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Evaluating Deep Learning Models for Effective Weed
Classification in Agricultural Images
Avaliação de Modelos de Aprendizado Profundo para Classificação Eficaz de Ervas
Daninhas em Imagens Agrícolas
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Abstract: Effective weed management is crucial for maximizing agricultural productivity and minimizing crop
losses. Traditional methods for weed detection and classification often suffer from errors and delays, particularly
in the absence of specialists. Deep learning technologies offer a promising alternative for automating these
tasks, potentially enhancing both accuracy and efficiency. This study compares three advanced deep learning
architectures, ResNet-50, EfficientNet V2, and Vision Transformers (ViT), for classifying weed species using the
DeepWeeds dataset. We explore the effects of data augmentation on model performance, evaluating each
model based on accuracy, precision, recall, and F1 score. Our results demonstrate that data augmentation
significantly improves model performance. EfficientNet V2 achieved the highest performance across all metrics,
with a peak accuracy of 0.9703. This research provides valuable insights into selecting effective architectures
and training strategies for more accurate weed detection in agricultural applications.
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Resumo: O manejo eficaz de ervas daninhas é crucial para maximizar a produtividade agrícola e minimizar as
perdas nas colheitas. Métodos tradicionais de detecção e classificação de ervas daninhas muitas vezes sofrem
com erros e atrasos, especialmente na ausência de especialistas. As tecnologias de deep learning oferecem
uma alternativa promissora para automatizar essas tarefas, potencialmente aumentando tanto a precisão quanto
a eficiência. Este estudo compara três arquiteturas avançadas de deep learning, ResNet-50, EfficientNet V2 e
Vision Transformers (ViT), para a classificação de espécies de ervas daninhas utilizando o dataset DeepWeeds.
Exploramos os efeitos da ampliação de dados no desempenho dos modelos, avaliando cada um com base
em acurácia, precisão, recall e F1 score. Nossos resultados demonstram que a ampliação de dados melhora
significativamente o desempenho dos modelos. O EfficientNet V2 obteve o melhor desempenho em todas as
métricas, com uma acurácia máxima de 0.9703. Esta pesquisa oferece insights valiosos sobre a seleção de
arquiteturas eficazes e estratégias de treinamento para uma detecção mais precisa de ervas daninhas em
aplicações agrícolas.
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1. Introduction
Agriculture is a fundamental productive sector that will re-
main crucial to human activity for centuries to come. Over the
past few decades, Brazil has advanced its agricultural sector to
achieve global competitiveness, becoming a key player in the
industry [1]. The country’s success in agriculture is attributed
to the adoption of advanced technologies, including new crop
varieties adapted to diverse environmental conditions and pre-
cision agriculture techniques aimed at boosting productivity

[2]. In the first quarter of 2023, Brazil’s agricultural sector
experienced a remarkable growth of 21.6%, largely driven by
a record soybean harvest, which contributed significantly to a
1.9% increase in the nation’s GDP [3]. Despite these achieve-
ments, agricultural productivity faces significant challenges,
particularly from competition with weeds.

Weeds are one of the main biotic limitations to agricultural
production, causing significant losses of up to 31.5% in plant
yield [4]. They compete with crops for light, water, nutrients,
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and space, directly harming agricultural productivity. Addi-
tionally, they can harbor insects and pathogens that attack
crops, and their presence leads to the degradation of native
habitats, threatening local plants and animals [5]. Traditional
control methods, such as intensive herbicide use, besides be-
ing costly, negatively impact the ecosystem and human health
[6].

Given the rapid advancement of agricultural technology,
there is a growing interest in developing automated systems
for identifying and classifying plant species, especially weeds,
due to their impact on productivity and the environment. Com-
puter vision and machine learning stand out as promising
alternatives to improve the precision and speed of detection.

Deep learning techniques have shown great potential in
automating the weed classification process, providing high ac-
curacy in recognizing complex patterns [7]. These techniques
are particularly effective in large-scale cultivation areas where
manual control is unfeasible. However, their effectiveness
depends on factors such as neural network architecture and
data augmentation techniques, including variations in light
and image angles, which are essential for increasing model
robustness and ensuring applicability in diverse scenarios [8].

In this study, we compare three deep learning architec-
tures (ResNet-50, EfficientNet V2, and ViT-b16) to classify
weeds in agricultural images. We also evaluated the impact of
training the models with and without data augmentation proce-
dures. We trained and tested our models using the DeepWeeds
dataset, a widely used dataset for this type of classification
task.

The paper is structured as follows: In Section 2, we review
related works in plant species classification. In Section 3,
we detail the dataset, deep learning architectures, and the
experiment design. We present and discuss the results in
Section 4. Finally, in Section 5, we conclude the paper and
suggest directions for future research.

2. Related works
Recent advances in deep learning and computer vision have
driven the development of automatic systems for classifying
weeds. Several studies have explored convolutional neural
networks (CNNs) to identify plant species, including crops
and weeds [9].

Olsen et al. [10] introduced DeepWeeds, a dataset con-
taining 17,509 images of eight weed species found in northern
Australia and images without weeds. Designed to support au-
tomated detection, this dataset was evaluated using Inception-
v3 and ResNet-50 models, achieving up to 95% accuracy.
The results demonstrate the dataset’s potential to facilitate the
development of robust deep learning models for automated
weed management in precision agriculture.

Saleem et al. [11] evaluated single-stage convolutional
neural network (CNN) models such as SSD and YOLO, as
well as dual-stage networks such as Faster R-CNN, using the
DeepWeeds dataset. The faster R-CNN model with ResNet-
101 achieved an average accuracy of 93.44%. Key improve-

ments were achieved by employing advanced image-resizing
techniques. Further enhancements were made through weight
initialization methods and batch normalization, contributing
an additional 1.82% improvement. The optimal selection of
hyperparameters for the RMSProp optimizer resulted in a final
boost in accuracy, demonstrating the significance of tuning
these parameters for effective weed identification in complex
agricultural environments.

Yang et al.[12] introduced a dissimilarity-based active
learning (DBAL) method for embedded weed identification,
effectively reducing the need for large labeled datasets by
selecting representative samples. Their approach achieved
90.75% accuracy using only 32% of the DeepWeeds dataset
and 98.97% accuracy with 27.8% of the Grass-Broadleaf
dataset. Additionally, they compressed the model from 117.9
MB to 8.6 MB (a 92.7% compression ratio), with a mini-
mal accuracy drop of 1%, and successfully deployed it on an
NVIDIA Jetson AGX Xavier, achieving 192 fps. This demon-
strates the potential of active learning and model compression
in enabling real-time weed detection in resource-constrained
environments.

Wang et al. [13] proposed a fine-grained weed recog-
nition method based on the Swin Transformer architecture.
This approach leverages two-stage transfer learning to address
challenges in recognizing visually similar crops and weeds,
achieving state-of-the-art performance. On the MWFI dataset,
the model obtained a remarkable accuracy of 99.18%, outper-
forming traditional CNN models like VGG-16 and DenseNet-
121. Additionally, the model demonstrated its effectiveness on
the DeepWeeds dataset, proving its applicability in real-world
agricultural environments.

Zhang et al. [14] proposed a multi-class weed recogni-
tion model combining CNNs and SVMs, tested on the Deep-
Weeds dataset. Their approach, using a ResNet-50-SVM
architecture, achieved 97.6% accuracy, outperforming stan-
dalone CNN models such as ResNet-50 (96.1%), GoogLeNet
(93.6%), and Densenet-121 (94.3%). The hybrid CNN-SVM
method demonstrated superior performance by leveraging the
feature extraction capabilities of CNNs alongside the classi-
fication precision of SVMs. This model proved effective in
recognizing weeds in complex agricultural environments.

Zhang et al. [15] proposed a patch-based deep learning
method for crop and weed recognition, splitting images into
patches to train neural networks. Tested on datasets like Deep-
Weeds, Cotton weed, and Corn weed, the approach improved
performance, especially with class imbalances. DenseNet201
achieved an F1 score of 98.49% on DeepWeeds and 100% on
Cotton Tomato weed. The method also enhanced accuracy
for minority classes in the Cotton weed dataset, addressing
challenges of intra-class variability and inter-class similarity.

Belissent et al.[16] presented the transfer learning and
zero-shot learning (ZSL) for the scalable detection and clas-
sification of weeds in images captured by unmanned aerial
vehicles (UAVs) to optimize weed management and reduce
herbicide use. Using the TomatoWeeds dataset, which con-
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tains images of three weed species, the authors evaluated the
effectiveness of pre-trained residual networks on large datasets
such as DeepWeeds. The pre-trained and refined ResNet50
model achieved an accuracy of 77.8%, demonstrating the
potential of transfer learning in this domain.

In contrast to all previous works, our approach incorpo-
rates advanced data augmentation techniques and training
based on fine-tuning. We also implement a learning rate
scheduler (ReduceLROnPlateau) and early stopping to pre-
vent overfitting.

3. Material and methods
3.1 Dataset
The DeepWeeds dataset [10]1 used in this study is a widely
established resource for weed species classification. It con-
sists of a total of 17,509 images, separated into nine distinct
classes representing different weed species: Chinee apple
(1,125 images), Lantana (1,064 images), Negative (9,106
images), Parkinsonia (1,031 images), Parthenium (1,022 im-
ages), Prickly acacia (1,062 images), Rubber vine (1,009
images), Siam weed (1,074 images), and Snake weed (1,016
images).

Each image in the dataset is labeled with the correspond-
ing species, providing a rich data source for training deep
learning models. Figure 1 shows an example of each class
contained in this dataset.

3.2 Architectures
We selected three state-of-the-art deep learning architectures
for this study: ResNet-50, EfficientNet V2, and ViT b 16.

ResNet-50 (Residual Network)[17] is renowned for intro-
ducing residual blocks, which employ shortcut connections
to address the performance degradation issue in very deep
networks. These connections allow gradients to flow directly
between layers, mitigating the problem of vanishing gradients
and facilitating the training of deep networks. As a result,
ResNet-50 has proven to be highly effective in large-scale
computer vision tasks, delivering strong performance in vari-
ous benchmarks.

EfficientNetV2[18], on the other hand, was designed to
enhance both the accuracy and efficiency of convolutional
networks. This architecture integrates Neural Architecture
Search (NAS) with progressive learning, adjusting image size
and regularization throughout the training process. Addition-
ally, Fused-MBConv layers are utilized to accelerate training
in the early layers. Building on the success of EfficientNet,
EfficientNetV2 efficiently scales network dimensions (depth,
width, and resolution) while maintaining fewer parameters,
achieving remarkable results in computer vision.

Finally, Vision Transformer (ViT-b16)[19] departs from
traditional CNNs, applying transformer architecture to image
classification. Instead of using convolutions, ViT divides im-
ages into 16x16 pixel patches and processes them sequentially,

1https://github.com/AlexOlsen/DeepWeeds

similar to how transformers operate in natural language pro-
cessing tasks. This approach allows ViT to capture long-range
dependencies in images, a common limitation in CNNs. ViT-
b16 has demonstrated excellent performance across various
computer vision benchmarks, requiring significantly fewer
computational resources for training on large datasets.

By selecting these three architectures, we aimed to explore
a diverse range of deep learning techniques. ResNet-50 offers
strong feature extraction with deep residual connections, Ef-
ficientNetV2 balances accuracy and efficiency through com-
pound scaling, and ViT-b16 captures global context using
self-attention mechanisms. This combination allows for a
thorough evaluation of different architectural approaches in
pest classification.

3.3 Data augmentation
Data augmentation techniques were used to increase the size
and diversity of the training data, helping the model general-
ize better [20]. The augmentation methods included random
horizontal flips and rotations ranging from -15 to +15 degrees.
Images were randomly cropped and resized to 224 × 224 pix-
els, using a scaling factor between 0.8 and 1.0. A color jitter
transformation adjusted the brightness, contrast, saturation (by
a factor of 0.2), and hue (by a factor of 0.1). Additionally, a
random erasing operation was applied with a 50% probability,
removing random image patches between 2% and 25% of the
total area. During training, these transformations simulated
real-world conditions, such as varying lighting and angles.

For comparison, models were also trained without data
augmentation, applying only random cropping and resizing to
224 × 224 pixels, using the same scaling factor as in the data
augmentation procedure.

3.4 Experimental setup
First, we randomly split the Deep Weeds dataset into training,
validation, and testing sets, with a stratified distribution of
70% for training, 15% for validation, and 15% for testing.

We fine-tuned pre-trained models provided with the torchvi-
sion library, using Adam optimizer, given its efficiency in
handling sparse gradients and achieving faster convergence
[21]. A batch size of 16 and an initial learning rate of 0.0001
was used for all experiments.

To mitigate overfitting, we employed the reduce the learn-
ing rate on plateaus strategy, which reduces the learning rate
when the validation accuracy ceases to improve. Additionally,
early stopping was utilized to terminate training if no enhance-
ment in validation accuracy was observed over 10 consecutive
epochs. This strategy helps avoid excessive training and over-
fitting. We capped the maximum number of training epochs
at 200 to ensure sufficient time for model convergence while
balancing computational efficiency.

3.5 Model evaluation
The model’s performance was evaluated using the following
metrics: accuracy, precision, recall, and F1-Score. The equa-
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(a) Chinee apple (b) Lantana (c) Negative

(d) Parkinsonia (e) Parthenium (f) Prickly acacia

(g) Rubber vine (h) Siam weed (i) Snake weed
Figure 1. One sample from each class of the Weeds dataset.

tions take into account the rates of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).

Accuracy measures the proportion of correct predictions
(TP + TN) divided by the total number of instances evaluated,
as described in Equation 1. It considers both the correctness
of positive and negative cases.

Accuracy =
T P+T N

T P+T N +FP+FN
(1)

Precision refers to the proportion of correct positive predic-
tions (TP) related to the total number of positive predictions
(TP + FP), in accordance with Equation 2. This metric is
useful in scenarios where we aim to minimize false positives.
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Precision =
T P

T P+FP
(2)

Recall measures the model’s ability to identify all positive
instances, i.e., correctly, the ratio between true positives (TP)
and the total number of positive instances (TP + FN), as de-
scribed in Equation 3. It is useful when we want to minimize
false negatives.

Recall =
T P

T P+FN
(3)

F1-Score is the harmonic mean between precision and re-
call, providing a balanced metric that considers both measures
(Equation 4). It is particularly useful when there is a need to
balance precision and recall, especially when these metrics
are equally relevant.

F1−Score =
2×T P

2×T P+FP+FN
(4)

3.6 Computacional resourses
The experiments were conducted on a PC with a 3.00 GHz
Core I5 CPU and 16 GB of RAM equipped with a GPU
NVIDIA GEFORCE GTX 1050 ti with 4 GB of memory.
We used Python 3.10 and PyTorch 2.2.2 [22] with CUDA
12.1 and torchvision 0.17.2. We also employed Scikit-learn
1.4.2 and Matplotlib 3.8.4. The environment was configured
to optimize computational efficiency, allowing rapid training
and evaluation of the models.

4. Results and discussion
The results of our experiments are summarized in Table 1,
which compares the performance of each architecture in terms
of accuracy, precision, recall, and F1-score, both with and
without data augmentation. This comparison allows us to
assess the impact of data augmentation on the model’s gener-
alization capabilities.

ResNet-50 achieved an accuracy of 95.4% without data
augmentation and 95.89% with augmentation, demonstrating
a modest improvement. The EfficientNet V2 model showed a
more significant improvement, with its accuracy increasing
from 96.00% to 97.03% when data augmentation was applied.
Finally, the ViT-b16 model, although still effective, showed
the smallest performance gains, with its accuracy improving
from 94.89% to 95.37%.

The models generally exhibited a similar performance pat-
tern when evaluating metrics beyond accuracy, i.e., precision,
recall, and F1 score. EfficientNet V2 achieved the best results
overall, except for recall, where ResNet-50 performed better
when trained without data augmentation. Data augmentation
emerged as a crucial factor for this problem, significantly en-
hancing the performance of nearly all models across different
scenarios.

These results indicate that, although all architectures ben-
efit from data augmentation, EfficientNet V2 outperforms the
others, both in terms of accuracy and robustness to overfitting.
EfficientNet V2’s superior performance can be attributed to
its efficient scaling strategy, which balances network depth,
width, and resolution. In contrast, the dependence of the ViT-
b16 model on transformer-based architecture, which typically
requires larger datasets to realize its full potential, may explain
its comparatively lower performance in this study.

We also present the confusion matrices for each performed
experiment in Table 2. In addition to the metrics shown in Ta-
ble 1, confusion matrices bring details about how each model
performed in classifying images from each class. Therefore,
it highlights the classes that each model is good to classify or
has some difficulty doing correctly.

This study has some limitations. The use of the Deep-
Weeds dataset, even widely used, may limit how well the
method can be applied to other agricultural settings with dif-
ferent weed species and conditions. The Vision Transformer
(ViT-b16) showed lower performance, suggesting the need
for further studies to better understand and enhance its poten-
tial. The study also did not explore hyperparameter tuning
methods such as grid search or random search, which might
have optimized the models further. Additionally, while data
augmentation improved model generalization, testing more
advanced techniques like CutMix or MixUp could lead to
additional improvements.

5. Conclusion
This study provides a comprehensive analysis of three deep
learning architectures applied to weed species classification
using the DeepWeeds dataset. Our findings highlight that
EfficientNet V2, when combined with data augmentation tech-
niques, not only outperforms other architectures in terms of
accuracy but also proves robust against overfitting, delivering
consistently superior performance across all metrics evalu-
ated.

This combination of techniques and architecture makes
EfficientNet V2 a strong candidate for deployment in real-
world agricultural applications, where precision and reliabil-
ity are crucial to optimizing crop management and reducing
dependence on herbicides. Furthermore, the computational ef-
ficiency of EfficientNet V2, which balances model depth and
complexity with available computational resources, makes it
a practical solution for implementation in environments with
hardware constraints, such as mobile devices or agricultural
drones. Finally, applying solutions based on computer vision,
such as those proposed in this study, can contribute to more
efficient and sustainable agricultural practices, promoting en-
vironmentally responsible agriculture.

Future work could explore other deep learning architec-
tures and transfer learning to leverage pre-trained models on
large, related datasets, which could accelerate training and
enhance performance in weed classification. Hyperparameter
optimization and identifying more effective data augmentation
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Table 1. Experimental results with models trained with and without data augmentation.
Without Data Augmentation With Data Augmentation

Architecture Acc. Prec. Rec. F1 Acc. Prec. Rec. F1-Score
ResNet-50 0.9540 0.9448 0.9458 0.9485 0.9589 0.9536 0.9443 0.9485
EfficientNet V2 0.9600 0.9484 0.9408 0.9511 0.9703 0.9705 0.9601 0.9652
ViT b 16 0.9489 0.9380 0.9351 0.9374 0.9537 0.9418 0.9397 0.9402
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Figure 2. Charts with the validation metrics over the test set for each model trained with and without data augmentation
strategy. (a) Accuracy. (b) Precision. (c) Recall. (d) F1-score.

strategies would also be valuable for ensuring better general-
ization of the models. Training and evaluating these strategies
on a larger set of weed species, including additional datasets,
could provide important insights to further improve the accu-
racy and robustness of the models.
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