
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 32, Num. 1 (2025) 114-120

RESEARCH ARTICLE

Bulldogs Nose Detection using Deep Learning
Detecção das Narinas de Buldogues utilizando Aprendizado Profundo
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Uhry1, Gustavo da Silva Andrade2, Gisele Braziliano de Andrade1, Hemerson Pistori1, Newton
Loebens3*

Abstract: An animal nose identification system could allow efficient monitoring of pets, and it can be used
in applications such as identifying animal breeds or possible diseases and/or injuries. For that, a bulldog
image dataset was build from French bulldogs. To carry out the validation through cross-validation, 10 folds
(K-folds) were created. Afterward, five convolutional neural networks (CNN) were trained with our dataset to
identify the nose: Faster R-CNN (Region-based CNN), SABL (Side-Aware Boundary Localization), RetinaNet
(ResNet50+FPN), VFNet (VarifocalNet), and ATSS (Adaptive Training Sample Selection). Faster R-CNN, SABL,
RetinaNet, VFNet and ATSS were used for training in the first phase, while ATSS, Faster R-CNN, ATSS and
SABL in the second. The results showed that the ATSS network obtained the highest values of mAP and
Accuracy in the first phase. Moreover, SABL network achieved the highest values of mAP50, mAP75, Recall,
F-Score and Accuracy at the end of the second phase.
Keywords: Computer Vision — Neural Networks — Brachycephalic Obstructive Airway Syndrome — Stenotic
Nares — Bulldogs Nose

Resumo: Um sistema de identificação de nariz de animal pode permitir o monitoramento eficiente de animais de
estimação, e pode ser usado em aplicações como identificação de raças de animais ou possı́veis doenças e/ou
ferimentos. Para isso, um conjunto de dados de imagens de bulldog foi construı́do a partir de bulldogs franceses.
Para realizar a validação por meio de validação cruzada, 10 dobras (K-folds) foram criadas. Depois, cinco redes
neurais convolucionais (CNN) foram treinadas com nosso conjunto de dados para identificar o nariz: Faster
R-CNN (CNN baseada em região), SABL (Side-Aware Boundary Localization), RetinaNet (ResNet50+FPN),
VFNet (VarifocalNet) e ATSS (Adaptive Training Sample Selection). Faster R-CNN, SABL, RetinaNet, VFNet
e ATSS foram usados para treinamento na primeira fase, enquanto ATSS, Faster R-CNN, ATSS e SABL na
segunda. Os resultados mostraram que a rede ATSS obteve os maiores valores de mAP e Accuracy na primeira
fase. Além disso, a rede SABL atingiu os maiores valores de mAP50, mAP75, Recall, F-Score e Precisão no
final da segunda fase.
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Braquicefálicos — Narinas Estenóticas — Nariz de Buldogue
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1. Introduction

Since the domestication of wolves, mankind have influenced
the emergence of new canine breeds and genetic variability,
through the artificial selection of aptitudes, in order to ob-
tain animals bred according to their objectives. This occurs
by altering the physical or aesthetic appearance, influencing
attributes such as bone conformation, coat, weight and mus-

culature, which eventually can cause problems for the health
of these animals. The emergence of brachycephalic canine
breeds can be related to the search for animals for combat,
due to the belief that the shape of their head would provide a
stronger bite [10].

The Brachycephalic Obstructive Airway Syndrome (BOAS)
is due to congenital anatomical malformations [11] that cause
several problems due to shortening and enlargement of the
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skull [12] and muzzle, and consequently of the underlying
bones [10]. The conformational changes led to the occurrence
of nostril stenosis, elongation and increase in the thickness of
the soft palate, tracheal hypoplasia, enlarged tonsils, eversion
of laryngeal saccules, collapse of the larynx and/or trachea
and increase in nasopharyngeal turbinates, which may result
in obstruction. of the airways [12][18][19].

These alterations may present in isolation or in combi-
nation, and in different degrees of morbidity [14, 15, 1, 22].
As a result of the anatomical changes that obstruct the air-
ways, clinical signs such as snoring, respiratory distress, exer-
cise intolerance, rales, tachypnea, hyperthermia, dyspnea and
cyanosis appear [13, 12, 20, 23].

About 60% of veterinarians and owners do not know
how to recognize the clinical signs of this disease, impair-
ing early treatment. However, in recent years, there has been
growing concern about the welfare of animals with this syn-
drome [17, 16, 20, 24, 22]. Physical examination, the patient’s
medical history, and an evaluation under general anesthesia
are used for the diagnosis of BOAS. However, these methods
are subjective or invasive, making early diagnosis and treat-
ment difficult [21]. Thus, the development of new methods
for non-invasive and objective measurements of respiratory
function in brachycephalic dogs is necessary.

This paper contemplates some steps taken to detect the
nose of bulldogs, from taking images to create our dataset
to train the networks. The contribution of this work is a
novel annotated dataset and the empirical evaluation of deep
learning techniques to attack a problem that has not been
attacked before in this kind of image.

2. Related Works
The bovine snout has unique characteristics that can be com-
pared to fingerprints in humans, making it possible to track
the cattle through non-invasive ways by identifying the snout
patterns. In the research of [31], the main goal was to collect
and publish a quality dataset for snout images of beef cattle
and to evaluate and compare the recognition performance of
individual beef cattle with a variety of deep learning models.
4923 snout images of 268 feedlot cattle (> 12 images per
animal, on average) were obtained with a digital camera and
processed to form the input dataset for 59 deep learning im-
age classification models to identify individual cattle. In the
benchmarking, the best performance in terms of accuracy was
obtained by VGG16 BN (98.7%) and the fastest processing
speed was obtained by MobileNetV3 Small (28.3 ms/image),
both with data augmentation and weighted cross-entropy as
loss function, demonstrating the great potential of deep learn-
ing applications for individual identification of cattle and is
favorable for precision beef cattle management.

Aiming to identify the face of the herd of dairy cows using
deep learning and computer vision techniques, [29] proposed,
through video analysis, recognition carried out in four steps:
face detection, face cropping, face encoding and face lookup.
For this purpose, three deep learning models were used Face

detector, Landmark predictor and Face encoder. These models
were adjusted through transfer learning on a dataset of dairy
cows from a farm on the Dookie campus at the University of
Melbourne, Australia. The result of this study demonstrated
84% overall accuracy of videos from 89 different dairy cows.

Computer vision, through the method of facial recogni-
tion and patterns observed through digital images and videos,
has been used in the study of the conservation of endangered
animals, such as the giant panda. Making a breakthrough in
assessing the effectiveness of conservation and management
strategies a fully automatic deep learning algorithm consist-
ing of a sequence of deep neural networks (DNNs) used for
panda face identity detection, segmentation, alignment and
prediction was developed in [30]. To develop and evaluate the
algorithm, the largest panda image dataset containing 6,441
images of 218 different pandas was established. The algo-
rithm achieved 96.27% accuracy in panda recognition and
100% accuracy in detection.

The authors of [28] used a trained and tested CNN with
thoracolumbar magnetic resonance (MR) images of 500 dogs,
weighted in T1 and T2 in the sagittal and transverse planes.
This network was trained with 2693 RM images from 375
dogs and tested with 7695 MR images of 125 dogs. The
dataset consisted of 39 dogs with unremarkable MR images
and 461 dogs demonstrating spinal cord pathologies such as:
284 dogs with intervertebral disc extrusion (IVDE), 38 dogs
with intervertebral disc protrusion (IVDP), 108 dogs with fi-
brocartilaginous embolism (FCE) and acute non-compressive
extrusion of the nucleus pulposus (ANNPE), 13 dogs with
syringomyelia and 18 dogs with neoplasia.

The network performed best in detecting IVDPs on sagit-
tal T1-weighted images with a sensitivity of 100% and speci-
ficity of 95.1%. In the detection of IVDEs, in the sagittal
T2-weighted images, there was also a good performance with
sensitivity of 90.8% and specificity of 98.98%. In this study,
the network response to FCEs and ANNPEs detected a sensi-
tivity of 62.22% and a specificity of 97.90% on sagittal T2-
weighted images and with a sensitivity of 91% and specificity
of 90% on cross-sectional T2-weighted images, respectively.
For the detection of neoplasms and syringomyelia, the net-
work did not perform well because it presented insufficient
data for training or even had difficulties with hyperintensities
in T2 images. This study showed the possibility of training
a CNN network for recognition and differentiation of var-
ious spinal cord pathologies in canine magnetic resonance
imaging.

3. Materials and Methods
To carry out the bulldog nose detection experiment, some
initial steps were necessary before starting the pre-processing
of the images and their use for training and testing. The
workflow, on Figure 1, was executed as follows: (A) A new
bulldog dataset was build and (B) Images were annotated in
the nose region, Subsection 3.1; (C) Neural network training
performed based on the annotated images, Subsection 3.2; (D)
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Figure 1. Experimental workflow followed in the first phase
of the research. The images were downloaded from the
internet (A), annotated in the nose region (B) and used for
training and testing the Faster R-CNN, RetinaNet, VFNet,
ATSS and SABL networks (C), where the results were
generated (D).

The images were tested, generating results, Subsection 3.3.

3.1 Our dataset
The dataset used in this research was built with 110 free do-
main images of French and English bulldogs, obtained from
the internet, and 54 photographic images of the frontal pro-
jection obtained only from French bulldogs, of both genders,
age between 2 and 10 years old, mean of approximately 5
years old and standard deviation of 3 years, in the city of
Campo Grande, MS. The downloaded RGB images, with
resolution ranging from 255 × 225 pixels to 2048 × 1485
pixels, were chosen in such a way that not only images that
facilitate the learning of the algorithms were selected, but also
images where the dogs appeared a little in profile or even with
the tongue over the mouth and part of the nose. This choice
aimed at better training through networks in the execution of
processes based on different types of data. To perform our
images, the face of each animal was photographed with the
aid of an iPhone XS smartphone or with a Samsung Note
10, at a distance of approximately 40 centimeters and with
resolution of 4608 × 2592. When capturing the images, those
responsible for the animals signed a free and informed consent
form, agreeing with the inclusion of photographic images of
the animal’s faces in the research, in addition to filling out a
questionnaire about the respiratory condition of each animal.

3.2 Deep Learning
With the images properly annotated, as shown in Figure 2,
the training and testing stage were divided into 2 phases. In
the first phase, the 110 images downloaded from the internet
were separated into 5 different folds [6], according to the K-
fold cross-validation sampling technique [5]. The result of
this first phase determined which networks would be used in
the second phase, in which the 110 images would be used
for training, without cross-validation, and the 54 performed
images for testing.

In this study, the ensemble of models was trained on a

Figure 2. Images annotated from dataset.

dataset of bulldog images using various convolutional neural
networks (CNNs) to detect the dogs’ noses. The networks
were trained for a number of epochs ranging from 10 to 30.
However, the metrics stabilized after 15 epochs, making fur-
ther training unnecessary. The Intersection over Union (IoU)
threshold was set to 0.3, which means that predicted bound-
ing boxes with at least 30% overlap with the ground truth
were considered correct. A learning rate of 0.01 was used
and the primary metric used to evaluate the performance was
mean Average Precision (mAP), a standard measure for ob-
ject detection tasks. The training was conducted in Google
Colab PRO, using a T4 GPU and 32GB of RAM. For the
training of these images, we used five convolutional neural
networks (CNN): Faster R-CNN (Region-based Convolutional
Neural Networks) [2], SABL (Side-Aware Boundary Localiza-
tion) [4], RetinaNet (ResNet50 + FPN) [7], VFNet (Varifocal-
Net) [8], and ATSS (Adaptive Training Sample Selection) [9].

The Faster R-CNN neural network has two execution mod-
ules, the first, called Region Proposal Network (RPN), is re-
sponsible for obtaining characteristics and producing a set of
proposals with its candidate objects, and the second, utilizes
the Fast R-CNN detector to identify, or classify, the target
objects providing their assertion probability [3]. Just as Faster
R-CNN, RetinaNet is divided into two modules: a residual net-
work (ResNet) as an encoder and a resource pyramid network
(FPN) as a decoder, with ResNet being a model formed in a
pyramid of resources, in various scales and parallel executions,
thus performing convolutional operations, divided into layers
that will be used by the FPN decoder. SABL is a network
proposed as a more efficient way to detect objects with more
precision than conventional methods, where each side of the
image boundary is identified as a dedicated network branch,
that is, several divisions are made in the target object where it
will be identified and analyzed individually. The ATSS, called
network with anchor, performs this selection according to the
statistical characteristics of the object, that is, an analysis of
the data received to identify whether they will be used in the
training and testing dataset in detecting the object or not. It
performs calculations throughout the image and analyzes the
points of importance, of excellent quality and which differ
particular elements from others, adding a margin of 50.7%
AP in state-of-the-art detectors with no processing impact.
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Based on ATSS + FCOS architecture, VFNet, or VarifocalNet,
is a network with the projection of a new loss function and
refinements in bounding boxes.

3.3 Statistical Analysis
With our dataset created and the networks models trained, the
final step consisted to test and analyze the results generated.
The evaluation of how well the predictions have been made
with the mean Average Precision (mAP), which was the most
common metric used by object detection challenges, and used
the concepts of precision and recall in conjunction with the
Interception over Union (IoU) to score the prediction [25].
Other commonly used metrics are Precision, Recall, Accuracy
and F-Score (or F1-Score) [26, 27], where Accuracy (Acc)
can be defined as the ability of a model to identify objects
correctly, Precision (P) can be defined as the ability of a model
to identify only relevant objects and Recall (R) can be defined
as the ability of a model to identify all relevant cases and they
can be mathematically defined as:

Acc =
T P+T N

T P+FP+T N +FN
, (1)

P =
T P

T P+FP
, R =

T P
T P+FN

, (2)

where TP (True Positive) is a correct object detection, FP
(False Positive) is an incorrect detection of a nonexistent ob-
ject or a misplaced detection of an existing object, TN (True
Negative) when no detection is made and FN (False Negative)
is an undetected object.

We can measure the success rate of the classifier by defin-
ing F-score as the harmonic mean of P and R as:

F-Score = 2
PR

P+R
=

2T P
2T P+FP+FN

, (3)

By comparing the IoU result with a threshold t, we can
classify if a detection is correct (if IoU ≥ t) or incorrect (if
IoU < t), where this threshold can be 0.3, 0.5 or 0.75. Defined
how to classify a correct or incorrect detection, we can see
that an object detector can be considered good if it detects all
ground-truth objects while identifying only relevant objects.
A good object detector is one that maintains high accuracy
while increasing recall values, which means that regardless of
threshold variation, accuracy and recall should remain high.
This can be visualized through the area under the precision ×
recall curve. Unfortunately, the area under the curve (AUC)
is often a zigzag-like curve and a processing in the Average
Precision (AP) is made as

AP = ∑
n
(Rn+1 −Rn)Pinterp(Rn+1) (4)

where, Pinterp(Rn+1) = maxR:R≥Rn+1P(R). Finally, we can cal-
culate the mean Average Precision (mAP) as:

mAP =
1
N

N

∑
i=1

APi, (5)

with APi being the AP in the ith class and N is the total number
of classes being evaluated. For clarity, the AP can be evaluated
with different IoUs thresholds, 0.5 or 0.75, and, for each, we
call it AP50 or AP75, respectively. We can also evaluate the
AP by averaging 10 different IoUs thresholds, beginning in
0.5 and ending in 0.95, with steps of 0.05, this will be called
AP.

4. Results and Discussion
The results of the first phase showed that the RetinaNet and
VFNet did not learn to identify the dogs’ noses, which is
reflected in their poor performance in all metrics (precision,
recall, F-score, and mAP), which can be seen in Table 1. Con-
sequently, they were discarded from further evaluation. Faster
R-CNN achieved strong overall performance, with a partic-
ularly high recall, meaning it could detect most instances of
the target object, though with slightly lower precision com-
pared to others. ATSS had perfect precision, but its recall was
significantly lower. This means it correctly identified the nose
when detected but failed to detect it in many instances, leading
to a lower F-score. However, it achieved the highest values
for mAP and mAP75, indicating superior performance when
the Intersection over Union (IoU) threshold is higher, mean-
ing it excelled in detecting the object more precisely when
detected. SABL also performed well, with a strong balance
between precision and recall. Its precision was higher than
Faster R-CNN, but its recall and F-score were slightly lower.
In terms of mAP metrics, it also performed well, though it
didn’t surpass ATSS in mAP.

Table 1. Mean 5-fold nose detection results in the dataset for
Faster R-CNN, SABL, RetinaNet, VFNet, and ATSS. The
standard deviation value is displayed in parentheses.

CNN Precision Recall F-Score Accuracy
Faster R-CNN 95% (7%) 94% (3%) 95% (4%) 92%
RetinaNet 0% (0%) 0% (0%) 0% (0%) 0%
ATSS 100% (0%) 56% (17%) 70% (14%) 57%
VFNet 0% (0%) 0% (0%) 0% (0%) 0%
SABL 97% (4%) 90% (6%) 93% (3%) 90%

The same can be seen in Table 2, where the RetinaNet
and VFNet networks did not obtain good results for mAP,
mAP50 and mAP75, which resulted in their discarding in the
next phase of the research. Although it had the lowest value
for Recall and F-Score, ATSS obtained the highest values for
mAP and mAP75, which means that it has the better results
than the other networks when the Intersection over Union is
higher.

Figure 3 shows the boxplot for the mAP metrics (mAP,
mAP50, mAP75) and it can be seen that the boxplot of all
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Table 2. Mean 5-fold for mAP, mAP50 and mAP75 results in
the dataset. The standard deviation value is displayed in
parentheses.

CNN mAP mAP50 mAP75
Faster R-CNN 0.544 (0.018) 0.957 (0.027) 0.530 (0.039)
RetinaNet 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
ATSS 0.562 (0.028) 0.943 (0.028) 0.655 (0.131)
VFNet 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
SABL 0.544 (0.022) 0.953 (0.022) 0.559 (0.107)

Table 3. Second phase results for Faster R-CNN, ATSS and
SABL.

CNN Precision Recall F-Score Accuracy
Faster R-CNN 100% 89% 94% 89%
ATSS 100% 62% 76% 62%
SABL 97% 95% 96% 91%

metrics is 0 for the RetinaNet and VFNet networks in contrast
to the good performance shown by Faster R-CNN, ATSS and
SABL networks.

The results of the second phase showed that SABL ob-
tained the highest values in all metrics, except in Precision,
having 97% of Precision against 100% of Faster R-CNN and
ATSS (Table 3). However, Faster R-CNN obtained values
above 90% for Precision (95%), Recall (93%), F-Score (94%)
and accuracy (97%). Table 4 shows that SABL was superior
in mAP50 and mAP75, being inferior only to ATSS in mAP.

Figure 4 shows the boxplot for mAP metrics (mAP, mAP50,
mAP75) and shows that the results obtained by SABL are bet-
ter than those obtained by Faster R-CNN and ATSS.

As shown in Figure 5, ATSS found markings closest to the
nostril, better than the human annotations in some cases, giv-
ing it the best result for mAP, although it could not find the nos-
tril in every image from our dataset. Faster R-CNN and SABL
found the nostril in almost every image from our dataset, but
with a wider mark, and one false positive from SABL. How-
ever, SABL obtained the highest values for mAP50, mAP75,
Recall, F-Score and Accuracy, narrowly losing in Precision
and in mAP.

In the second phase, SABL proved to be the most con-
sistent, achieving the highest values in most metrics (Recall,
F-Score, Accuracy, mAP50, and mAP75). The only areas
where SABL fell short were in precision (97% vs. 100% for
Faster R-CNN and ATSS) and overall mAP, where ATSS had
the edge. Faster R-CNN continued to perform reliably, with
high precision, recall, F-score, and accuracy. Although it was
slightly outperformed by SABL in mAP metrics, its results
were strong across the board. ATSS stood out for its mAP,
particularly at higher IoU thresholds, but it struggled in recall

Table 4. Second phase results for mAP, mAP50 and mAP75
in Faster R-CNN, ATSS and SABL.

CNN mAP mAP50 mAP75
Faster R-CNN 0.455 0.938 0.240
ATSS 0.470 0.932 0.265
SABL 0.458 0.951 0.344

and F-score compared to the other models. The boxplot visu-
alization confirmed ATSS’s tendency to have superior mAP
performance when detecting markings close to the nostrils,
sometimes even better than human annotations, but it missed
some instances of the nose, lowering its overall effectiveness.

5. Conclusion
Due to the increase in families with pets and the large move-
ment of people concerned about their pet’s well-being, this
work presented a new technology that aims to detect the nose
of bulldogs. With the nose detected, we can analyze the nos-
trils, looking for anatomical irregularities and airway diseases.
Five networks were used for training in the first phase, Faster
R-CNN, SABL, RetinaNet, VFNet, and ATSS, and three net-
works in the second phase, ATSS, Faster R-CNN and SABL.
ATSS achieved the highest values for mAP and Precision
during both phases, indicating its superior performance in
terms of exact and confident detections of the bulldog’s nose.
This makes it effective when precision is critical, particularly
for tasks requiring high Intersection over Union (IoU) values.
SABL, however, demonstrated the best overall performance
by the end of the second phase. It achieved the highest val-
ues for mAP50 and mAP75, Recall, F-Score and Accuracy.
These results highlight SABL’s balanced performance, mak-
ing it the most reliable network for comprehensive detection
tasks where recall, accuracy, and broader identification of the
bulldog’s nose (including edge cases) are important.
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