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Data Augmentation and Convolutional Network
Architecture Influence on Distributed Learning
Influência do Aumento de Dados e da Arquitetura de Redes Convolucionais no
Aprendizado Distribuído
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Abstract: Convolutional Neural Networks (CNNs) have proven to be highly effective in solving a
broad spectrum of computer vision tasks, such as classification, identification, and segmentation.
These methods can be deployed in both centralized and distributed environments, depending on the
computational demands of the task. While much of the literature has focused on the explainability of
CNNs, which is essential for building trust and confidence in their predictions, there remains a gap
in understanding their impact on computational resources, particularly in distributed training contexts.
In this study, we analyze how CNN architectures primarily influence model accuracy and investigate
additional factors that affect computational efficiency in distributed systems. Our findings contribute
valuable insights for optimizing the deployment of CNNs in resource-intensive scenarios, paving the way
for further exploration of variables critical to distributed learning.
Keywords: Distributed Learning — Rice Classification — Data Augmentation — CNN — Factorial Design.

Resumo: As Redes Neurais Convolucionais (CNNs) têm se mostrado altamente eficazes na solução de
uma ampla gama de tarefas de visão computacional, como classificação, identificação e segmentação.
Esses métodos podem ser implementados tanto em ambientes centralizados quanto distribuídos, depen-
dendo das exigências computacionais da tarefa. Embora grande parte da literatura tenha se concentrado
na explicabilidade das CNNs, o que é essencial para gerar confiança em suas previsões, ainda há uma
lacuna no entendimento de seu impacto nos recursos computacionais, especialmente em contextos de
treinamento distribuído. Neste estudo, analisamos como as arquiteturas de CNN influenciam principal-
mente a precisão do modelo e investigamos fatores adicionais que afetam a eficiência computacional
em sistemas distribuídos. Nossos resultados oferecem insights valiosos para otimizar a implementação
de CNNs em cenários com alta demanda de recursos, abrindo caminho para a exploração de variáveis
críticas para o aprendizado distribuído.
Palavras-Chave: Aprendizado Distribuído — Classificação de Arroz — Aumento de Dados — CNN —
Análise Fatorial.
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1. Introduction
The increasing complexity of deep learning models, par-
ticularly Convolutional Neural Networks (CNNs), has
heightened the demand for optimizing distributed training
methods. Distributed training is essential for handling

large datasets and deep architectures efficiently, enabling
better utilization of computational resources across multi-
ple machines. This study focuses on evaluating how key
factors — such as network depth and data augmentation
(DA) — affect both performance and resource utilization
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in distributed environments [1].
Managing computational resources efficiently is criti-

cal during the training phase, as both time and resources
are valuable, especially with complex architectures. The
selection of a CNN architecture has a direct influence on
hardware usage metrics [2]. For example, the number of
layers and the complexity of numerical computations in
the network significantly affect GPU, CPU usage, mem-
ory consumption, and network traffic [3]. However, the
specific impact of these factors in a distributed setting has
not been fully explored. Despite there are efforts towards
employed Convolutional Neural Network (CNN) to enrich
disease classification on images, there is a lack of studies
which dive into CNN hardware demands footprint.

This paper examines the impact of factors such as
CNN architecture and the introduction of Data Augu-
mentation (DA) on various response variables, includ-
ing Graphics Processing Unit (GPU), Central Processing
Unit (CPU) usage, memory consumption, network pack-
ets, and accuracy. To further explore these relationships,
we conducted experiments based on a factorial design
within a distributed training environment, offering novel
insights into how CNN architectures and DA influence
the aforementioned metrics – an aspect not yet extensively
explored in the state of the art. While our experiments
use a rice disease classification dataset as a case study –
because of the quality of the images and the diseases clas-
sification, the primary objective is to understanding the
broader impact of CNN architecture and DA in distributed
training scenarios [4].

The remainder of this paper is organized as follows.
Section 2 surveys the related work. Section 3 presents
our proposed approach to explore data augmentation and
deep learning architecture influence on distributed learn-
ing. Section 4 describes our results and discusses the main
findings. Finally, Section 5 presents the conclusion and
opportunities for future work.

2. Related Work
In recent years, significant advances have been made
worldwide in applying deep learning and computer vi-
sion techniques to security[5] and health [6,7] agricultural
crops [8], particularly for classifying diseases in plant
leaves. This section reviews recent advancements in com-
puter vision techniques to address this challenge by fo-
cusing on the impacting resources. In the state-of-the-art,
there are limited approaches that measure the impact that
Convolutional Neural Networks (CNNs) and DA tech-
niques impose on the underlying hardware, particularly
from the point of view of network consumption [9, 10].

Petchiammal et al. [4] developed the Paddy Doctor
dataset, which contains 16.225 classified images across
12 disease labels and one healthy label. The photos were

collected from real paddy fields, annotated under profes-
sional agricultural supervision, and used as a benchmark
in different CNN models, such as VGG16, MobileNet,
Xception, and Resnet34, with data augmentation (rota-
tion, shear intensity, zoom, width, and height shift, and
horizontal flip). In our study, we use this pre-classified
dataset to evaluate the impacts of distributed learning on
the classification of rice leaf disease.

Aggarwal et al. [11] proposed a federated transfer
learning (F-TL) framework to address the challenges of
rice-leaf disease classification, particularly in scenarios
where data privacy and distributed data sources are con-
cerned. The study presents an unbalanced dataset with
four diseases that were separated on both IID (independent
and identically distributed) and non-IID (non-identically
distributed) and trained in models such as EfficientNEtB3
and MobileNetV2, demonstrating strong performance
across IID and non-IID datasets.

Ni et. al [12] introduced an improved model based
on the RepVGG architecture, integrated with the Effi-
cient Channel Attention (ECA) mechanism. The proposed
model, RepVGG-ECA, is designed to improve classifica-
tion through the attention mechanism. The study used the
Paddy Doctor dataset under data augmentation such as
inversion, saturation modification, contrast, and adding
blur to focus on the diseases. Comparing the accuracy,
macro-f1, macro-precision and macro-recall, they found
out that their introduced model achieved 97.06% accu-
racy, outperforming other models such as ResNet34 and
ShuffleNetV2.

Yang et al. [13] proposed the DGLNet, a lightweight
network specifically designed for identifying rice dis-
eases. Their network integrates a Global Attention Mod-
ule (GAM) - which is engineered to capture critical in-
formation in complex and/or noisy environments - and a
Dynamic Representation Module (DRM), that is designed
to improve feature representation through a self-developed
for-dimensional flexible convolution (4D-FConv). The
study used two datasets, including the Paddy Doctor,
achieving 99.71% of accuracy.

Senthy et al. [14] compared the performance of 11
deep CNN and 2 shallow CNN models with different ar-
chitectures for disease detection. In study, deep features
extracted from these models were combined with trans-
fer learning and an SVM for classification tasks. The
ResNet50 model, when paired with SVM, achieved the
highest accuracy and F1 score of 98.38%. Similarly, the
SVM classifier, when using features obtained from the
AlexNet CNN, reached an accuracy of 96.8%. When an-
alyzing shallow CNN architecture as MobileNetV2, the
results was comparable to ResNet50, achieving 97.96%
of accuracy.

While previous works have primarily focused on eval-
uating models to enhance classification through computer
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vision, many have not sufficiently explored how these
models impact hardware usage. To fill this gap, our pa-
per studies the interplay between network depth and dis-
tributed training, analyzing hardware and training metrics
to determine how the CNN architecture and data augmen-
tation impact the process.

3. Influence Assessment Method
In this study, we employed a 22 factorial design, a specific
type of Analysis of Variance (ANOVA), to systematically
investigate the effects of two independent factors on the
performance of CNN in a classification task. According
to Table 1, the factors considered were DA and CNN
Architectures, each evaluated at two levels: with-DA (1)
and without-DA (−1) for the Data Augmentation factor,
and shallow-CNN (1) and deep-CNN (−1) for the CNN
Architectures factor. The factorial design allows for the
examination of the main effects of each factor and the
interaction effect between the factors.

Table 1. Factorial Design.
Response Variable

Factors Levels GPU
Network
Packets

CPU
Memory

Consumption
Accuracy

A: Data

Augumentation

with-DA (1)

y1 y2 y3 y4 y5
without-DA (-1)

B: CNN

Architecture

shallow-CNN (1)

deep-CNN (-1)

This study aims to comprehend the scientific basis for
the impact of two key elements, DA and CNN architecture,
on the hardware used in distributed learning, particularly
in quantitative analysis and the interplay between these
two components. Given the above problem statement, we
formulated the factorial experiment combinations accord-
ing to Table 1. In our experimental design, we identified
six (6) response variables that enable us to assess the im-
pact of hardware on distributed learning environments as
in Table 1. For shallow-CNN, we refer to those with few
convolutional layers, whereas deep-CNN refers to a larger
number of layers.

Mathematically, the experiment can be modeled using
the following linear model:

Y = µ + τA + τB + τAB + ε

where Y represents the observed outcome (e.g., accuracy
or F1-Score), µ is the overall mean, τA and τB are the
main effects of DA and CNN Architectures, respectively,
τAB is the interaction effect between the two factors, and
ε represents the random error term. The main effects and
interaction influence are estimated using the following
contrasts:

τA =
1
2
[
(YA1B1 +YA1B0)− (YA0B1 +YA0B0)

]

τB =
1
2
[
(YA1B1 +YA0B1)− (YA1B0 +YA0B0)

]
τAB =

1
2
[
(YA1B1 −YA1B0)− (YA0B1 −YA0B0)

]
Our design provides a comprehensive understanding

of how the different levels of DA and CNN Architectures
influence the distributed learning hardware, individually
and in combination. The interaction term, in particular, re-
veals whether the effect of one factor depends on the level
of the other factor. In Fig. 1, we present our method to
measure our factor influence on hardware in a distributed
training setup.
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Figure 1. Proposed method.

The Paddy Doctor dataset, depicted in left side of
Fig. 1, is a visual image dataset designed for automated
paddy disease classification. It comprises 16,225 anno-
tated images of paddy leaves, categorized into 13 classes:
12 diseases (e.g., Bacterial Leaf Blight, Brown Spot, Tun-
gro) and normal leaves. Collected from real paddy fields
and annotated by an agricultural officer, this dataset is
valuable for developing and benchmarking deep learning
models for paddy disease detection [4].

According to Fig. 1, step one (1) of our method is to
feed our distributed training environment with dataset im-
ages. In the step two (2), we have parallel procedures flow,
while our distributed testbed carried out traning over data,
we measured and collect resouces metrics to measure the
the impact. We employed the monitoring tool NetData
to record the hardware consumption of the CPU, mem-
ory, network packets, and GPU. Step three (3) refers to
the experiment factors combinations with shallow-CNN
(MobileNetV2-100 with bath normalization) and deep-
CNN (MobileOne-S1). Step four (4) refers to the level
combinations regarding the use of DA or not.

Our employed data augmentation pipeline (step 4 of
Fig. 1) includes random rotations (±5◦), affine transfor-
mations with shear (0.2) and slight translations (±5%),
random resized cropping (80-100%) of the original im-
age size), horizontal flipping, and color jittering. These
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enhancements may improve model generalization by intro-
ducing variability in spatial orientation, scale, color, and
positioning while preserving the essential features of the
images. In step five (5) we carried out ANOVA to asses
the factors and levels on different variables of response.

4. Evaluation and Discussion
We conducted experiments using the hardware specifica-
tions listed in Table 2 to measure the factors influencing
hardware resources in a distributed training scenario on
top of Ubuntu 20.04 Long Term Evolution (LTE). Specifi-
cally, our distributed learning environment consists of two
servers exchanging training gradients and CNN weights
over a Local Area Network (LAN) with a 1 Gbps interface,
which was negotiated to operate at 100 Mbps. We em-
ployed the Torch Distributed Data Parallel as the backend
of distributed training.

Table 2. Experimental Testbed.
Server CPU RAM GPU Ethernet

#1
Intel(R) Core(TM)
i5-4430 3.00GHz

32 GB
GeForce

RTX 4060 Ti 8 GB
1Gbps

#2
Intel(R) Core(TM)

i5-4430 CPU 3.00GHz
16 GB

GeForce
GTX 1050 Ti 4 GB

1Gbps

Considering the training and validation performance,
we computed the accuracy and loss graphs for both the
training and testing phases in our distributed setup. As
shown in Fig.2 (a), (b), (c), and (d), empirical evidence
suggests that for all experiment combinations, there was
learning progress over the epochs in our proposed eval-
uation of the impact of factors such as DA and CNN
architecture, specifically on Server #1. Although we stan-
dardized the number of epochs to 100 in our distributed
scenario, for graphical presentation, we applied early stop-
ping in the training process, as shown in Fig.2(c), and
2(d), concluding at epoch 20 due to the absence of further
improvements.

Similarly, we assessed the behavioral performance of
the model trained on Server #2. Empirical evidence also
showed that the model used in our performance evaluation
was able to learn correctly over epochs. This is evident
in Fig.2 (e), (f), (g), and (h), where all four experimental
combinations showed a decrease in loss with exponential
decay and a sigmoid increase in accuracy.

Regarding the central objective of our evaluation, we
conducted a factorial analysis based on the ANOVA method
considering the experimental variations in Table 1. The
results of the experiments are reported in Table 3, show-
ing the average measurements for each response vari-
able. We assessed the average (%) consumption of YGPU ,
YNetworkPackets, YCPU , YMemory, and YAccuracy for the four
experimental combinations. Factors such as YMemory, al-
though there were experimental variations, maintained its

average consumption.

Table 3. Average of Response Variable in Factorial
Experiments.

Response
Variable

Experiment YGPU (%) YNetworkPackets

(Pkts/s)
YCPU

(%)
YMemory

(%)
YAccuracy

(%)
with-DA (1)
and shallow-CNN (1)

95,12 19994,50 51,15 81,70 98,71

without-DA (-1)
and shallow-CNN (1)

97,18 15698,97 47,38 81,75 99,60

with-DA (1)
and deep-CNN (-1)

97,21 19973,00 47,03 80,45 94,09

without-DA (-1)
and deep-CNN (-1)

98,29 10526,36 43,85 81,45 96,58

On the other hand, the response variable YNetworkPackets
exhibited non-uniform behavior. We found that the experi-
mental combination with-DA imposes a higher volume of
network packets in distributed training. Fig. 3 shows the
grouped violin plot of two categorical variables: with-DA
and without-DA. As observed, for both neural network
architectures (deep and shallow), the introduction of DA
results in a higher volume of network packets, as indicated
by the accumulation of instances in the plot.

As shown in Table 4 we advanced in our analysis by
evaluating the influence of the factors DA (τA) and CNN
architecture (τB) both individually and in combination
(τAB) on the response variables. The factor τB (CNN archi-
tecture) has an influence of 48.64% on the response vari-
able YGPU , followed by an influence of 46.83% from the
factor τA. Regarding the response variable YNetworkPackets,
we validated the initial hypothesis regarding the influence
of introducing DA in training. We found that introducing
DA in distributed learning results in a 77.92% influence
on the volume of packets transmitted during deployment.

Table 4. Comparison of the influence of factors on
different response variables.

Influence Measurement (%)
Factors

Iteration
YGPU YNetworkPackets YCPU YMemory YAccuracy

τA 46,83 77,92 45,07 24,53 15,86

τB 48,64 11,13 54,61 54,75 80,60

τAB 4,53 10,94 0,32 20,72 3,54

In distributed training with , increasing the data vol-
ume led to a 27.37% rise in network packet transmission
with data augmentation (DA) and a shallow CNN, and
an 89.73% increase with DA and a deep CNN. This rise
in network packet transmission is due to the need for fre-
quent gradient synchronization across GPUs. Differences
in GPU performance, such as between the RTX 1080
and RTX 4060, can further amplify this communication
load, as the faster GPU must wait for the slower one to
synchronize.
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(a) with-DA and shallow-CNN. (b) without-DA and shallow-CNN. (c) with-DA and deep-CNN.
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(d) without-DA and deep-CNN. (e) with-DA and shallow-CNN. (f) without-DA and shallow-CNN.
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(g) with-DA and deep-CNN. (h) without-DA and deep-CNN.
Figure 2. Training and Testing Metrics for Server #1 (a), (b), (c), (d) and Server #2 (e), (f), (g), (h).
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Figure 3. DA is affecting the distribution of average packet volume.
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Limitations. The inclusion of other data augmenta-
tion methods may change the volume of network packet
transmission in distributed training, potentially affecting
scalability and efficiency. Similarly, the early stopping ap-
plied during training may have restricted further insights
into long-term model performance trends, limiting the
comprehensive evaluation across all epochs.

5. Concluding Remarks
This paper evaluated the impact of distributed learning on
different response variables using CNN and a computer
vision dataset of rice diseases. Understanding these be-
havioral nuances is crucial, as it provides reliability and
predictability when deploying such technologies in pro-
duction environments. We observed that, while state-of-
the-art research focuses on model explainability, it often
overlooks the impact of these models on different response
variables, especially in the context of computer vision.

Among our findings, we assessed that introducing DA
in distributed training has a significant effect on the under-
lying infrastructure. For future work, we are developing
analyses that consider other factors, such as CNN param-
eters and different datasets. This study offers valuable
insights for the deployment phases of CNN models in
real-world environments, where neglecting these effects
can significantly impact energy consumption and data
center performance.

Acknowledgments
This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior – Brasil
(CAPES) – Finance Code 001. Rodrigo Moreira grate-
fully acknowledges the financial support of FAPEMIG
(Grant #APQ00923-24). We also acknowledge the finan-
cial support of the FAPESP MCTIC/CGI Research project
2018/23097-3 - SFI2 - Slicing Future Internet Infrastruc-
tures.

Author contributions
VFJ, ETM, and YSL: Software, Investigation, Valida-
tion, Visualization, Writing - original draft. FOS, LFRM,
and RM: Conceptualization, Methodology, Visualization,
Supervision, Funding acquisition, Resources, Writing -
Review & Editing, and Project administration.

References
[1] SONG, J. et al. Dimo-cnn: Deep learning
toolkit-accelerated analytical modeling and optimization
of cnn hardware and dataflow. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, p. 1–1, 2024.

[2] Rodrigues Moreira, L. F. et al. An Artificial
Intelligence-as-a-Service Architecture for deep learning
model embodiment on low-cost devices: A case study of
COVID-19 diagnosis. Applied Soft Computing, v. 134, p.
110014, 2023. ISSN 1568-4946.

[3] WIEDEMANN, S.; MüLLER, K.-R.; SAMEK, W.
Compact and computationally efficient representation
of deep neural networks. IEEE Transactions on Neural
Networks and Learning Systems, v. 31, n. 3, p. 772–785,
2020.

[4] PETCHIAMMAL et al. Paddy doctor: A visual
image dataset for automated paddy disease classification
and benchmarking. In: Proceedings of the 6th
Joint International Conference on Data Science &
Management of Data (10th ACM IKDD CODS and
28th COMAD). New York, NY, USA: Association for
Computing Machinery, 2023. (CODS-COMAD ’23),
p. 203–207. ISBN 9781450397971. Disponível em:
<https://doi.org/10.1145/3570991.3570994>.

[5] COSTA, F. et al. Self-portrait to id document face
matching: Cnn-based face verification in cross-domain
scenario. In: Anais do XVII Workshop de Visão
Computacional. Porto Alegre, RS, Brasil: SBC, 2021.
p. 31–36. ISSN 0000-0000. Disponível em: <https:
//sol.sbc.org.br/index.php/wvc/article/view/18885>.

[6] ROCHA, E. L. da; RODRIGUES, L.; MARI, J. F.
Maize leaf disease classification using convolutional
neural networks and hyperparameter optimization. In:
SBC. Anais do XVI Workshop de Visão Computacional.
[S.l.], 2020. p. 104–110.

[7] BOUZON, M. et al. Automatic kidney stone
detection using low-cost cnn with coronal ct
images. In: Anais do XVIII Workshop de Visão
Computacional. Porto Alegre, RS, Brasil: SBC, 2023.
p. 24–29. ISSN 0000-0000. Disponível em: <https:
//sol.sbc.org.br/index.php/wvc/article/view/27527>.

[8] MOREIRA, R. et al. Agrolens: A low-cost and
green-friendly smart farm architecture to support
real-time leaf disease diagnostics. Internet of Things,
v. 19, p. 100570, 2022. ISSN 2542-6605.

[9] PARK, S.; LEE, J.; KIM, H. Hardware resource
analysis in distributed training with edge devices.
Electronics, v. 9, n. 1, 2020. ISSN 2079-9292. Disponível
em: <https://www.mdpi.com/2079-9292/9/1/28>.

[10] MOHAIDAT, T.; KHALIL, K. A survey on neural
network hardware accelerators. IEEE Transactions on
Artificial Intelligence, v. 5, n. 8, p. 3801–3822, 2024.

[11] AGGARWAL, M. et al. Federated transfer
learning for rice-leaf disease classification across
multiclient cross-silo datasets. Agronomy, v. 13,

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 32 • N. 1 • p.59/60 • 2025

https://doi.org/10.1145/3570991.3570994
https://sol.sbc.org.br/index.php/wvc/article/view/18885
https://sol.sbc.org.br/index.php/wvc/article/view/18885
https://sol.sbc.org.br/index.php/wvc/article/view/27527
https://sol.sbc.org.br/index.php/wvc/article/view/27527
https://www.mdpi.com/2079-9292/9/1/28


Data Augmentation and Convolutional Network Architecture Influence on Distributed Learning

n. 10, 2023. ISSN 2073-4395. Disponível em:
<https://www.mdpi.com/2073-4395/13/10/2483>.

[12] NI, H. et al. Classification of typical pests and
diseases of rice based on the eca attention mechanism.
Agriculture, v. 13, n. 5, 2023. ISSN 2077-0472. Disponível
em: <https://www.mdpi.com/2077-0472/13/5/1066>.

[13] YANG, Y. et al. A lightweight rice disease
identification network based on attention mechanism
and dynamic convolution. Ecological Informatics, v. 78,

p. 102320, 2023. ISSN 1574-9541. Disponível em:
<https://www.sciencedirect.com/science/article/pii/
S1574954123003497>.

[14] SETHY, P. K. et al. Deep feature based rice leaf
disease identification using support vector machine.
Computers and Electronics in Agriculture, v. 175,
p. 105527, 2020. ISSN 0168-1699. Disponível em:
<https://www.sciencedirect.com/science/article/pii/
S0168169919326997>.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 32 • N. 1 • p.60/60 • 2025

https://www.mdpi.com/2073-4395/13/10/2483
https://www.mdpi.com/2077-0472/13/5/1066
https://www.sciencedirect.com/science/article/pii/S1574954123003497
https://www.sciencedirect.com/science/article/pii/S1574954123003497
https://www.sciencedirect.com/science/article/pii/S0168169919326997
https://www.sciencedirect.com/science/article/pii/S0168169919326997

	Introduction
	Introduction
	Related Work
	Influence Assessment Method
	Evaluation and Discussion
	Concluding Remarks
	References

