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Automatic Detection and Counting of Tuta Absoluta Insect
in Trap Images
Detecção e Contagem Automática do Inseto Tuta Absoluta em Imagens de Armadilhas

Gabriel Santos de Souza1*, Camila Corrêa Vargas2, Jean Carlo Hamerski1

Abstract: The integration of artificial intelligence (AI) into agriculture offers solutions to challenges such as pest
control. AI can improve productivity and sustainability through precision agriculture. This paper presents an
automatic system for identifying and counting Tuta absoluta pests in trap images, integrated into a monitoring
platform. The platform uses a biological defensive system for sustained pest control. The solution employs
ImageAI deep learning algorithms to detect and classify pests, using YOLOv3 and TinyYOLOv3 models. We
provide assessments of the performance and resource consumption of the evaluated models. YOLOv3 achieved
a detection precision of 95.28% in images with 10-50 insects, decreasing to 87.51% for around 100 insects.
Despite YOLOv3 demonstrating higher precision in the detection of the number of insects, the Tiny YOLOv3
model was shown to be 4.5 times faster in the training process and occupies almost 8 times less storage space.
Keywords: Biological Pest Control — Precision Agriculture — Computer Vision — Deep Learning — Tuta
absoluta

Resumo: A integração da inteligência artificial (IA) na agricultura oferece soluções para desafios tal como
o controle de pragas. O emprego de IA pode melhorar a produtividade e a sustentabilidade por meio da
agricultura de precisão. Este artigo apresenta um sistema automático para identificação e contagem de da praga
denominada Tuta absoluta em imagens de armadilhas de campo, integrado a uma plataforma de monitoramento
de pragas. A plataforma usa um sistema defensivo biológico para controle sustentado de pragas. A solução
emprega algoritmos de aprendizado profundo baseado na biblioteca ImageAI para detectar e classificar pragas,
usando os modelos YOLOv3 e TinyYOLOv3. Apresentamos resultados de desempenho e consumo de recursos
dos modelos avaliados. O YOLOv3 atingiu uma precisão de detecção de 95,28% em imagens com 10-50
insetos, diminuindo para 87,51% quando o número de insetos aumenta para cerca de 100. Apesar do YOLOv3
demonstrar maior precisão na detecção do número de insetos, o modelo Tiny YOLOv3 mostrou-se 4,5 vezes
mais rápido no processo de treinamento e ocupou quase 8 vezes menos espaço de armazenamento.
Palavras-Chave: Controle Biológico de Pestes — Agricultura de Precisão — Visão Computacional — Apren-
dizado Profundo — Tuta absoluta
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1. Introduction

In 2023, Brazil’s conventional food sector achieved revenue
of R$ 1.16 trillion, corresponding to a volume of 10.8% of the
national GDF 10% of the national Gross Domestic Product
(GPD) [1]. Specifically, organic food production, which is
characterized by the absence of chemical pesticides, is ex-
pected to grow 27% in Brazil by 2025, reaching revenues of
more than R$ 127 billion [2]. Both conventional and organic
agriculture production face significant challenges in the effec-
tive management of pests and diseases, which are responsible

for an estimated reduction in potential crop yields ranging
from 20% to 40% [3].

The challenge of pest control has traditionally been mana-
ged using chemical pesticides. However, numerous pests
have developed resistance to these methods. Furthermore,
the current availability of pesticides for organic farmers is
inadequate to meet market requirements in terms of logis-
tics, effectiveness against specific pests, and scalability for
extensive production.
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Companies such as BioIn Biotecnologia1 (BioIn) have
developed eco-friendly biological solutions to control pests.
These biological products are integrated into production through
precision agriculture, which uses pest monitoring software
to provide an accurate application. BioIn’s flagship product,
BIOIN-TRICHO-P is a biopesticide comprising trichogramma
pretiosum microwasps. When these microwasps are intro-
duced into the fields, they seek out and parasitize pest eggs,
thus avoiding crop damage caused by them. Figure 1 shows
the cycle of this process. To achieve the expected effective-
ness, the wasps must be released in the field when the pest is
still in the egg stage.

Figure 1. QR Code Scan

Recent works have explored the use of innovative solu-
tions to resolve traditional agricultural issues [4] such as the
BioIn case. They explore the widespread use of smartphones,
using sophisticated technologies that include image process-
ing methods, Artificial Intelligence (AI), Deep Learning (DL)
and Machine Learning (ML) [5–10].

In order to achieve the desired efficacy, BioIn has created
a decision-making mechanism supported by the Monitora
platform. It is designed to track the entry of pests into agricul-
tural fields, providing producers with alerts about the optimal
timing for pesticide application, infestation levels, and the
most affected areas. One of the main pests that affects tomato
production is the Tuta absoluta insect. Figure 2 shows the
development stages of the insect. In BioIn’s solution, the
adult stage of Tuta absoluta is detected through the use of
baited traps that collect male species of the pest, indicating
the presence of females in the field laying your eggs on the
plantation.

To accelerate the decision-making process on the Moni-
tora platform, this paper proposes a solution for the automated
identification and counting of Tuta absoluta pests in images
taken from baited traps, integrated into the platform. This so-
lution utilizes autonomous computer vision (CV) capabilities
to enhance the accuracy and efficiency of this process. The
key benefit of this approach is its ability to significantly scale
up the solution, an improvement over the previously manually
managed human process.

1https://bioinagro.com.br/

Figure 2. Tuta absoluta development stages: A – adult, B –
egg, C - caterpillar, D – pupa [11].

The main contribution of this paper is to present a perfor-
mance and resource usage evaluation of the AI library used
for the AI training and insect detection processes. As given
in the next section, only a few studies present similar com-
parisons, but the solutions they evaluate are not useful for
our case study, since the application domains are radically
different and less restricted when compared to the insect trap
images domain.

2. Related Works
Recent advances in AI and CV have resulted in very power-
ful tools for the detection and classification of pests on a
wide crop base. This section presents a general overview of
advanced methods that have been applied to deal with this
problem, compared to the approach adopted in our work.

Christakakis et al. [5] developed a mobile tool for real-
time Tuta absoluta detection in tomato crops using the deep-
learning model YOLOv8. It detects the pest itself, but also
the affected areas of the leaves. The application, combined
with large image databases, is a method for the diagnosis
and management of plant diseases. Our work otherwise fo-
cuses on the detection and counting of Tuta absoluta insect
in traps images, allowing for a more controlled and targeted
monitoring approach for this purpose.

Nasim et al. [6] performed a comprehensive review of
image processing techniques aimed at detecting pests in ba-
nana plantations. Their study evaluated 22 different works,
noting that deep learning approaches, particularly YOLOv3,
have enhanced pest detection accuracy by up to 92%. However,
these techniques still face the challenge of achieving the pre-
cision needed for the identification of small-scale pests in
agricultural environments. It is a general analysis of multi-
ple studies and contrasting with our research, which focuses
on custom detection and classification, performing the cur-
rent training based on an image dataset of Tuta absoluta pest
within the traps.

Rahman and Ravi [7] discussed various AI-based tools
such as mobile applications (e.g. Plantix, FAMEWS, and
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Nuru) and systems (e.g. drone-based monitoring), which are
designed to assist in identifying and managing pest popula-
tions. The study focuses on applying and analyzing technolo-
gies directly to plantations and evaluating several tools already
available.

Bütüner et al. [8] and Georgantopoulos et al. [9] concen-
trated on identifying the damage induced by Tuta absoluta
rather than the pest itself. The former employed an extensive
dataset of 1000 images and achieved a predictive accuracy
of 98% by incorporating background elements directly into
the training process, a notable improvement over previous
techniques requiring manual background elimination. The
latter integrated Near-Infrared and RGB channels to improve
the detection of lesions in tomato plants caused by Tuta abso-
luta and Leveillula taurica pests. This combination of visible
and infrared data allowed for a more thorough and detailed
examination of plant conditions, resulting in a better detection
accuracy.

Lastly, Ullah et al. [10] reviewed the limitations of deep
learning models used for pest classification. The study pointed
out that while these models have shown success in controlled
laboratory environments, their performance often declines
in real-world settings due to factors such as complex back-
grounds, lighting conditions, and the diverse appearances of
pests. The authors emphasize the importance of developing
models capable of generalizing across different datasets and
real-world scenarios to improve pest recognition.

The cited works present important proposals for the do-
mains they address, but do not have direct application to the
research objective of this research, which focuses on the au-
tomatic identification and counting of Tuta absoluta using
traps with a customized detection approach. This method is
designed to enhance the scalability of agricultural monito-
ring solutions and specifically targets the prevention of pest
infestations by enabling precise interventions.

3. Proposed Approach
This section offers an in-depth explanation of the method
adopted in this work, including pest monitoring, pest detec-
tion, and deep learning model and training processes, in addi-
tion to presenting the evaluation metrics used in experiments.

3.1 Pest Monitoring Process
Figure 3 illustrates a high-level overview of BioIn’s Monitora
platform. Here are the steps of the solution:

• Trap Installation: The first step involves setting up
traps in the field. These traps are strategically placed in
areas prone to pest activity and are designed to attract
harmful insects. Each trap is equipped with a unique
QR code that is geolocated for precise monitoring.

• Opening the Application: User uses a mobile applica-
tion specifically designed for this monitoring process.
Upon arriving at a trap location, they open the applica-
tion, which is linked to the Monitora platform.

• QR Code Scan: User scans the QR code attached to the
trap, linking the captured image and subsequent data to
the specific trap’s geolocation. After scanning the QR
code, the application automatically activates the camera
system of the mobile device. The user is then prompted
to take a clear photo of the trap’s surface, where insects
are caught. The application is supported by a remote
service to which the image is sent. The remote service
is augmented with CV capabilities to detect and count
the number of Tuta absoluta insects.

• Generating Insect Infestation Reports: The data gene-
rated by the remote service are used o create infesta-
tion management reports and provide the producer with
technical advice on the optimal timing and location for
applying biological pesticides.

Figure 3. BioIn’s complete solution schema

3.2 Pest Detection Process
The pest detection and counting process is handled by the

remote service, located on a server. The remote service uses
deep learning techniques to automatically perform this pro-
cess. It was developed using Python, supported by ImageAI2

library. The detection model chosen to be evaluated in our
experiments was YOLOv3 (and your variant, TinyYOLOv3),
which is well known for its accuracy and speed in scenarios
involving insects, as observed in the related works. A dataset
from BioIn, containing 225 training images, 67 validation
images, and 15 test images of Tuta absoluta, was utilized to
perform the model’s training.

3.3 Deep Learning Model and Training
YOLOv3 and its lightweight variant, TinyYOLOv3 (TYOLOv3),
were selected for this case study. YOLOv3 is a real-time object
detection model that works by predicting bounding boxes and
class probabilities directly from full images in a single evalua-
tion. This approach makes YOLOv3 extremely fast compared

2https://github.com/OlafenwaMoses/ImageAI
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to other methods that require region proposals or multiple
passes through the image.

TinyYOLOv3 offers a balance between speed and accuracy,
making it suitable for environments with limited computa-
tional resources. Both models were implemented using the
ImageAI library, which simplifies the process of setting up
and running object detection models.

3.4 Evaluated Metrics
The performance of the evaluated models was assessed using
the following metrics:

• mAP (mean Average Precision): mAP is a robust mea-
sure that evaluates the accuracy of object detection by
balancing both localization and classification perfor-
mance. mAP was calculated with an Intersection over
Union (IoU) threshold of 0.2. This lower IoU threshold
was chosen because the primary objective of the re-
search focuses on accurate object counting rather than
achieving high precision in the size and position of
bounding boxes.

• Recall: Recall quantifies the model’s ability to detect
all instances of a given class. Specifically, in the context
of YOLO, it measures the proportion of true positives
among all actual positives, reflecting the model’s sensi-
tivity to detecting objects.

• Precision: Precision assesses the proportion of true
positives among all predicted positives. For YOLO, this
metric is crucial for understanding how well the model
avoids false positives, thereby ensuring that detected
objects are indeed relevant. mAP, Recall, and Precision
are calculated by the model during the validation of the
training process.

• MPV (Manual Precision Verification): MPV is a me-
tric created by us to represent a manual counting ap-
proach for verifying the model’s precision. This man-
ual verification helps cross-check the accuracy of the
model’s predictions, ensuring that the automated counts
are reliable.

• HPIP (High Populated Images Precision): HPIP is a
metric created by us to represent the model’s precision
when dealing with highly populated images, typically
containing 100 or more insects.

4. Experiments
For the experiments, a set of images taken in BioIn traps
positioned in real tomato plantations were collected. Figure 4
shows one of the images used in model training with dozens
of Tuta absoluta insects.

The models were trained using the following hardware
setup: Intel® Core i5-10400F processor, GTX 1050 Ti GPU
with 4GB VRAM, and 8GB of RAM. The necessary tools and
libraries used in experiments was as follows:

Figure 4. Trap cropped image.

• Python: version 3.9.0.

• LabelImg Tool: version 1.8.6, it was used to label the
insects in the collected images, necessary in the training
process.

• ImageAI library: version 3.0.3, it is an open-source
Python library that facilitates object detection through
YOLOv3 and TinyYOLOv3 models.

• ImageAI Requirements: the main dependencies re-
quired by ImageAI included Pillow (>= 7.0.0), Numpy
(>= 1.18.1), OpenCV-Python (>= 4.1.2), and Torch
(>= 1.9.0) along with Torchvision (>= 0.10.0).

For the setup of the training process, two folders are cre-
ated within the project directory to store the labeled images
and their corresponding annotations: ’train’, which is desig-
nated for 80% of the labeled images, and ’validation’, which
contains the remaining images.

The training file used in the experiments, shown in Figure
5, contains the training model specification, the directory of
the labeled image dataset, and those specifications. Those
include the class names (in this case, the categories of in-
sects to be recognized) identified in the dataset, the batch size
(the number of image examples to be processed in a single
iteration during the training), and the number of epochs (num-
ber of complete passes through the entire dataset during the
training).

Initially, multiple training sessions were conducted using
the YOLOv3 and TinyYOLOv3 models, varying the number
of epochs up to 9000. It was observed that after Epoch 40
there were little or no significant progress in terms of mAP
and Precision, regardless of the model or training duration
(TD). Based on this, we concluded that 100 epochs would be
sufficient for the experiments in this case study.

For the setup of the detection process, the following
parameters was adjusted to enhance detection performance,
as shown in Figure 6:
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from imageai.Detection.Custom import
DetectionModelTrainer

trainer = DetectionModelTrainer()
trainer.setModelTypeAsYOLOv3()
trainer.setDataDirectory(data_directory="armadilha

/insetos")
trainer.setTrainConfig(object_names_array=["tuta-

absoluta"],
batch_size=3, num_experiments=100)
trainer.trainModel()

Figure 5. Training file configuration.

• nms threshold: This parameter, set to 0.03, is used
to control the Non-Maximum Suppression (NMS) pro-
cess, which helps to reduce the number of overlapping
bounding boxes by keeping only the most confident
ones. Adjusting the nms threshold allows for balancing
the trade-off between detecting overlapping objects and
avoiding multiple detections of the same object.

• objectness threshold: Set to 0.1, this threshold deter-
mines the minimum confidence score required for a
prediction to be considered as containing an object. By
tuning this parameter, we aim to filter out predictions
with low confidence, thus improving the detections pre-
cision.

• minimum percentage probability: This parameter en-
sures that only predictions with a probability greater
than a certain percentage are considered valid (20 in the
case). This helps in further refining the detection results
by excluding low-confidence detections and reducing
the incidence of false positives.

5. Results and Discussion
In this section, we present the results observed in the train-
ing process when comparing the YOLOv3 and TinyYOLOv3
models (subsection 5.1). In addition, we conducted an experi-
ment to evaluate the accuracy of automatic detection processes
compared to manual detection (subsection 5.2). Lastly, we
discuss general insights (subsection 5.3).

5.1 Training Process: Comparison between YOLOv3
and TinyYOLOv3 models

Figure 7 shows the learning curve graph for the metrics evalu-
ated in the training process for the YOLOv3 and TinyYOLOv3
models. The graph presents the results up to epoch 42, as
the following epochs do not show significant variations. For
the YOLOv3 model, the full 100-epoch training with a batch
size of 3 lasted 83 minutes, reaching its mAP peak at epoch
35 with a value of 84.9%. For the TinyYOLOv3 model, also
trained for 100 epochs, had a total duration of 18 minutes
and 42 seconds, with the highest mAP of 81.93% achieved at
epoch 41.

from imageai.Detection.Custom import
CustomObjectDetection

detector = CustomObjectDetection()
detector.setModelTypeAsYOLOv3()
detector.setModelPath("armadilhas/insetos/models/
6-0.55275_epoch-26-.07-.001-1.0.pt")
detector.setJsonPath("armadilhas/insetos/json/SL

-6.json")
detector.loadModel()
detections = detector.detectObjectsFromImage(

input_image="armadilhas/teste_artigo/510.jpg",
output_image_path="armadilhas/teste_artigo/6/D
-510.jpg",
display_box=True,
extract_detected_objects=False,
minimum_percentage_probability=20,
display_percentage_probability=False,
display_object_name=False,
custom_objects=None,
nms_treshold= 0.03,
objectness_treshold= 0.1

)
for detection in detections:

print(detection["name"], " : ",
detection["percentage_probability"], " : ",
detection["box_points"])

Figure 6. Detection file configuration.

Although the TinyYOLOv3 model has started with better
numbers in the initial epochs and has exhibited a stable curve
throughout the training, the YOLOv3 model stabilized at a
higher mAP value. Notably, YOLOv3 experienced a significant
surge in mAP starting from epoch 4, leading to its superior
performance.

Another important observation is that when the YOLOv3
model reaches its highest mAP value at any epoch, the model
file is not updated unless a higher mAP is achieved in sub-
sequent epochs. This means that after reaching its peak at
epoch 35, even if the mAP values fluctuate and decrease in the
following epochs, the model file remains unchanged, retaining
the value achieved at epoch 35 throughout the remaining 100
epochs of training.

5.2 Detection Process: Accuracy of automatic de-
tection processes

In this experiment, we first performed a manual count of in-
sects in a set containing 13 images to evaluate the average
accuracy of the models. Table 1 shows the results. By do-
ing the MPV to validate the real accuracy of the model, the
YOLOv3 model achieved an MPV of 90.16% , while TinyY-
OLOv3 obtained 83.61%. Both models demonstrated high
MPV value in images with a moderate population of insects
(10-50), achieving around 95%. However, for images with
a large number of insects (around 100), such as in Figure 8,
there was a reduction in HPIP, reaching 87.51% and 72.16%
for YOLOv3 and TinyYOLOv3, respectively.

As observed in Table 1, while the overall difference in
precision between the models is relatively small in both MPV
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Figure 7. Learning Curve of Metrics over Epochs for YOLOv3 and TinyYOLOv3 (TYOLOv3) Model

Figure 8. High populated trap image (YOLOv3).

and mAP, TinyYOLOv3 experienced an even more pronounced
drop in performance compared to YOLOv3 when dealing with
images containing large populations of insects. This indicates
that while TinyYOLOv3 is suitable for many use cases, it may
struggle significantly in scenarios involving densely populated
insect clusters, where YOLOv3 demonstrates greater accuracy.

Table 1. Comparison accuracy between the yolov3 and
TinyYOLOv3 models.

Model mAP MPV HPIP TD
YOLOv3 84.90% 90.16% 87.51% 1h 23min

TinyYOLOv3 81.93% 83.61% 72.16% 18min 42s

From another point of view, TinyYOLOv3, although slightly
less accurate than YOLOv3, proved to be extremely faster in
the training process and more compact considering the gene-
rated model file, making it an attractive option for applications
where storage resources are more constrained. The generated
YOLOv3 model file presented a size of 230 MB, while TinyY-
OLOv3 model file is only 30 MB.

5.3 Discussion
Despite the promising results, it is important to note the limi-
tation of the dataset used. Many references recommend an
average of 1000 images per class for effective training of mo-
dels like YOLO. This limitation was reflected in the model’s
difficulty in detecting insects that are very close to each other.
To address this, strategies such as increasing the dataset size
and diversity could significantly enhance the model’s perfor-
mance. Additionally, experimenting with different labeling
techniques, such as creating a specific label for scenarios
where many insects are clustered together, or distinguishing
between insects with open wings and closed wings, may help
refine detection accuracy.

A potential adjustment to improve detection in situations
where insects are clustered would be to increase the nms -
threshold parameter in the detection file. However, this ad-
justment could lead to a significant increase in the number
of false positives, with the model repeatedly marking already
detected insects or identifying insects where there are none.

In addition, both models demonstrated consistent preci-
sion and coherence in various scenarios of lighting conditions
and image resolutions, as observed in Figure 9 compared to
the other images, further corroborating their adaptability to
real-world situations where such variables can often fluctuate.

Employing newer models such as YOLOv4, YOLOv5, or
YOLOv8 may enhance accuracy and more effectively manage
clustered insects due to advancements in architecture.

6. Conclusion
The experiments showed that even with a relatively small
dataset, the YOLOv3 and TinyYOLOv3 models were able to
achieve satisfactory accuracy in different scenarios and con-
ditions, with YOLOv3 obtaining the best results. However,
to improve the robustness of the models in more challenging
scenarios, it would be necessary to significantly increase the
number of training images and carefully adjust the detection
parameters to avoid generating false positives.

It is also important to consider that while some other works
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Figure 9. Trap image detected with YOLOv3.

report higher precision, they often operate in vastly different
contexts. For example, some studies use high-resolution ima-
ges captured in laboratory settings, images with significant
zoom for fine classifications, or detection in fields where in-
sect populations are not as densely clustered. In contrast, our
work focuses specifically on the prevention and monitoring
of insects within traps. The goal is to track increases or de-
creases in insect populations, aiding in the decision-making
process for the use of biological control agents. In future
work, we pretend to evaluate the TinyYOLOv3 model to use it
directly in the MONITORA application, eliminating the need
for communication with a remote server, making the process
even more efficient.

Automated pest detection offers significant practical bene-
fits for agricultural pest management. By enabling precise mo-
nitoring of pest populations, this technology promotes more ra-
tional use of resources, particularly biopesticides, which have
limitations in large-scale applications. It also supports better
decision-making regarding the optimal timing for biopesti-
cide application. This quantitative feedback can help assess
their effectiveness and determine if alternative approaches
are necessary. In future work, a detailed quantitative analysis
of these practical benefits will be performed to validate the
broader impact of this research on agricultural efficiency and
sustainability.
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