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Application of Denoising Diffusion Probabilistic Methods in
Fetal MRI
Aplicação de Métodos Probabilı́sticos de Difusão para Remoção de Ruı́do em Imagens
Fetais de Ressonância Magnética

Ana Cláudia Souza Vidal de Negreiros1*, Gilson Giraldi2, Heron Werner3

Abstract: Magnetic resonance imaging (MRI) is a common type of medical image acquisition that can also be
used to diagnose early diseases. In this sense, fetal MRI is a non-invasive method to generate high-quality fetal
volumes and to perform important clinical analysis. However, image denoising is necessary in many situations to
ensure accurate evaluations. Thus, approaches such as Denoising Diffusion Probabilistic Methods (DDPM) have
emerged and reached great results in this kind of task. In this work, we applied two DDPM-based approaches
(an original and an improved one) besides two self-supervised deep models in a fetal MRI dataset. The results
showed that, for the used fetal MRI dataset, the improved DDPM, named I-DDPM outperformed the counterparts
considering two evaluation metrics for image quality, the Peak Signal-to-Noise Ratio (PSNR) and Root Mean
Squared Error (RMSE).
Keywords: Image Denoising — DDPM-Based Approaches — Medical Area — Fetal MRI

Resumo: A ressonância magnética (MRI) é um tipo comum de aquisição de imagem médica que também
pode ser usada para diagnosticar doenças precoces. Nesse sentido, o MRI fetal é um método não invasivo
para gerar volumes fetais de alta qualidade e realizar análises clı́nicas importantes. No entanto, a remoção de
ruı́do nas imagens é necessária em muitas situações para garantir avaliações precisas. Assim, abordagens
como os Métodos Probabilı́sticos de Difusão para Redução de Ruı́do (DDPM) surgiram e alcançaram ótimos
resultados nesse tipo de tarefa. Neste trabalho, aplicamos duas abordagens baseadas em DDPM (uma original
e uma aprimorada), além de dois modelos profundos auto-supervisionados em um conjunto de dados de MRI
fetal. Os resultados mostraram que, para o conjunto de dados de MRI fetal utilizado, o DDPM aprimorado,
denominado I-DDPM, superou os demais considerando duas métricas de avaliação da qualidade da imagem, o
Peak Signal-to-Noise Ratio (PSNR) e o Erro Quadrático Médio (RMSE).
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1. Introduction

Advances in image processing happen continuously with re-
markable results been published every day. In the specific case
of image denoising, the scientific community realized how
necessary to improve image analysis in areas like security-
related (e.g., identification of wanted people), environmental
management (e.g., oil spill detection), and health prevention
(e.g., disease detection in early stages).

In this sense, recently, Diffusion Models have played an
essential role in this area. Specifically, denoising diffusion
probabilistic models (DDPM), originally proposed by Ho et al.

[1], has emerged as a new machine learning approach with the
capability to learn from data distributions and synthesize high-
quality images, outperforming well-known classical methods
[2], [3], [4].

A DDPM model is based on two simple steps: (1) the for-
ward process involves gradually introducing Gaussian noise
to an input image until the image converges to an isotropic
Gaussian distribution or a completely noise image; (2) the
reverse denoising process entails progressively eliminating
noise from an initially noisy distribution until the genuine
underlying data is revealed, resulting in a coherent image.
In this way, the method learns how to convert a completely
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(Gaussian) noise image into a coherent one. Formally, DDPM
is a distribution learning-based method, that tries to transform
a Gaussian distribution by performing iterative refinements
[3]. Besides, DDPM can effectively leverage the entire data
distribution while preserving crucial imaging features [2].

Among other tasks, DDPM has also been applied for im-
age denoising. In general, the recent literature has shown
that considering the image denoising task, it also can outper-
form well-known methods such as Generative Adversarial
Networks (GANs) and Variational Auto-Encoders (VAEs) [5],
[6]. This fact encourages newly developed works in this di-
rection. In this sense, recently, DDPM has been applied for
specific kinds of images, such as fetal magnetic resonance
imaging (MRI) [7] mostly to improve image quality due to
the goal of early disease diagnosis to fetal imagery that can
be crucial for child health [8], [9].

Taking this into consideration, this work will apply two
DDPM approaches and two self-supervised models in a fetal
MRI dataset. The first one is the original DDPM (O-DDPM)
proposed by Ho et al. [1], the second one is the improved
DDPM (I-DDPM) introduced by Nichol and Dhariwal [10],
the third is a self-supervised deep learning method, named
N2N, developed by Lehtine et al. [11] and the last one is
another self-supervised technique, called N2V, proposed by
Krull et al. [12]. In this context, the main contribution of this
work is that we will analyze those methods in a specific fetal
MRI dataset for the first time. Besides, works that applied
DDPM in fetal MRI are rare in the literature, highlighting this
work’s importance. Another contribution of this work is that
we performed comparison with results of the reference [13].

The rest of this paper is organized as follows. Section II
brings the recent related works that were performed or pro-
posed methods based on DDPM. Section III presents the used
MRI fetal image dataset. Section IV addresses original and
improved DDPM approaches. Section V details and compares
the results obtained by applying both DDPM approaches. Fi-
nally, Section VI concludes the work with the main results
and ideas for future research.

2. Related Works
Recently, many works based on DDPM have been developed
aiming to address different tasks. The work developed by [2]
proposed a framework for generating high-resolution mag-
netic resonance imaging (MRI) from low resolution counter-
parts, improving the uncertainty of denoising diffusion proba-
bilistic models (DDPM). Muller-Franzes et al. [14] compared
DDPM with GANs for recovering contrast-enhanced breast
MRI, and the DDPM results outperformed GANs, according
to radiologists. The reference [3] developed a DDPM-based
approach that tried to transform a normal distribution into a
specific data distribution based on iterative refinements. Their
application was for PET image denoising. In [4] authors built
a DDPM using 2D brain images trained using slices in which
health tissue was cropped out and is learned to be inpainted
again, aiming to make enable the automatic analysis of images

feature lesions, and further downstream tasks. The work [15]
proposed a conditional DDPM translation from the cone-beam
computed tomography (CBCT) to the computed tomography
(CT) distribution for the image quality improvement of CBCT.
Authors used a time-embedded U-Net architecture with resid-
ual and attention blocks to gradually transform the Gaussian
noise sample to the target CT distribution conditioned on
the CBCT. In [5] it is investigated the velocity of conver-
gence with lower and higher timesteps in denoising tasks with
diffusion models. Lyu et al. [16] adapted DDPM to learn
the probability distribution of high-dimensional raw data and
reconstructed the microstructures of many composite mate-
rials. Browne et al. [6] developed a DDPM to predict super-
resolution pathology slide images from low resolution inputs.
Mueller [17] proposed an attention-enhanced conditioning-
guided DDPM approach for synthesizing additional machine
fault diagnosis training data. Sui et al. [18] incorporated
into Remote Sensing (RS) Single Image Super-Resolution
(SISR) a DDPM to generate Super-Resolution (SR) images
with enhanced textural details. Li et al. [19] presented feature
map denoising model based on DDPM for feature refinement.
In the case of fetal images, the work developed by [20] ap-
plied DDPM in the context of anomaly detection fetal brain
ultrasound, presenting a novel unsupervised model for this
task.

3. Dataset
In this research, we used a fetal MRI dataset, generated from
38 different patients (pregnant). The dataset used in this work
is not available to the public. For the image generation, a 1.5−
T scanner (Magnetom Aera, Siemens, Erlangen, Germany)
performed the MRI examination, with the surface coil placed
on the abdomen. It was applied a 3D T2-weighted true fast
imaging sequence with steady-state precession (truefisp) in
sagittal plane (T R/T E = 3.02/1.43ms); besides, following
isotropic voxel (1.0×1.0×1.0mm3); matrix: 256×256mm2,
136 slices, with a total acquisition time of 26s. Also, maternal
sedation was not used in the patients because it is unnecessary
in this data collection.

Besides, to acquire the MRI dataset, the pregnant was
positioned in dorsal or left lateral decubitus, with the feet
entering the magnet first. Then, the images were acquired
using a controlled setup with image obtained during maternal
breath-hold to produce high-quality images with minor levels
of artifacts/noise. During the capture of fetal MRI, it is not
possible to prevent the movement of the fetus. So, it is not
guaranteed that images obtained in a controlled environment
will be free of artifacts due to fetal movements [13].

For this work, synthetic images were generated to com-
pose the pairs of images (clean and noisy ones). In this context,
the additive Gaussian noise [21] was applied to the clean im-
ages. The additive Gaussian noise is widely used in many
contexts. Thus, Fig. 1 shows two pairs of clean and noisy
fetal images. The clean one (ground truth) is from our dataset
described above, and the noisy one was generated by additive
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Gaussian noise with standard deviation σ = 20.

Figure 1. (a) Ground truth image 1. (b) Noisy image
correspondent to ground truth image 1. (c) Ground truth
image 2. (d). Noisy image correspondent to ground truth
image 2.

4. Denoising Diffusion Probabilistic Model
The forward process in diffusion models is performed to pro-
gressively destroy all the information in the image in a se-
quence of timesteps T where each stage adds Gaussian noise
into the input image. Then, a neural network learns a re-
verse of this process (denoising process) where effectively the
noise is removed step by step. Thus, assume the target data
x0 ∼ q(x0). Thereby, in more details, over this called forward
process, it is possible to define a Markov diffusion process
q that adds Gaussian noise to x0 in each step, which can be
written as [1]

q(x1, . . . ,xT |x0) =
T

∏
t=1

q(xt |xt−1), (1)

q(xt |xt−1) = N (xt ;
√

1−βt xt−1,βt I). (2)

One property of the forward process q was that it allowed
us to sample at any arbitrary stage directly conditioned on x0.
Denoting αt = 1−βt and ᾱt = ∏

t
l=1 αl , we could have

q(xt |x0) = N (xt ;
√

ᾱt x0,(1− ᾱt)I), (3)

xt =
√

ᾱt x0 +
√

1− ᾱt ε, (4)

where ε ∼ N (0,I). Based on Bayes theorem, the posterior
also followed Gaussian distribution,

q(xt−1|xt) = N

(
xt−1; µ̃t(xt ,x0),

1− ᾱt−1

1− ᾱt
βt I

)
, (5)

with

µ̃t(xt ,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
ᾱt(1−αt−1)

1−αt
xt . (6)

If we intended to sample from the goal data distribu-
tion q(x0), we could first sample from q(xT ), which was an
isotropic Gaussian distribution given a large enough T . Here-
after, based on the posterior distribution q(xt−1|xt), we could
obtain sample of x0. Nevertheless, q(xt−1|xt) was not com-
putable as the distribution of x0 was unknown. The DDPM
framework tried to approximate q(xt−1|xt) by pθ (xt−1|xt)
through a network with parameter θ , where

pθ (xt−1|xt) = N (xt−1; µ̃θ (xt , t),σ2
t I). (7)

Instead of directly approximating µ̃θ (xt , t) by a neural
network, Ho et al. [1] proposed to approximate the noise ε in
Eq. 4 by a network as εθ (xt , t) which could also be interpreted
as the gradient of the data log-likelihood, known as the score
function. Based on Eqs. 4 and 6, µ̃θ (xt , t) could be expressed
as

µ̃θ (xt , t) =
1

√
αt

[
xt −

βt√
1− ᾱt

εθ (xt , t)
]
. (8)

Based on trained score function ε̂θ (xt , t), and Eqs. 7 and
8, each improvement step during inference was

xt−1 =
1

√
αt

[
xt −

βt√
1− ᾱt

ε̂θ (xt , t)
]
+σtzt , (9)

where z ∼ N (0,I).
The whole process demonstrated above corresponds to the

original DDPM. However, the improved DDPM proposed by
[10] performed some changes in the process aiming better re-
sults. Thus, they proposed a learnable variance in the process
by using the following equation

∑
θ

(xt , t) = exp
(

v logβt +(1− v)β̃t

)
. (10)

Furthermore, [10] proposed a hybrid loss, which is defined
by following equation
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Lhybrid = Lsimple +λLvlb, (11)

where

Lsimple = E(t,x0,ε)

[
∥ε − εθ (xt , t)∥2] . (12)

Also, Lsimple doesn‘t depend on ∑θ (xt , t) and given that
according to [22] the combination of q and p is a variational
auto-encoder, the variational lower bound (vlb) can be written
as

Lvlb := L0 +L1 + · · ·+LT−1 +LT . (13)

Aside from L0, each term of Eq. 13 is a KL divergence
between two Gaussians and can be evaluated in closed form.
However, to evaluate L0 for images it is assumed that each
color component is divided into 256 bins, thus it is possible to
compute the probability of pθ (x0|x1) landing in the correct bin
(which is tractable using the cumulative distribution function
of the Gaussian distribution).

They also set λ = 0.001 to prevent Lvlb from dominating
Lsimple. The authors experimented that because they believed
it could improve the results compared to original DDPM. Also,
a third proposed improvement by [10] was the use of a cosine
schedule instead a linear noise schedule, which was proposed
in terms of ᾱt :

ᾱt =
f (t)
f (0)

, (14)

where

f (t) = cos
(( t

T
+ s

)
π

2(1+ s)

)2

. (15)

Besides, they used a small offset s to prevent βt from being
too small near t = 0, since they found that having very small
amounts of noise at the beginning of the process made it hard
for the network to predict ε accurately enough. These are the
main improvements proposed by [10].

5. Comparisons and Discussion Results
The dataset used in this work (described in Section III) con-
tains 2590 image pairs (original, noisy), where 80% were
used for training, 10% for validation, and 10% as the test
set. We ran the codes in Python, using PyTorch [23] for
I-DDPM, O-DDPM, and N2N. Also, we used TensorFlow
[24] and Keras [25] for N2V. The codes for O-DDPM, I-
DDPM, N2N, and N2V can be found in [1], [10], [11] and
[12], respectively. Also, in this work, the network weights
were initialized according to those references. Thus, for the

diffusion-based methods, they initialized the training using
ADAM (Adaptative Moment Estimation) [26] with the opti-
mizer function with parameters β = 0.8 and β = 0.9 and
ε = 10−8, and a learning rate of 0.00001, with batch size
64. The two DDPM-based models were trained using 2000
epochs and 300 timesteps. Also, the code was run in a GPU
Tesla T4 with 16GB of GDDR6 memory and 2560 CUDA
cores.

First, we applied both O-DDPM and I-DDPM to perform
results comparisons. Thus, in both DDPM processes occurs
the forward process (Eq. 2), where the input image is de-
stroyed step by step by adding Gaussian noise in each itera-
tion.

One of the purposes at the end of the forward process and
the beginning of the backward process (denoising process)
is to predict the noise distribution accurately. This stage is
important and necessary to undo the noise-adding operation.
Thus, at the beginning of the backward process, the predicted
noise is away from the ground truth noises. However, this is
natural because the network is still learning the patterns and
the results improve over the training epochs.

In this sense, the network learns the ground truth noise
over training. At this point, it is possible to undo this noise ad-
dition and denoise the corrupted image (xt). Fig. 2 shows that
the predicted noises are initially away from the added noise.
On the other hand, over the epochs training, the tendency is
that the predicted noise approximates the ground truth noise
(Fig. 3).

After the denoising process, the outcome is the denoised
image. Fig. 4 shows one image from the test set that were
denoised using both original and improved DDPM. To apply
DDPM approaches, we used as input the noise image (x0)
such as in [13], which were images corrupted by a Gaussian
noise using σ = 20 (standard deviation). In this sense, un-
fortunately, by visual analysis, it is hard to see and conclude
what model performed better. However, in this work, we also
computed some quality image metrics to compare the results,
PSNR and RMSE.

Figure 2. Ground truth and predicted distribution noise at the
beginning of the backward training process.
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Figure 3. Ground truth and predicted distribution noise at the
end of the backward training process.

In this context, we used widely quality image metrics,
PSNR, and RMSE, to evaluate the results of both approaches.
The formulas to compute these image quality metrics are given
below.

PSNR = 20log(MAXI)−10log(MSE). (16)

In the above formula, MAXI represent the maximum pixel
value of image I and MSE (Eq. 17) is the mean squared
error that considers the “true” numeric values for comparison
between actual and degraded image [27]

MSE =
1

M×N

M

∑
i=1

N

∑
j=1

[g(i, j)− f (i, j)]2, (17)

where M and N are the pixel amounts in the x direction and
y direction, respectively, of the thin section images. Also,
g(i, j) and f (i, j) are the grey values of the original (ground
truth) thin section image and the cleaned thin section image,
respectively, at point (i, j).

The RMSE, another quality measure used in this paper, is
defined as

RMSE(g, f ) =
√

MSE, (18)

where MSE was defined in Eq. (17), g is the original signal,
and f is the denoised signal.

Table 1 summarizes the quantitative results of both DDPM
methods and, for comparison purposes, it also presents the
results achieved by N2N and N2V self-supervised methods,
reported in [13]. This table presents the image quality metrics
(PSNR and RMSE), in terms of the mean over the test set
composed by 259 images, for the four methods (O-DDPM,
I-DDPM, N2N, N2V).

In general, quality image metrics are widely used because
the quantitative results are very important and essential to

Table 1. Results for O-DDPM, I-DDPM, N2N, and N2V
methods considering the fetal test set and mean values of
PSNR and RMSE metrics

Methods

PSNR RMSE

O-DDPM 31.2376 0.0231
I-DDPM 33.4562 0.0087
N2N 31.1867 0.0261
N2V 29.3456 0.0342

make accurate conclusions about the results. In this case,
Table 1 informs that, even with the lack of visual perception,
improved DDPM outperforms the counterparts O-DDPM,
N2V and N2N, since for this method, PSNR is greater than
others and the RMSE is the smallest one. Thus, considering
the tested dataset and the added Gaussian noise, I-DDPM is
recommended for the denoising image problem. However,
in terms of training required time, these approaches have no
significant variations.

In Fig. 4 it isn’t possible to visually identify differences
between the denoised images (Fig. 4.(c) and Fig. 4.(d)), i.e.
I-DDPM and O-DDPM performed very similarly, although
the first one was quantitatively better. However, it is possible
to see the difference between the ground truth Fig. 4.(a) and
the denoised images Fig. 4.(c) and Fig. 4.(d). Thus, it means
that there is a place to have better results considering the
clean image. In this sense, other methods and techniques must
continue to be applied aiming for better results.

Besides, we also performed a test using images with a
higher level of Gaussian noise (σ = 30). The idea was to ver-
ify the performances of both the I-DDPM and the O-DDPM.
The output was a PSNR of 30.3476 for the I-DDPM and a
PSNR of 29.7858 for the O-DDPM. Also, the RMSE for the I-
DDPM was 0.0156 and the RMSE for O-DDPM was 0.0298.
Thus, this test endorses the results shown in Table 1, where
the I-DDPM was the best technique for the used dataset. Fig,
5 shows the visual results for this test.

6. Conclusions
This work aimed to apply two DDPM-based approaches (O-
DDPM and I-DDPM) and compare the results with two self-
supervised methods, N2N and N2V. We used these methods
in fetal MRI aiming to perform denoising tasks to improve
the clinical analyses of this kind of image. The cleaner the
medical image the greater the probability to detect problems
and perform prevention attitudes.

Considering the two applied DDPM-based methods, the
I-DDPM performed better compared with the counterparts
O-DDPM, N2V, and N2N, using the same dataset and un-
der the same training conditions. Indeed, the improved ap-
proach achieved greater results, presenting a bigger PSNR
and a smaller RMSE compared to the other three methods. In
this sense, the objective of this work was achieved and the

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 32 • N. 1 • p.30/32 • 2025



Application of Probabilistic Diffusion Methods for Noise Removal in Fetal Magnetic Resonance Imaging

Figure 4. (a) Ground truth. (b) Noisy image. (c) Denoised
image obtained by the O-DDPM method. (d) Denoised image
obtained by the I-DDPM approach.

contribution was confirmed.
Some of the limitations in developing this article include

using a private dataset that is not very large, consisting of
2,590 images. Additionally, we could not compare our results
with more methods because, in general, it is challenging to
find the code implementations for image denoising methods.

For future works, we intend to improve the denoising task
in fetal MRI and test these methods by applying more noise
levels. Thus, we will try other denoising methods and perform
results benchmarking. Also, we intend to propose improv-
ing the DDPM approach to reach better results and use real
fetal images. This improvement consists of applying a com-
plex probabilistic distribution (q-Exponential model) to try
to predict the noise and perform noise reduction or complete
elimination based on this probabilistic model. Besides, we
will test other fetal datasets, and different kinds of images,
such as ultrasonography imagery.
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R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 32 • N. 1 • p.31/32 • 2025



Application of Probabilistic Diffusion Methods for Noise Removal in Fetal Magnetic Resonance Imaging

Figure 5. Test using a higher level of the Gaussian noise (σ = 30).

[13] NEGREIROS, A. C. S. V. de et al. Self-supervised
image denoising methods: an application in fetal mri. In:
SBC. Anais do XVIII Workshop de Visão Computacional.
[S.l.], 2023. p. 137–141.
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