation tool.

1 Introduction

The mobile devices market is very attractive, motivating big companies, such
as Google, Microsoft, and Apple, to invest in the development of mobile. Market
researches have highlighted Android [5] and Windows Phone [14] as the most pro-
mising platforms, mainly due to the increasing number of device manufacturers
supporting these platforms [3] [9].

A few years ago communication devices, like cell-phones, were used only to
make calls. Nowadays, due to technology advances, these devices are seen as compu-
tation devices. Thus, the demand for new and sophisticated applications to run on it
has increased, mainly due to Internet connection and resources available at cloud [26].

1Instituto de Informática, UFRGS
{agparada@inf.ufrgs.br}
2Centro de Desenvolvimento Tecnológico, UFPel
{mrsmarques,lisane}@inf.ufpel.edu.br

Automating mobile application development: UML-based code generation for An-
droid and Windows Phone

Mobile application developers are constrained by time-to-market pressure and more
and more developers are requested to develop applications for multiple platforms.
Each platform provides specific tools and usually adopts different programming
languages and APIs, which turns hard developing for multi-platforms [18] [22].

The increasing sophistication of mobile applications allied to time-to-market
pressure motivates the applying of model-driven development (MDD) on this do-
main. Employing MDD, models are used to guide development and code can be
automatically generated from model [21] [25].

However, traditional modeling approach and available tools are considered
unsuitable for mobile applications, because do not consider particularities as applica-
tion life-cycles and concepts from the target language. In order to solve this problem,
recently, tools and approaches are been proposed for the mobile domain [12]. Most of
these efforts are focused on Android, but few and very initial efforts have proposed
with focus on Windows Phone [23]. It is important to highlight that the available
approaches usually focus on a specific platform and provide limited code generation
support.

This paper proposes a MDD approach for mobile applications development,
which includes UML-based modeling and code generation strategies for two of the
most promising mobile platforms on the market, Android and Windows Phone. Fol-
lowing our approach, structure and behavior of mobile applications are represented
by UML diagrams, using class and sequence diagrams, respectively. The resulting
UML-based model is automatically translated to Java-Android or C# codes in order
to obtain an implementation.

The remaining of this paper is organized as follows. Section 2 discusses
related work. The proposed approach and code generator are presented in Section
3. Section 4 demonstrates our approach through two case studies. Section 5 draws
main conclusions and introduces future work.

2 Related Work

Recently, some research groups have proposed specific MDD approaches for
mobile application development [19] [12] [23] [16]. Most of these are focused on
Android as Arctis [12] and GenCode [19]. In Arctis, a small UML profile is proposed
and UML activity diagrams are adopted, which are translated to a state machine to
achieve an executable Android application. In turn, GenCode uses UML sequence
diagrams to represent application behavior, and adopts the UML standard nota-
tion. This work is an extension of GenCode, and thus shares the same principles,

32 RITA • Volume 22 • Número 2 • 2015

Automating mobile application development: UML-based code generation for
Android and Windows Phone

allowing the use of any UML tool for application modeling and not requiring any
new knowledge.

For supporting development for Windows Phone (WP), Microsoft provides
the Visual Studio [13], which allows build UML models and generate code from
them. However, this tool only supports class diagrams and, consequently its ge-
nerator is limited to structural code. Some academic works addressing Windows
Phone applications modeling can be found. For example, Min et al. [16] propose an
extended metamodel for WP application modeling based on the Model View Con-
troller framework, which focuses also only on structural aspects. In another effort,
Son et al. [23] propose an approach for modeling WP applications based on class and
sequence diagrams, similar to our approach. However, the authors propose to firstly
model application using new stereotypes and then transform this model in a target
specific model. While these works focus on application modeling, our approach also
handles automatic code generation for Windows Phone platform.

The diversity of mobile platforms and the need of develop applications for
different platforms have motivated the investigation of cross-platform tools. Many
of these solutions are based on web technologies such as HTML5, PHP, Ruby, CSS,
and JavaScript as RhomobileSuite [17], IBM MobileFirst Platform Foundation [8],
Appcelerator [1], Telerik AppBuilder [24], and PhoneGap [20]. In another effort,
named Xamarin [27], developers are encouraged to use C# for application code and
transform this description on the final target language, offering support for iOS,
Android and Windows Phone. However, all these approaches are focused directly
on the coding (implementation step) and do not provide any support for analysis
and design based on models.

More recently, MD2 [7] and AXIOM [10] were proposed as approaches for
model-driven cross-platform development. Following MD2, developers specify an
app using a high-level domain-specific language (DSL) and from this specification,
native apps for Android and iOS are automatically generated. This specification is
textual and not graphical, what can be seen as a limitation since modeling languages
are often expected to be graphical languages [2]. Similar to MD2, AXIOM also
uses a DSL to define platform-independent models. In this approach, the apps
specification is firstly transformed to an application model (platform-independent),
which is converted to an implementation model and finally to code. AXIOM uses
a model representation, called an Abstract Model Tree, as the basis for all model
transformations and code generation. However, the input model is built using
Groovy and this model is not a pattern modeling language for software developers.
In contrast to the other cross-platform approaches, our approach advocates the use
of UML as modeling language in order to avoid any specific language designer

RITA • Volume 22 • Número 2 • 2015 33

Automating mobile application development: UML-based code generation for An-
droid and Windows Phone

may not be familiar with. Additionally, following our approach, from an UML
model composed of class and sequence diagrams, code is generated to Android and
Windows Phone.

3 Proposed Approach

In order to facilitate and accelerate mobile apps development, we propose
a MDD approach, which supports UML-based code generation for Android and
Windows Phone. To automate our approach, we extend our code generator named
GenCode, whose first version were able to generate standard Java code from UML
diagrams. This code generator is detailed in Section 3.1. Our approach considers
particularities of the target platforms, since the modeling until the code, which are
detailed in sections 3.2 and 3.3.

3.1 Code Generation Tool

GenCode is an open source initiative proposed by our research group to sup-
port MDD. This tool is available in GitHub [4]. Firstly, this tool only generated Java
code from UML diagrams. Currently, this tool focuses on mobile applications deve-
lopment and is able to generate Android and Windows Phone code according to an
UML model.

The captured model is loaded in a class structure named Model, which is
composed of two packages: Structure and Sequence. The Structure package con-
tains classes responsible to load information from the class diagram (cd), while the
Sequence one is responsible to load the behavioral view from sequence diagrams
(sd).

After model capturing, Model invokes the code generation step supported by
the Generator package. To support different code generators, this package defines
an interface that should be implemented by each generator, following the Strategy
design pattern. Currently, GenCode has two generators AndroidGenerator and
CSharpGenerator. Both generators, firstly, create a directory before start the structural
code generation and after that, generate behavioral code. GenCode is able to generate
code for methods, including its body, if sd is used to describe it.

3.2 Supporting Android apps development

As mentioned before, the development of Android applications has its own
features, which should be considered during modeling and code generation. In the

34 RITA • Volume 22 • Número 2 • 2015

Automating mobile application development: UML-based code generation for
Android and Windows Phone

modeling, traditional object-oriented design elements are used, but specific elements
from the Android API should be also included. Among them, the most important
is the Activity class, once it is always present in any Android application. This class
handles the graphical user interface (GUI) and also the application life cycle. In our
approach, its usage should be specified through the specialization of this Android
class by application classes, as illustrated in Fig. 1a, where MainClass specializes the
Activity to define a graphical interface.

(a) (b)

Figura 1: Activity (a). Modeling the use of an Intent (b).

Activity has a set of methods in charge of the Android application life cycle,
including methods like onCreate, onStart, onStop, onResume, and onClose. In our
approach, onCreate should be always implicitly declared in the model, while other
methods should be declared only when required by the application. These redefined
methods or new methods should be detailed in a sequence diagram in order to enable
GenCode to produce code for them.

Regarding behavior modeling, sequence diagrams are adopted, in which
beyond the traditional elements, also are supported Android behavioral elements.
Intent is one of these elements, which is used to invoke services from applications
or from device resources. In this example, from Fig. 1, an Intent object is created
by the Main object, and the action to be invoked is described by the ACTION_CALL
message. After that, Main invokes the required service (e. g. startService) using the
intent as parameter.

As already highlighted, the structural and behavioral model provide informa-
tion for code generation, the final goal of our approach. Starting by the structural
view, the AndroidGenerator creates a “.java” file for each class or interface found
into the model. Some special classes from Android API, such as Activity and Service,
are ignored in this process.

During the generation for a given class, firstly, “imports” are all generated, ac-

RITA • Volume 22 • Número 2 • 2015 35

Automating mobile application development: UML-based code generation for An-
droid and Windows Phone

cording to API elements, attributes, parameters and other elements used in the model.
In the sequence the class header is generated, which includes visibility, modifiers,
class name, as well as specialization/generalization or realization relationships. In
the next step, the attributes should be described. These can be explicitly specified
in the model or can be originated from an association. For each attribute a line of
code is generated defining its visibility, type and name. Attributes are used in the
constructor generation, where these are initialized. Further, attributes are also used
to create the access methods, setters and getters, generated for all private or protected
attributes.

For methods whose class specializes Activity, all statements of onCreate method
are generated. For other methods of Android API, a default signature and also
some invoked methods are automatically generated. Finally, for methods whose
behavior is specified in a sd, the sequence of message exchanges are generated,
including conditionals and loops. When the sequence diagram represents a Android
particularity, such an Intent, GenCode provides a special generation for this element,
which will be demonstrated on Section 4.

3.3 Supporting WP apps development

Windows Phone developers, as well as Android developers, should consider
platform-dependent aspects when creating new WP apps. One of these particularities
is the PhoneApplicationPage class, which describes the GUI for a WP application.
Similar to Activity, PhoneApplicationPage is used in the application structure and also
is specified through a specialization relationship. Fig. 2 exemplifies how this class is
used to define WP application classes, during the application’s structure modeling.
The App, another WP class, deals with application life cycle. We propose to omit this
class from modeling and consider it only directly in the code generation.

Another particularity of WP applications is the use of partial classes. A partial
class has a logical part and a view part and requires a special code generation. In
our approach, �Partial� label should be used to indicate that a class is partial, as
exemplified in Fig. 2. In this example, MainPage is a partial class, and its logical side
is responsible for application initialization, while its visual side is in charge of splash
screen.

All these mentioned particularities are concentrated on application’s structure
because differently of Android, behavioral modeling of WP applications only uses
sd standard notations.

Our code generation for WP applications is very similar to that employed for
Android applications, been initialized by the Model class. During classes generation

36 RITA • Volume 22 • Número 2 • 2015

Automating mobile application development: UML-based code generation for
Android and Windows Phone

Figura 2: Structural view for a Windows Phone application.

GenCode analyzes class type, once for partial ones should be generated both visual
and logical parts. Visual side is described using XAML, which specifies a basic
structure for GUI, while logical part is described by C#. Thus, when the class is partial,
GenCode creates a “.xaml” and a “.xaml.cs” files for the logical part. Otherwise, only
a “.cs” file for is generated.

To generate the logical part of a class, firstly GenCode defines “using” state-
ments, according to class needs, considering attributes and parameters. Following,
“namespace” statement are generated for the package declaration. After that, inner
classes are specified and then, the class header is generated, including modifiers and
generalization/specialization relationship. Thereafter, GenCode generates attributes
and methods for this class. In a C# class, attributes can be followed by a directive
to specify the access level, such as private and protected. Yet from the cd, GenCode
generates the method signatures, considering their configurations included into the
model. However, methods bodies are generated from their behavior described using
sd without any special consideration, as already proposed in [19] but using C# syntax,
instead of Java.

The particularities of WP code generation are summarized by the support for
partial classes as, and for the PhoneApplicationPage and App classes. PhoneApplicati-
onPage is used by GenCode just to generate code for their subclasses, since this class
is already defined by the Windows Phone API. Finally, following our approach, the
App class can be omitted from the application model and its code is automatically
generated by our tool, once its code follows a standard.

4 Case Studies

To demonstrate our approach, two case studies are presented, which address
mobile applications modeling and code generation for the target platforms. For both
case studies, the UML models were manually created from source code by reverse
engineering.

RITA • Volume 22 • Número 2 • 2015 37

Automating mobile application development: UML-based code generation for An-
droid and Windows Phone

Figura 3: Class diagram - Structural view of Snake.

4.1 Developing for Android: a case study

Snake is an application from the Android developer training and available on
the Android web site [6]. This application is a simple example of Android application
and allows demonstrate the main features of our approach.

Firstly, the Snake structural view was specified using a cd, as illustrated in Fig.
3. In this diagram, Android classes such as Activity, View, and Handler are highlighted
in gray, while the application classes, such as Snake, SnakeView, and TileView, and two
SnakeView inner classes (RefreshHandler and Coordinate) are illustrated in white.

Snake is the main application class, managing the GUI, application initiali-
zation, and life-cycle, as indicated by the Activity specialization. This class has an
association with the SnakeView class. Moreover, Snake has some operations such
onCreate, onPause, onSavedInstanceState, and onBackPressed, which are standard Ac-
tivity’s methods. As proposed, their explicit definitions indicate that these will be
customized.

TileView, SnakeView, as well as the inner classes define and control the appli-
cation’s graphical view. TileView describes the basis tile views and specializes the
Android View class, overriding methods such onSizeChanged and onDraw to customize
it. SnakeView and its inner classes, are responsible for the game tile view and game’s
elements management. RefreshHandler, a specialization of Handler, performs game
animation, while Coordinate manages game elements, as mAppleList and mSnakeTrail.

Fig. 4 illustrates the customization of onCreate method through of a sd, des-
cribing the behavior when the application is started. During this game initialization,
it checks the status of last game and chooses to start a new one or continue from
previous state. Alt is used to describe the mentioned conditional behavior. Thus,

38 RITA • Volume 22 • Número 2 • 2015

Automating mobile application development: UML-based code generation for
Android and Windows Phone

Figura 4: Sequence diagram for the onCreate method.

Figura 5: Sequence diagram for the onBackPressed method.

when savedInstanceState is null, no previous state is found, and then, a new game
is load, otherwise, a previous state is load. The savedInstanceState is an instance of
Android Bundle class, which is used to restore the previous application’s state.

Following our approach, other sequence diagrams are used to describe methods
customized for the application. The sd from Fig. 5, for example, details the behavior
of onBackPressed method. This scenario represents the tasks executed when the Back
button is pressed, pausing the game and calling the main screen. In this case, the cur-
rent game state must be saved, enabling its retrieving when the game is called again.
To implement this behavior, an intent is used. Following the represented sequence,
the intent object (named setIntent) is created and the message ACTION_MAIN, iden-
tifies the required action. After that, the two following messages, addCategory and
setFlags, represent the addition of new features to the intent. In the sequence, the
startActivity service is invoked using as argument the setIntent object.

RITA • Volume 22 • Número 2 • 2015 39

Automating mobile application development: UML-based code generation for An-
droid and Windows Phone

1 import android . app . A c t i v i t y ;
2 import android . content . I n t e n t ;
3 import android . os . Bundle ;
4

5 public c l a s s Snake extends A c t i v i t y {
6 / ∗ ∗ A t t r i b u t e s ∗ /
7 private SnakeView mSnakeView ;
8 private S t r i n g ICICLE_KEY = "snake_view" ;
9 . . .

Listing 1: Generated Code for Snake - Imports and Attributes.

1 / ∗ ∗ Methods ∗ /
2 public void onCreate (Bundle s a ve d I n s t an c e S t a t e) {
3 super . onCreate (s a ve d I n s t an c e S t a te) ;
4 setContentView (R . layout . Snake) ;
5 / ∗ ∗ S p e c i f i e d by sd o n C r e a t e ∗ /
6 mSnakeView . setTextView (R . id . snake) ;
7 i f (s a v e d In s t a n c eS t a t e == null) {
8 mSnakeView . setMode (SnakeView .READY) ;
9 } e lse {

10 Bundle map = s a ve d I n s t an c e S t a te . getBundle (SnakeView . PAUSE) ;
11 i f (map != null) {
12 mSnakeView . r e s t o r e S t a t e (map) ;
13 } e lse {
14 mSnakeView . setMode (SnakeView .PAUSE) ;
15 }
16 . . .

Listing 2: Generated Code for Snake - onCreate Method.

From this Snake UML model, GenCode returns Java code for the application
classes. Listing 1 illustrates the code generated for the Snake class, declaring imports
for Android API components, the Activity extension, and the class attributes.

Besides of structural aspects, behavioral aspects are also handled by our ap-
proach, as illustrated in Listing 2, where the code generated to onCreate is shown.
This code firstly performs the default invocations to super.onCreate and setContent-
View methods, followed by the behavior specified by onCreate sd from Fig. 4, which
includes inlining if statements.

To demonstrate more of our behavioral code generation, we discuss the code
generated from the onBackPressed sd, which exemplifies an intent usage and is depic-
ted in Listing 3. In this code, the creation of the setIntent Intent, as ACTION_MAIN,

40 RITA • Volume 22 • Número 2 • 2015

Automating mobile application development: UML-based code generation for
Android and Windows Phone

1 public void onBackPressed () {
2 / ∗ ∗ S p e c i f i e d by sd o n B a c k P r e s s e d ∗ /
3 I n t e n t s e t I n t e n t = new I n t e n t (I n t e n t .ACTION_MAIN) ;
4 s e t I n t e n t . addCategory (I n t e n t .CATEGORY_HOME) ;
5 s e t I n t e n t . s e t F l a g s (I n t e n t . FLAG_ACTIVITY_NEW_TASK) ;
6 s t a r t A c t i v i t y (s e t I n t e n t) ;
7 }

Listing 3: Code generated for Snake methods - onBackPressed Method.

is specified and after that, two methods, addCategory and setFlags, are invoked to
setIntent. Finally, the service is invoked through the startActivity message using the
Intent as argument.

Moreover, GenCode generates of constructors, attributes with default values,
setting and getting methods, and inner classes. Listing 4 depicts illustrates some
code fragments from SnakeView, demonstrating generated code lines, which include
initializations of attributes outside or inside the constructor, and setting and getting
methods. Code fragments representing the RefreshHandler inner class can also be
observed in Listing 4, since this inner class is part of SnakeView.

Table 1 summarizes the classes automatically generated by GenCode from
Snake’s UML model. This table presents the total lines of code (LoC) generated
for each class, as well as the number of LoCs generated from the class diagram
(cd) or from a sequence diagram (sd). From the cd, for the Snake and SnakeView
classes were generated 49 LoC and 117 LoC, respectively. Yet for Snake, 12 LoC were
generated from the onCreate sd and 6 from onBackPressed sd. Moreover, to TileView
were generated 93 LoC from cd and 9 LoC from the onDraw sd, totalizing 102 LoC.
The total LoC automatically generated for this application were 286.

4.2 Developing for WP: a case study

Puzzle was chosen because it allows demonstrate the main features of our
approach. Likewise, it is a simple application example from the WP developers web
site [15].

Firstly, the Puzzle structural view is described for the cd depicted in Fig. 6.
In this diagram, WP API classes such as PhoneApplicationPage and EventArgs are
empathized, while the applications classes such as PuzzlePage, MainPage, PuzzleGame
and its inner classes are in white. Some of these classes such as MainPage and
PuzzlePage have a special label “�Partial�”, indicating that these classes have logical

RITA • Volume 22 • Número 2 • 2015 41

Automating mobile application development: UML-based code generation for An-
droid and Windows Phone

1 public c l a s s SnakeView extends TileView {
2 / ∗ ∗ A t t r i b u t e s ∗ /
3 public i n t READY = 1 ;
4 public i n t RUNNING = 2 ;
5 public i n t LOSE = 3 ;
6 . . .
7 public SnakeView (S t r i n g TAG, . . . , ArrayList <Coordinate> mSnakeTrail) {
8 t h i s .TAG = TAG;
9 . . .

10 t h i s . mSnakeTrail = new ArrayList <Coordinate > () ;
11 }
12

13 / ∗ ∗ Get ∗ /
14 public S t r i n g getTAG () {
15 return t h i s .TAG;
16 }
17

18 / ∗ ∗ S e t ∗ /
19 public void setMRedrawHandler (RefreshHandler mRedrawHandler) {
20 t h i s . mRedrawHandler = mRedrawHandler ;
21 }
22

23 public c l a s s RefreshHandler extends Handler {
24 / ∗ ∗ C o n s t r u c t o r ∗ /
25 public RefreshHandler () {
26 super () ;
27 }
28 . . .

Listing 4: Generated Code for SnakeView.

Tabela 1: Obtained results for the Android case study

Class Diagram LoC
Snake.java cd 49

sd onCreate 12
sd onBackPressed 6

67
SnakeView.java cd 117
TileView.java cd 93

sd onDraw 9
102

Total: 286

42 RITA • Volume 22 • Número 2 • 2015

Automating mobile application development: UML-based code generation for
Android and Windows Phone

Figura 6: Class diagram - Structural view of Puzzle.

and view components.

This diagram describes the PuzzlePage and MainPage classes as specializations
of the WP PhoneApplicationPage class. The class diagram also describes two speci-
alization of the WP class named EventArgs, which are GameOverEventArgs and Pie-
ceUpdateEventArgs. Likewise, this diagram also describes an association relationship
between PuzzlePage and PuzzleGame.

PuzzlePage is in charge of the GUI and user interaction. This class extends Pho-
neApplicationPage, which is the default WP class responsible by these aspects. Puzzle-
Page has many attributes such as puzzlePiece, imageStream, lastTapTicks, movingPieceId,
movingPieceDirection and movingPieceStartingPosition, and also static attributes such
as DoubleTapSpeed and ImageSize.

PuzzleGame is in charge of game management, providing operations such as
Reset, NewGame, CanMovePiece, MovePiece, CheckWinner, GetState, SetState, and invo-
kePieceUpdated. This class has many attributes such as colsAndRows, board, totalMoves,
isPlaying, and also event attributes such as GameStarted, PieceUpdated and GameOver.

The sd (from Fig. 7) details the CheckWinner method from PuzzleGame, which
is responsible for checks the user solution. This task is represented using a loop to
verify the piece position, and an opt to verify if it is a complete solution.

From the Puzzle UML model, GenCode provided a WP implementation. The
generated code is composed of C# and XAML files for normal and “Partial” clas-
ses specified in the project, such as MainPage.xaml.cs, MainPage.xaml, PuzzleGame.cs,

RITA • Volume 22 • Número 2 • 2015 43

Automating mobile application development: UML-based code generation for An-
droid and Windows Phone

Figura 7: Sequence diagram for the CheckWinner method.

PuzzlePage.xaml.cs, and PuzzlePage.xaml. In addition, our tool also generated files for
the App partial class, creating App.xaml.cs and App.xaml.

Listing 5 illustrates the code snippet generated for PuzzleGame class, which
includes specifications of the inner classes such as PieceUpdateEventArgs and GameO-
verEventArgs.

Fragments of code generated for PuzzlePage are presented in Listing 6 and
Listing 7. Listing 6 illustrates the code generated from the cd, focusing on structural
aspects like attributes, which were specified explicitly into the model or were deri-
ved from relationships. Listing 7 focuses on behavioral aspects generated from the
CheckWinner sd, which describes the behavior of the correspondent method. This
code includes a for obtained from the loop fragment, and if statements obtained from
the opt fragments.

Table 2 summarizes the quantity of code generated by GenCode from the
Puzzle UML model. In this table, for each class is given the total generated LoC as
well as partial LoC obtained from each diagram. For the App class, 141 LoC were
generated, without any modeling effort, being 20 LoC for the visual code (.xaml)
and 121 LoC for the logical code (.xaml.cs). Moreover, for MainPage 35 LoC were
generated for visual part, and 28 LoC for logical code, both from the class diagram.
For PuzzleGame 120 LoC were generated, from the cd and 14 LoC from CheckWinner
sd, respectively, totalizing 134 LoC. For PuzzlePage 140 LoC were generated, when

44 RITA • Volume 22 • Número 2 • 2015

Automating mobile application development: UML-based code generation for
Android and Windows Phone

7 namespace WindowsPhonePuzzle
8 {
9 public c l a s s PieceUpdateEventArgs : EventArgs

10 {
11 / / A t t r i b u t e s
12 public i n t PieceId { get ; s e t ; }
13 public Point NewPosition { get ; s e t ; }
14

15 / / C o n s t r u c t o r
16 public PieceUpdateEventArgs (i n t PieceId , Point NewPosition)
17 {
18 t h i s . P iece Id = PieceId ;
19 t h i s . NewPosition = NewPosition ;
20 }
21 }

Listing 5: Generated Code for PuzzleGame - Inner Classes.

1 using System ;
2 using System . C o l l e c t i o n s . Generic ;
3 using System . Linq ;
4 using System . Net ;
5 using System . Windows ;
6 . . .
7

8 namespace WindowsPhonePuzzle
9 {

10 public p a r t i a l c l a s s PuzzlePage : PhoneApplicationPage
11 {
12 / / A t t r i b u t e s
13 private PuzzleGame game ;
14 private s t a t i c double DoubleTapSpeed =500;
15 private s t a t i c i n t ImageSize = 4 3 5 ;
16 private Canvas [] puzzlePieces ;
17 . . .

Listing 6: Generated Code for PuzzlePage - Attributes.

RITA • Volume 22 • Número 2 • 2015 45

Automating mobile application development: UML-based code generation for An-
droid and Windows Phone

1 public void CheckWinner ()
2 {
3 / / S p e c i f i e d from Sequence Diagram CheckWinner
4 for (i n t n = 0 ; n < t o t a l P i e c e s − 1 ; n++)
5 {
6 i f (n != board [n]) { }
7 }
8 i f (completed)
9 {

10 i f (GameOver != n u l l)
11 {
12 GameOver (this , new GameOverEventArgs { TotalMove = GameOver . t h i s .

totalMoves }) ;
13 }
14 . . .

Listing 7: Generated Code for CheckWinner method.

35 are from visual code (.xaml), and 105 for logical code (.xaml.cs). Among these, 82
LoC are from class diagram and 23 were from the sequence diagrams. Considering
all LoC generated from our Puzzle model, one can see that using our approach, we
obtained automatically 478 LoCs.

5 Conclusion and Future Work

This work presents a MDD approach to automate the mobile application de-
velopment, which defines modeling and code generation strategies for Android and
Windows Phone mobile platforms. Following our approach, mobile developers can
model an application and automatically generate code for the target platform. This
automation is supported by GenCode, whose current version is enable to generate
Java-Android and C# code from UML class and sequence diagrams. Our generation
for behavioral code is based on sequence diagrams and for that reason it basically
generates lines describing method invocations. These invocations can be inside of a
loop or a conditional, and in these cases, for and if statements are also generated.

Two case studies are presented to demonstrate our approach, discussing appli-
cation model and generated code. We present numbers of generated lines, but we do
not compare these numbers with the total LoCs used for the original implementation.
This comparison is avoided because it is well-known that automatically generated
codes are larger than manual [11]. In addition, as mentioned before, our approach is
limited mainly by the behavior abstraction of the UML sequence diagram.

46 RITA • Volume 22 • Número 2 • 2015

Automating mobile application development: UML-based code generation for
Android and Windows Phone

Tabela 2: Obtained results for the WP case study

Class Diagram LoC
App.xaml 20
App.xaml.cs 121

141
MainPage.xaml 35
MainPage.xaml.cs cd 28

63
PuzzleGame.cs cd 120

sd CheckWinner 14
134

PuzzlePage.xaml 35
PuzzlePage.xaml.cs cd 82

sd PhoneApplication-
Page _ManipulatedStar-
ted

16

sd SolveButton_Click 3
sd PuzzlePiece _Mouse-
LeftButtonDown

4

105
140

Total: 478

RITA • Volume 22 • Número 2 • 2015 47

Automating mobile application development: UML-based code generation for An-
droid and Windows Phone

As future work, we intent to revise the proposed modeling strategies in order
to define a platform-independent approach that should be applied for cross-platform
mobile development. Moreover, we intent to provide support to iOS, another impor-
tant mobile platform.

6 Acknowledgment

The authors acknowledge financial support received from CNPq (process
483464/2013-9) and FAPERGS (NESS Project - process 10/0043-0).

Referências

[1] Appcelerator. Appcelerator, master the mobile shift. http://www.
appcelerator.com/, Apr. 2015.

[2] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice. Morgan and Claypool, 2012.

[3] Gartner. Gartner technology researcher identifies the top 10 strategic technology
trends for 2013. http://www.gartner.com/newsroom/id/2209615, Apr. 2015.

[4] GitHub. Repository of gencode tool. https://github.com/abiliogp/genCode,
Oct. 2015.

[5] Google. Android. http://www.android.com/, Oct. 2015.

[6] Google. Android application samples. http://developer.android.com/
tools/samples/index.html, Oct. 2015.

[7] Henning Heitkötter, Tim A Majchrzak, and Herbert Kuchen. Cross-platform
model-driven development of mobile applications with md 2. In Proceedings of
the 28th Annual ACM Symposium on Applied Computing, pages 526–533. ACM,
2013.

[8] IBM. Ibm mobile first platform. http://www-03.ibm.com/software/products/
en/mobilefirstplatform, Apr. 2015.

[9] IDC. Android pushes past 80% market share while windows phone shipments
leap 156.0% year over year in the third quarter. http://http://www.idc.com/
getdoc.jsp?containerId=prUS24442013, Apr. 2015.

48 RITA • Volume 22 • Número 2 • 2015

Automating mobile application development: UML-based code generation for
Android and Windows Phone

[10] Chris Jones and Xiaoping Jia. The axiom model framework: Transforming requi-
rements to native code for cross-platform mobile applications. In International
Conference on Novel Approaches to Software Engineering (ENASE), 2014, pages 1–12.
IEEE, 2014.

[11] John Klein, Harry Levinson, and Jay Marchetti. Model-driven engineering:
Automatic code generation and beyond. Technical report, Software Engineering
Institute at Carnegie Mellon University, The address of the publisher, 3 2015.

[12] Frank Alexander Kraemer et al. Engineering android applications based on uml
activities. In the 14th international conference on Model driven engineering languages
and systems (MODELS), 2011 Jon Whittle, Tony Clark, and Thomas Kühne (Eds.).
Springer-Verlag, Berlin, Heidelberg, pages 183–197, 2011.

[13] Microsoft. The visual studio sdk. http://www.visualstudio.com/, Apr. 2015.

[14] Microsoft. Windows phone. http://www.windowsphone.com/, Oct. 2015.

[15] Microsoft. Windows phone developer center. http://developer.
windowsphone.com/en-us, Oct. 2015.

[16] Bup-Ki Min, Minhyuk Ko, Yongjin Seo, Seunghak Kuk, and Hyeon Soo Kim.
A uml metamodel for smart device application modeling based on windows
phone 7 platform. In TENCON 2011-2011 IEEE Region 10 Conference, pages
201–205. IEEE, 2011.

[17] Motorola. Rhomobile suite. http://rhoMobile.com, Oct. 2015.

[18] Julian Ohrt and Volker Turau. Cross-platform development tools for smartphone
applications. Computer, 45(IX):72–79, 2012.

[19] A.G. Parada and L.B. de Brisolara. A model driven approach for android appli-
cations development. In Brazilian Symposium on Computing System Engineering
(SBESC), pages 192–197, Nov 2012.

[20] PhoneGap. Phonegap. http://phonegap.com/, Apr. 2015.

[21] Brain Selic. Uml 2: A model–driven development tool. model–driven software
development. IBM Systems, Riverton, 45, n. 3:607–620, 2006.

[22] P. Smutny. Mobile development tools and cross-platform solutions. In 13th
International Carpathian Control Conference (ICCC), 2012, pages 653–656, May
2012.

RITA • Volume 22 • Número 2 • 2015 49

Automating mobile application development: UML-based code generation for An-
droid and Windows Phone

[23] Hyun Seung Son, Woo Yeol Kim, Jae Seung Kim, and Robert YoungChul Kim.
Concretization of uml models based on model transformation for windows
phone application. Information Science and Technology (IST), pages 288–291, 2012.

[24] Telerik. Appbuilder. http://www.telerik.com/appbuilder, Oct. 2015.

[25] Mark GJ van den Brand and Jan Friso Groote. Advances in model driven
software engineering. ERCIM News, 91:23–24, 2012.

[26] Anthony I Wasserman. Software engineering issues for mobile application de-
velopment. Proceedings of the FSE/SDP workshop on Future of software engineering
research (FoSER), pages 397–400, 2010.

[27] Xamarin. Xamarin, cross platform development. http://xamarin.com/, Apr.
2015.

50 RITA • Volume 22 • Número 2 • 2015

