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Abstract: Depth estimation is the computer vision task that assigns a distance between the camera and each
pixel in an image. This paper focuses on monocular metric depth estimation in videos, which infers a distance
in metric units using a single RGB camera. Considering its applications, robotics systems and environmental
mapping arise as practical areas that can make extensive usage of these techniques. As a case study for indoor
robotics, the ICL ground robot dataset obtained by video footage in graphic simulation was used for experiments.
A comparison was made considering the results and requirements of data acquisition needed for different deep
learning models, presenting self-supervised and supervised methods available in literature and being the first
work to present a depth estimation benchmark for the chosen dataset.
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Resumo: A estimação de profundidade é a tarefa de visão computacional que atribui uma distância entre
a câmera e cada pixel em uma imagem. Este trabalho se concentra na estimação de profundidade métrica
monocular em vı́deos, a qual infere uma distância em unidades métricas usando uma única câmera RGB.
Considerando suas aplicações, sistemas de robótica e mapeamento ambiental são as áreas práticas que podem
fazer uso extensivo dessas técnicas. Como um estudo de caso para robótica interna, o conjunto de dados
ICL ground robot obtido por filmagem de vı́deo em simulação gráfica foi usado para os experimentos. Uma
comparação foi feita considerando os resultados e requisitos de aquisição de dados necessários para diferentes
modelos de aprendizado profundo, apresentando métodos autossupervisionados e supervisionados disponı́veis
na literatura e sendo o primeiro trabalho a apresentar resultados métricos de estimação de profundidade para o
conjunto de dados escolhido.
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1. Introduction

Depth estimation using computer vision is a research area
focused on the inference of the distance between the camera
and the objects captured in an image, adding a new dimension
to the understanding of the data [1].

The accomplishment of this task is fundamental for a
range of critical technological downstream tasks to be exe-
cuted, such as autonomous navigation and three-dimensional
environmental mapping. By accurately interpreting depth

from images, smarter and more adaptable systems can be
developed in the dynamic fields of robotics and augmented
reality, for example.

In the absence of computer vision methods, depth mea-
surement can be conducted using specific sensors, such as
LiDARs and RGB-D cameras. However, depending on the
LiDAR system technology used, the depth map generated
can present a spatially sparse distribution, complicating the
localization of smaller objects and edges [2]. On the other
hand, RGB-D cameras often operate within a limited optimal
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operation depth range [3].
These exposed negative characteristics of depth sensors,

along with the need for frequent calibration procedures, un-
derscores the importance of exploring robust methods as vi-
able alternatives for depth acquisition. In this context, deep
learning approaches are used to overcome these shortcomings
[4, 5, 6, 7, 8].

In this context, the input considered for the depth esti-
mation method can be a single or a set of images, which
determine the number of cameras used in the hardware setup
and can be named as monocular, stereo or multi-view. Monoc-
ular methods use a single image as input, thus requiring only
one camera. The more traditional stereo methods use two cam-
eras, similar to human vision. Finally, multi-view methods
use more than two cameras [4].

As monocular methods use a single camera, this approaches
are preferred in situations that need reduced mount space, min-
imized costs and little re-calibration procedures, both for the
camera itself and for the distances in the physical setup [9].
Therefore, monocular depth estimation approaches have suit-
able practical characteristics to be applied in autonomous
robotics systems, with the downside of being more challeng-
ing as an intrinsic mathematical ill-posed problem [4], being
the focus of this paper.

Another division of depth estimation approaches rises
from the output produced by the method, which can be classi-
fied as a relative or metric depth [7].

Relative depth methods assign minimum and maximum
values to the nearest and farthest objects, respectively. As
a consequence of this normalization characteristic, generic
depth estimators usually are relative [5, 6], fairly training
the multiple scene scales of diverse datasets. However, its
practical applications can be reduced due to the scene spe-
cific post-processing techniques required to obtain real physic
estimations [10].

On the other hand, metric depth methods infer values in
consistent real physical metric units, such as meters, gener-
ally with limited bounds for estimation. These methods are
generally present in specialized solutions for scenes similar
to the ones used as training [7, 8]. In this way, they present
lesser generalization capabilities in the wild, but are ready to
use in tasks like mapping and navigation.

In this paper, monocular metric depth estimation methods
are compared considering specifications of data necessity and
performance in regression errors and thresholded accuracy.
The ICL dataset [11] was used for the case study, compre-
hending video footage from a graphic simulation of a ground
indoor robot, with experiments proposed and results obtained
considering its practical usage.

Being the first authors to explore the ICL ground robot
dataset for depth estimation, it is expected to stimulate fur-
ther development and research involving this public resource,
which contains dense and high quality depth maps for su-
pervised learning methods, as well as time continuity over
frames, enabling the usage of popular self-supervised learning

geometry-based techniques.
The main contributions of this work are: (i) Provide a

reference case study for depth estimation in indoor ground
robotics; (ii) Present the first results of depth estimation for
the public ICL ground robot dataset; (iii) Perform a compar-
ison between different self-supervised and supervised deep
learning depth estimation methods in the dataset.

This work is divided as follows: Section 2 presents lit-
erature related works on computer vision depth estimation,
Section 3 describes the dataset and metrics used in experi-
ments, Section 4 describes the experiments done and presents
quantitative and qualitative results obtained and Section 5
summarizes the observed conclusions.

2. Related Works
Classical computer vision depth estimation methods generally
acquire images and compare results from different frames
using epipolar geometry equations, in which the results are
obtained using closed form solution formulas [8].

Although these approaches analytically solves the depth
estimation problem, the usage of variables such as the intrinsic
characteristics of the cameras and distances in the mount setup
have a direct impact in the accuracy generated, which can lead
to cumulative errors caused by inadequate or absent calibra-
tion procedures [4]. Other practical limitation aspects are
the assumption of environmental spatial constraints or cam-
era trajectory, which difficult its operation in non-controlled
scenarios [1].

Nowadays, in order to address these characteristic issues,
deep learning methods are employed to provide more general
and robust solutions.

2.1 Self-supervised Methods
Self-supervised methods for depth estimation focus on solving
the problems generated by the necessity of acquisition of large
amounts of high-quality dense data for training [4].

Widely explored, the Monodepth2 [8] solution is trained
using a collection of past frames in a monocular video to
recreate the current frame by using a pose estimator network
and a depth projection network, which is the main focus of
training. Photometric loss is used to evaluate the difference
between the current frame predicted and the actual recorded in
the dataset, with optical flow analyzed to avoid high penalties
due to object occlusion.

Using similar self-supervised training methods along with
distillation techniques, the DistDepth [10] approach uses an
expert generalist model combined with data specific self-
supervised learning to train a less complex network and gen-
erate metric depth.

2.2 Supervised Methods
Predominant in current works for supervised depth estimation,
the DPT architecture [12] uses transformer-based encoders to
accomplish dense prediction tasks such as segmentation. Its
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authors reported that this architecture was capable of generat-
ing models that outperformed previous state of art approaches
in depth estimation, accomplishing it by using the pre-trained
model and applying fine tune in specific depth estimation
datasets.

In this context, new solutions were built using the DPT
architecture aiming to create a generic depth estimator to be
used as a foundation model. These methods usually generate
relative depth, normalizing distances of the ground truth to
address fairly training between different datasets scene scales.
As an example, this strategy is used by MiDaS [5], trained in
five different indoor and outdoor datasets.

Another general depth estimator example is Depth Any-
thing [6], which used unlabeled images during training with
pseudo labels generated by other state of art depth estimation
methods. This way, the data used for training was bigger than
previous solutions, leading to best results.

As a way to use the generalists models to specific appli-
cations, ZoeDepth [7] internally uses a pre-trained relative
depth estimator model and converts its output to a metric unit,
allowing the direct usage of the result in real world scenes
after a supervised fine tune training. This is done by using a
convolutional head called metric bins module, which is com-
bined with the generalist decoder to obtain the final depth
output by aggregating the intermediate relative depth output.

2.3 Graphical Simulation
Graphical simulation of real world similar scenes are of-
ten used in the depth estimation training as an alternative
to the acquisition of real world data [10]. In this manner,
the simulated environment presents the benefit to facilitate
high-quality dense ground truth attainment and generation of
larger datasets compared to classical sensor based acquisited
datasets.

In regard of the performance of the resultant models in
real data, the authors in [10] present a comparison between
a deep learning model trained only with simulated data and
a model uniquely trained with real world data, achieving a
performance difference lesser than 5% in regression errors
and depth estimation accuracy when evaluated in the NYUv2
dataset [3]. Thus reinforcing the validity of the usage of
simulation to accelerate the development of depth estimation
techniques, as it was done in this paper.

3. Materials and Methods
This section describes the dataset and quantitative metrics
used throughout the experiments in this work.

3.1 Dataset
This work uses the ICL ground robot dataset [11], in which
the movement trajectory is based on collected sensor data
from a real robot and the realistic environment scenes are
graphically generated. Samples of the scenes contained in the
dataset are presented in Figure 1.

(a) (b)

(c) (d)
Figure 1. Samples of the dataset used. (a) and (b): Deer
scene. (c) and (d): Diamond scene. Adapted from [11].

The dataset is composed of two residential indoor scenes,
named Deer and Diamond, differing in light illumination,
style and positioning of typical household objects. Each scene
is composed of 1600 monocular frames, collected at 20 FPS.

Differently from other public datasets for depth estima-
tion, such as KITTI [2] and NYUv2 [3], the ICL dataset [11]
provides a continuous video footage with dense generated
ground truth. In this way, it facilitates the usage of differ-
ent techniques for depth estimation. It is possible to apply
methods that rely on smooth camera movement, in other cases
hampered in datasets without scene continuity [8] and also
makes direct the application of supervised training methods
without the need of depth completion to enhance data quality
for reasonable results [7].

In this context, the ICL dataset was chosen due the char-
acteristic to enable a broad range of methods to be compared,
along with its photo-realistic characteristic, exploring its po-
tential as benchmark for diverse depth estimation methods.

As far as our knowledge, there is no indication of sug-
gested data splitting by the ICL dataset authors [11] or in
other works for the depth estimation task. Therefore, in this
paper the dataset is split by using the first 70% of the frames
for training, the subsequent 10% for validation and the last
20% for test, applying this logic for each scene.

For the results calculations and comparisons of perfor-
mance, the range of minimum and maximum metric distances
considered for the ground truth were 1 mm to 10 m relative to
the camera.

3.2 Metrics
To enable quantitative comparison between experiments, the
regression errors analyzed were mean absolute relative error
(Abs Rel) presented by Eq. 1, mean squared relative error
(Sq Rel) in Eq. 2, root mean squared error (RMSE) in Eq. 3
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and root mean squared logarithmic error (RMSE log) in Eq. 4.
The calculations formulas are described in [9].

Abs Rel =
1
|N| ∑

i∈N

|di −d∗
i |

d∗
i

(1)

Sq Rel =
1
|N| ∑

i∈N

|di −d∗
i |

2

d∗
i

(2)

RMSE =

√
1
|N| ∑

i∈N

∣∣di −d∗
i

∣∣2 (3)

RMSE log =

√
1
|N| ∑

i∈N

∣∣log(di)− log(d∗
i )
∣∣2 (4)

The thresholded accuracies observed were δ < 1.25,
δ < 1.252 and δ < 1.253, presented in Eq. 5, as demon-
strated in [9].

δ < thr : % of di s.t. max
(

di

d∗
i
,

d∗
i

di

)
< thr (5)

In which di is the depth estimated and d∗
i is the respective

ground truth for pixel i. The metrics are calculated considering
N as the total number of pixels with valid ground truth.

For experiment comparison, the most significant metric of
regression error chosen was the RMSE log, due to its normal-
ization characteristics for different distances. For accuracy,
the δ < 1.25 was given more importance, as it demonstrates
the fine accuracy of the model to estimate the depth [9].

4. Experiments and Results
Experiments were conducted using the ICL ground robot
dataset subdivided as explained in Section 3.1, each model
was trained based on the open source implementation of the
network architecture distributed by the original authors with
adapters to correctly load the new dataset. For the same
approach, the best model was chosen by varying hyperpa-
rameters and selecting the experiment that returned the best
metrics in the validation subset accordingly to the preferences
mentioned in Section 3.2.

Qualitative analysis of the depth maps generated were also
used to propose and guide parameters value changes.

4.1 Supervised model
The experiments used the MiDaS variation named dpt swin2-
T network, a DPT model with a swin transformer v2 [13]
backbone considered by its authors as having a balanced trade-
off between accuracy and hardware consumption.

Qualitative results for the relative depth generated in the
dataset presented promising edge depth estimation and object

differentiation in off the shelf usage. Therefore, this variation
was chosen to be the generalist model for further experiments
with ZoeDepth for metric depth estimation.

For the ZoeDepth experiments, the variation named DPT
SwinV 2 T 256 by the original paper was chosen, referring to
the generalist model MiDaS dpt swin2-T with an input image
size of 256x256 pixels. The metric depth head of the models
experimented was originally pre-trained with the NYUv2 [3]
dataset by its authors, suffering fine tune to the ICL ground
robot dataset in each training.

All the experiments described were done using horizontal
flip data augmentation, with an AdamW [14] optimizer and a
OneCycleLR [15] scheduler for 20 epochs.

The results obtained in experiments that adopted a non-
trainable (frozen) depth generalist network approach in which
the training only adjusted the metric heads weights are pre-
sented in the Table 1, in which all experiments were done with
the default starting learning rate of 10−4.

Considering the experiments in the Table 1, the number
of bins in the metric head was explored from the standard
value of 64, the best found by the original authors [7], being
reduced to 32 and 16. The reduction in this parameter was
proposed due to the qualitative presence of nonexistent depth
artifacts for the default value in the dataset, with lower values
tending to cause depth grouping for different objects, thus
dealing with the imperfections observed.

From the Table 1, the usage of 32 metric bins in the head
(experiment Frozen-32) was considered to yield the best re-
sults. As prominent values, the RMSE log of 0.237 and the
accuracy δ < 1.25 of 0.736 demonstrate the superiority of
this experiment over the others.

Although relative similar regression error values are pre-
sented by the 16 bins experiment (Frozen-16), lower fine accu-
racy (δ < 1.25) results were achieved due to depth grouping,
which oversimplified the metric depth generated.

Considered the best candidate from the Table 1, the re-
duced number of 32 bins in the metric module was used
throughout the experiments conducted for the ZoeDepth mod-
els with trainable internal generalist depth estimator. In these
experiments a conjunction training were done, fine tuning the
generalist network along with the metric depth heads. The
results obtained are presented in Table 2.

For the Table 2, the results obtained demonstrated that the
usage of a reduced starting learning rate of 10−5 in experiment
Trainable-5 returned the best metrics, presenting RMSE log
of 0.144 and δ < 1.25 of 0.850.

Comparing the results of the generalist non-trainable and
trainable approaches in Tables 1 and 2, the trainable variations
presented overall better results. With this, the fine tune of
the generalist model demonstrated to be effective to achieve
better metrics, despite its higher complexity of training.

Finally, the trainable method using the reduced 32 bins
in metric head and with reduced learning rate (experiment
Trainable-5) was chosen as the best ZoeDepth model obtained.
The results achieved after training this best model setup for
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Table 1. ZoeDepth Frozen Generalist Experiments Results in Validation Subset
Identification Metric bins Abs Rel Sq Rel RMSE (m) RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Frozen-64 64 0.226 0.154 0.474 0.243 0.699 0.879 0.957

Frozen-32 32 0.218 0.151 0.480 0.237 0.736 0.890 0.953

Frozen-16 16 0.220 0.150 0.479 0.239 0.715 0.883 0.959

Table 2. ZoeDepth Trainable Generalist Experiments Results in Validation Subset
Identification Learning Rate Abs Rel Sq Rel RMSE (m) RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Trainable-4 10−4 0.146 0.062 0.286 0.159 0.836 0.937 0.991

Trainable-5 10−5 0.121 0.051 0.288 0.144 0.850 0.871 0.996

40 epochs are presented in Table 3 for the test subset.

4.2 Self-supervised model
Experiments with the Monodepth2 were done by fine tuning
of the monocular model variation mono 640x192, pre-trained
on the KITTI [2] dataset. The depth estimator model presents
an U-Net [16] architecture with a ResNet-18 [17] backbone.

As specific monocular training conditions experimented, it
was chosen the usage of a separated ResNet-18 pose estimator
network, aiming for independence of weights between the
pose and the depth estimators.

For the frame generation algorithm, focus of the self-
supervised training, it was used two consecutive past frames
as input for the depth and pose estimators networks to produce
the estimated present frame.

Training was accomplished using an Adam [18] optimizer
with a stepLR scheduler for 20 epochs and reduced smooth
factor of 10−5, horizontal flipping data augmentation was
applied.

Results for the test subset using the best Monodepth2
model trained are presented in Table 3.

4.3 Comparison
A qualitative comparison of the models in Table 3 is presented
in Figure 2.

According to the qualitative results of the depth maps
generated, the ZoeDepth model estimates depth maps with
more defined object borders, as depicted in Figure 2b, being
a more suitable solution for clustered scenes navigation and
mapping.

The Monodepth2 trained model results demonstrated in
Figure 2c presented a tendency of generating a blurred output,
limiting its practical usage for applications that do not need
information on edge detection or fine distinction of objects.

The comparison of quantitative metrics in Table 3 demon-
strates the better results of the ZoeDepth trained model for all
metrics considered, except by the Sq Rel and RMSE regression
error metrics, in which the Monodepth2 has lower values.

These differences in the metric results behavior can possi-
bly be explained by the fact that ZoeDepth presented an edge
transition sharper and better defined than the Monodepth2

smooth output. As mathematically exists a major penalty of
the quadratic errors by the calculation formulas in Eq. 2 and
Eq. 3, a much higher numerical value for the pixel error is
generated when an object is misplaced by the background or
when the inverse situation occurs, generally on object edges.

In this context, as there is no normalization in these met-
rics formulas, higher individual pixel errors are generated
for clear defined slightly misplaced objects as in ZoeDepth,
situation in which a quadratic penalty is applied to object-
background confusion. In comparison, blurred mean depth
map outputs, similar to Monodepth2, can present lower pixel
errors due to the numerically inferior quadratic penalty for
the confusion between the mean distance estimated and the
background. As the mean of errors for all pixels in the depth
map is calculated in the final metric, the high penalty for
object-background confusion in ZoeDepth numerically ele-
vate its mean error more than the common mean depth and
background (or mean depth and foreground object) error for
Monodepth2.

On the other hand, the computational complexity of the
Monodepth2 model is significantly lower when compared
with the ZoeDepth. The major aspect contributing to this
is the usage of the more complex generalist network during
inference time for the ZoeDepth, which can be a limitation
for embedded robotic systems considering its greater time
required for processing.

Another advantage of the self-supervised model is the
characteristic of the training process occurring independently
from the ground truth collected. Being of interest for depth es-
timation as real world sensors can generate sparse data, which
pose difficulties for supervised training in dense prediction
tasks [6]. However, recent works relying on computer graph-
ics or generative AI for the dataset acquisition tend to reduce
this advantage by providing dense depth maps [10].

As there is no other prior works on depth estimation using
the ICL ground robot dataset in literature, a comparison with
our results and other state-of-the-art methods should be done
with caveats. The metrics presented numerically by the origi-
nal authors of ZoeDepth [7] and Monodepth2 [8] trained in
classic sparse depth estimation datasets such as KITTI [2] and
NYUv2 [3] suggests that could exist room for improvement
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Table 3. Comparison of Model Results
Model Abs Rel Sq Rel RMSE (m) RMSE log δ < 1.25 δ < 1.252 δ < 1.253

ZoeDepth 0.258 0.151 0.651 0.276 0.658 0.870 0.949
Monodepth2 0.404 0.099 0.162 0.445 0.515 0.787 0.882

(a) (b) (c)
Figure 2. Qualitative comparison of depth maps generated by the models. (a) Input image. (b) ZoeDepth output. (c)
Monodepth2 output.

for our results based on the metrics produced. However, for
a fair comparison, the difference in depth map ground truths
characteristics, dense or sparse, must be considered.

5. Conclusion
This work presented a comparative case study for monocular
metric depth estimation in the context of indoor robotics. To
accomplish it, different depth estimation methods were ap-
plied to the until now unexplored ICL ground robot dataset,
with realistic simulation scenes that can be further used by
downstream tasks or have its benchmark expanded for new
depth estimation methods, given its generality and capacity to
be related to the real world scenes.

The self-supervised Monodepth2 model was presented as
a candidate to accomplish the task, with lower dependency
on high quality ground truth acquired data, also demanding
lower computational complexity for inference, but at the cost
of coarse generated depth maps, difficulting its application for
precise navigation and mapping, as observed in Figure 2c.

In contrast, the supervised ZoeDepth model results ob-
tained overall better quantitative metrics in the dataset used,
except for quadratic penalty metrics without distance normal-
ization. Qualitatively was able to differ smaller objects, as

depicted in Figure 2b, thus considered more suitable to ac-
curate tasks. However, its downsides include the increased
dependency of annotated data and increased hardware require-
ments for inference.
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