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On the Use of Spectral Data from Smartphone
Accelerometer Signals and Constituent Material for the
Identification of Damaged Walls

Uso de Dados Espectrais de Sinais de Acelerometro de Smartphone e Material
Constituinte para a Identificacao de Paredes Danificadas

Tales Boratto'*, Douglas Lima Fonseca', Heder Soares Bernardino?. Alex Borges?, Alexandre
Cury®, Leonardo Goliatt?

Abstract: Monitoring the integrity of civil structures is crucial for ensuring their safety and longevity. Assessing
the structural condition of walls is particularly important due to their role in stability and load distribution in
buildings. Smartphones can be used to collect dynamic data from the walls of modern buildings. This strategy is
an easier and cheaper way to obtain information concerning the wall’s structural condition compared to other
costly instrumentation plans using deflectomers, accelerometers, etc. Such a type of data was explored in the
literature with good results. However, despite the quality of the models obtained, other features can be included
to improve the results. For instance, spectral information may characterize the frequency content of a signal.
Moreover, the material used to build the structure affects the signals collected. Thus, we propose the use of
three machine learning models (Decision Tree, Random Forest, and K-Nearest Neighbors (KNN)) to identify
damage in walls from vibration signals using their spectral data and the wall’s constituent material in addition to
those already used in the literature. The proposed improvements increased accuracy by about 23%, leading to
an average accuracy of 97.78% with KNN when combining statistical and spectral features.
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Resumo: O monitoramento da integridade das estruturas civis é fundamental para garantir sua seguranca e
longevidade. A avaliagao da condigao estrutural das paredes é particularmente importante devido a sua fungéao
na estabilidade e na distribuicao de cargas nos edificios. Os smartphones podem ser usados para coletar
dados dinamicos das paredes de edificios modernos. Essa estratégia € uma maneira mais facil e barata de
obter informacoes sobre a condigao estrutural da parede em comparagao com outros planos de instrumentagao
caros que usam defletdbmetros, acelerometros etc. Esse tipo de dado foi explorado na literatura com bons
resultados. Entretanto, apesar da qualidade dos modelos obtidos, outros recursos podem ser incluidos para
melhorar os resultados. Por exemplo, informagdes espectrais podem caracterizar o contetido de frequéncia de
um sinal. Além disso, o material usado para construir a estrutura afeta os sinais coletados. Assim, propomos o
uso de trés modelos de aprendizado de maquina (Decision Tree, Random Forest e K-Nearest Neighbors (KNN))
para identificar danos em paredes a partir de sinais de vibragao usando seus dados espectrais e o material
constituinte da parede, além daqueles ja usados na literatura. Os aprimoramentos propostos aumentaram
a precisao em cerca de 23%, levando a uma precisao média de 97,78% com o KNN ao combinar recursos
estatisticos e espectrais.
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1. Introduction

Monitoring the structural condition of civil constructions is
essential to ensuring their safety, reliability, and longevity.
Such a strategy can identify possible early failures, reduce
maintenance costs, and minimize the risk of collapse and
catastrophic events [1]. In particular, monitoring the integrity
of the walls of modern constructions, such as houses, build-
ings, and others, has also become a very relevant aspect since
they play a fundamental role in distributing loads and main-
taining structural stability. Therefore, certain types of damage,
whether caused by overload, seismic events, thermal variation,
water infiltration, etc., could compromise their functionality
and cause an accident [2, 3].

In general, Structural Health Monitoring (SHM) tech-
niques focus on two main approaches: vibration-based moni-
toring [4, 5], whose premise consists of the assumption that
physical changes cause a change in the vibration character-
istics of the structure, and vision-based monitoring, which
is related to both visual inspection by experts and computer-
automated inspection from images or videos [6, 7]. In the
context of the first approach, previous studies have demon-
strated their efficiency in identifying anomalies in different
structures, such as bridges [8, 9], historic monument build-
ings [10, 11], among others [12, 13].

In parallel, considering that technological advances have
enabled smartphones to be equipped with various types of sen-
sors, including the well-known accelerometers, such devices
have begun to be used as an alternative sensing instrumenta-
tion in vibration-based SHM investigations. Feng et al. [14]
examined the viability of monitoring structural vibration un-
der typical and high loads using smartphone accelerometers.
Many shaking table experiments were carried out to compare
these devices’ sensors with high-quality accelerometers for
sensing vibration at various frequencies. Finally, the authors
also investigated the performance of smartphone sensors on
a real pre-stressed reinforced concrete pedestrian bridge at
Princeton (USA). Kang, Baek, and Park [15] used a smart-
phone application (app) i-Jishin to estimate the large defor-
mation of a two-story building with an RC structure filled
with masonry, and the performance of the dynamic charac-
teristics. A comparison was performed with the readings
provided by a reference accelerometer. Figueiredo et al. [16]
used the App4SHM smartphone app to detect anomalies in
two structures: (i) laboratory steel beams and (ii) two twin
post-tensioned concrete bridges. The app collected vibration
data from the structures using the device’s internal sensors
and then estimated the structure’s natural frequencies. Finally,
damage assessment was carried out by comparing the acquired
data with those obtained in the reference scenario.

Similarly, Sun W. [17] proposed using smartphone-based
instrumentation to monitor the structural integrity of walls
in modern buildings. In this case, the device plays the role
of both actuator and sensor. The structure is excited by the
smartphone vibrating at a certain frequency, and the dynamic
responses are captured by its internal accelerometer and gyro-

scope sensors. This instrumentation strategy provides flexi-
bility and cost-effectiveness in real-world monitoring cases.
Nowadays, smartphones are equipped with dynamic sensors
and can also play the role of actuators. In addition, as evalu-
ated in [17], the model of smartphone used, as well as aspects
related to the way and direction in which the devices are held
during monitoring, did not significantly affect the system’s
performance.

To fulfill the objective of using dynamic signals collected
from smartphones to monitor the integrity of walls, Sun
W. [17] used Z-axis data from both the device’s accelerom-
eter and gyroscope. Statistical features and Mel-Frequency
Cepstral Coefficients (MFCC) [18] were extracted from the
signals and submitted to Random Forest (RF), Decision Tree
(DT), and K-Nearest Neighbors (KNN) models [19] to predict
the structural condition of the walls. As a result, combining
MFCC with KNN made it possible to achieve an accuracy
level of around 99.20%.

Despite the good results obtained by Sun W. [17], when
evaluating the models using only the accelerometer or gyro-
scope signals separately, the method used failed to achieve
a similar performance. As a consequence, the accuracy de-
creased to around 75%. Thus, considering that the use of gy-
roscopes in structural monitoring is an uncommon approach
and that the evaluation of accelerometer signals is a robust and
widely used approach in the field of vibration-based SHM,
this work aims to assess the presence of wall damage using
only accelerometer readings. In addition, we are interested in
proposing a computational approach that improves the results
of wall damage detection only by exploiting other features of
the signals, keeping the same three machine learning (ML)
models as a comparison.

The main contributions of this work are based on two
aspects: the first consists in exploiting features from the spec-
tral domain, while the second relies in adopting wall material
information as an input variable. In addition, as new vari-
ables are introduced into the computational approach, the grid
search (GS) process for optimizing the hyperparameters of
the models is adopted.

The computational experiments are carried as in [17] and
are evaluated using 5 performance metrics: accuracy, ROC-
AUC, Jaccard, precision, and recall. Initially, experiments
were conducted to assess the effectiveness of the suggested
spectral features concerning those previously evaluated by
Sun W. [17]. Subsequently, the computational method was
modified to include information on the wall’s constituent ma-
terial as an input variable for the models, along with each set
of features evaluated. Finally, the grid search process was
introduced into the modified method to optimize the set of
internal parameters of the models.

2. Material and Methods

This section details the dataset used and presents an overview
of the machine learning models applied to solve the problem.
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2.1 Dataset

Sun W. [17] deployed an application (Vibwall) for smart-
phones to record accelerometer and gyroscope data while
activating the device’s vibrator. The vibrator was configured
to serve as the stimulus at five distinct frequencies (10Hz,
20Hz, 30Hz, 40Hz, and 50Hz). The experiments were car-
ried out on walls of different materials, including concrete,
wood, and brick, from modern building environments such as
apartments and offices, as illustrated in Figure 1. To make it
easier to identify the samples, the experimental tests were con-
ducted so that detectable anomalies were visible using visual
inspection methods, such as human observation or camera
systems.

A total of 3,000 measurements were collected, half from
walls with cracks and the other half from intact walls. In other
words, for each type of wall, 500 measurements were taken
in healthy structures and another 500 in abnormal conditions,
considering only the accelerometer response readings over
the z-axis (out of the wall’s plane). In addition, the sensor
was configured to sample data at a rate of 100 Hz. Each
vibration stimulus was applied for approximately 5 seconds,
although an analysis of the data revealed 24 signals with
shorter durations and signals with longer durations than the
established 5 seconds.

2.2 K-Nearest Neighbors

This ML algorithm classifies an unlabeled test sample based
on the majority class of its nearest neighbors. This process
involves calculating the distances between the test and training
samples using a specific distance measure [20].

The KNN is recognized for its simplicity and effectiveness
in solving various classification problems, showcasing its
adaptability to different types of data. Its simplicity lies in
the fact that the model does not require an explicit training
process and is considered a lazy learning method. This means
that the training phase is practically non-existent, as KNN
simply stores the training data and only carries out intensive
calculations during the classification phase [21].

However, it is important to acknowledge its drawbacks,
such as the challenge of determining the optimal k value,
which represents the number of neighbours to be considered.
Very small values of k can result in a model that is sensitive
to noise in the data, while very large values can dilute the
influence of relevant near neighbours [22]. The high computa-
tional load is another challenge, as KNN requires calculating
the distances of each test sample from all the training samples,
which can be unfeasible for large data sets. In addition, KNN
requires a substantial amount of memory to store all the train-
ing data, which can be limiting in large-scale applications.

Various strategies have been proposed to adapt to these
challenges, such as using inverted indexes or ensemble learn-
ing to find the optimal k, reducing the size of the training
dataset, or employing approximate KNN classification meth-
ods [23].

The operation of the KNN algorithm is based on two

main phases. During training, the samples and their class
labels are stored, ensuring no missing or non-numeric data. In
the classification phase, each test sample is classified based
on a majority vote among its nearest neighbours. Distances
between the test sample and all training samples are calculated
using a predefined distance function, such as the Euclidean
distance, and the class most frequently occurring among the k
nearest neighbors is assigned to the test sample. This approach
ensures that the test sample is classified accurately based
on the most relevant and proximate training data [22]. In
addition, it is also possible to define a weight function used
for prediction, such as uniform weight, in which all the points
in each neighbourhood are weighted equally, and weight by
distance, in which the weight points are weighted by the
inverse of their distance [24].

2.3 Decision Tree Classifier

The primary objective of DT is to construct a model that pre-
dicts the target variable by inferring simple decision rules from
the data features, effectively functioning as piecewise constant
approximations. Each internal node of the tree represents a
test on a feature, each branch corresponds to the outcome of
the test, and each leaf node represents a predicted value of
the target variable. This structure allows DTs to approximate
functions like a sine curve through a series of if-then-else
rules, where deeper trees yield more complex regulations and
a more accurately fitted model [25].

In addition, computer implementations of DT, such as
those available in scikit-learn, make it possible to adjust the
behaviour of the model using some additional parameters,
such as ‘splitter’ and ‘criterion’. The first of these is a pa-
rameter related to the strategy used to choose the split at each
node; for example, selecting the best split at each node (best)
or selecting a random subset of resources and then the best
split from that subset (random). The criterion determines the
function used to measure the quality of a split [26]. These
options offer flexibility to adapt the tree to specific data sets
and tasks, which can improve performance and generalisation.

One of the key strengths of decision trees is their versatil-
ity, making them a reassuring choice for a wide range of data
analysis tasks. Their intuitive visual representation makes
it easy to understanding and interpret, allowing for greater
comprehension of the decision-making process without the
need for extensive technical knowledge. Unlike other ML
methods, DT requires minimal data preparation, eliminating
the need for extensive data normalization and handling of
missing values. They can handle both numerical and cate-
gorical data efficiently, making them applicable in diverse
contexts. Furthermore, the computational cost of making
predictions with a DT is logarithmic relative to the number
of training data points, ensuring efficiency even with large
datasets. Decision trees also support multi-output problems,
and their transparency as a white-box model ensures that their
decision-making process is fully interpretable. Statistical tests
can validate these models, ensuring reliability even when un-
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(adapted from [17]).

derlying assumptions are partially violated [27].

Despite these advantages, DT exhibits some limitations.
They tend to overfit the data, especially when the tree is deep,
leading to poor generalization to unseen data. Another signifi-
cant drawback is their instability; small variations in the data
can lead to substantially different trees, making them sensitive
to noise. The piecewise constant nature of DT limits their
performance in tasks that require extrapolation beyond the
range of training data. Furthermore, learning an optimal DT is
NP-complete problem, meaning that exact solutions are com-
putationally infeasible for large datasets. As a consequence,
heuristic algorithms, such as the greedy algorithm, are com-
monly employed, which makes decisions at each node based
on the best local option rather than a global optimum. More-
over, DT struggles with complex patterns like XOR (exclusive
OR) and can produce biased trees if some classes dominate the
dataset, highlighting the importance of balancing the dataset
before training [25].

2.4 Random Forest Classifier

One way to reduce the risk of overfitting is by constructing an
ensemble of decision trees, as in the Random Forest method.
This ensemble combines predictions from several classifiers
using a majority vote decision rule to improve the robustness
and generalisability of the model [19, 28].

RF comprises multiple DT, in which each individual tree is
built from a random sample of the data set, using the bagging
technique (bootstrap aggregating). In this process, different
subsets of the training set are randomly generated with re-
placement, creating diversity among the trees in the model
[28]. This randomness is fundamental to reducing the cor-
relation between the trees and, consequently, reducing the
variance of the model.

The trees within a Random Forest are developed using ran-
dom subsets of the available features, selected at each node of
the tree. This process introduces even more variation between
the trees, increasing the model’s resilience against overfitting.
Each tree votes independently for the most frequent class to
classify a new input vector. The class that gets the most votes
among all the trees in the forest is the classifier’s final decision
for a data instance [29, 30].

To construct a decision tree within Random Forest, it is
essential to choose an appropriate measure of feature impor-

Figure 1. The wall’s structural health detection acrss the concrete wall, wooden wall, and brick walls in modern buildings

tance, such as Gini impurity or entropy, to guide the splitting
of nodes. In addition, the number of trees to be generated, the
maximum depth of the trees and the number of features to be
considered in each split are also parameters that influence the
model’s performance. Careful choice of these parameters can
improve the Random Forest’s ability to generalise, especially
in complex or high-dimensional data sets. Finally, the forest
classifies each new data instance by passing it through all the
trees, selecting the class with the majority of votes [30].

3. Proposed Approach

The main improvements proposed are structured around two
main aspects. The first one consists in exploring and evaluat-
ing the performance of the models from the perspective of 12
spectral features. Subsequently, information about the wall’s
constituent material is used as an input variable. In addition,
once a new input variable has been introduced, a process of
optimizing the internal parameters of the models was carried
out via grid search. In this case, there is also an interest in
finding a set of hyperparameters that best fit the models from
the perspective of spectral features.

3.1 Signal Analysis

The structure for reading dynamic signals in the original work
established a standard duration of 5 seconds, i.e. 500 points.
However, preliminary data analysis revealed some signals of
the original dataset whose duration exceeded 5 seconds and
other signals shorter than the established standard. In the first
case, the problem was dealt with by ignoring the extra portion
of the signals without any significant loss of information.
Regarding the second one, the data analysis revealed 24 files
(0.8% of the database size) containing signals lasting less
than the established 5 seconds. Thus, considering that the
occurrence of signals with shorter duration was infrequent, it
was decided to discard such signals from the database without
significant loss of information. As a result, the data set used in
this study consists of 2976 vibration signals, and no imbalance
problems were generated with this approach.

3.2 Data Processing
The problem of damage detection in the modern building
walls was evaluated in [17] using 9 manually implemented
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statistical features described in Table 1, and MFCCs extracted
from the signals via the python_speech_features library [31].

Table 1. Statistical features extracted from the signals.

Feature Description
X Mean Absolute Value (MAV).
X Variance (VAR).
X3 Root Mean Square (RMS).
Xy Standard Deviation (STD).
X5 Mean Absolute Deviation (MAD).
Xs Skewness of the frequency domain.
X7 Kurtosis of the frequency domain.
Xg Interquartile (IQR) range.
X Energy of the signal.

We propose here using a set of spectral features, as de-
scribed in Table 2, in the context of wall damage detection
via smartphone’s accelerometer signals. Also, we propose in-
serting information of the wall’s constituent material as input
variables. The hypothesis behind providing this information to
the models is that different materials show different vibration
responses due to their physical and mechanical properties [32].
Therefore, using material identification may improve the suc-
cess rate in detecting anomalies in the wall.

Finally, in both approaches, the feature sets were normal-
ized in [0, 1] linearly.

Table 2. Proposed spectral features set, which were extracted
from the signals via TSFEL [33].

Feature Description
S1 Spectral Centroid
S> Spectral Amplitude Decrease
S3 Spectral Distance
Sa Spectral Entropy
Ss Spectral Kurtosis
Se Spectral Roll-off
S7 Spectral Skewness
Sg Spectral Spread
Soy Maximum Power Spectrum Density
S1o0 Maximum Frequency
S11 Median Frequency

S Power Spectrum Density Bandwidth

3.3 Grid Search for Internal Parameters
After introducing the information on the wall’s constituent
material as an input variable and proposing a set of spectral
feature data to be evaluated, it is important to carry out a
new evaluation of the models’ internal parameters. There-
fore, a hyperparameter optimisation approach based on Grid
Search combined with Stratified Cross Validation was used.
In addition, this type of approach is a way of ensuring that ma-
chine learning models adapt to possible different monitoring
scenarios.

The process took into account a Stratified Cross Validation
(SCV) with 5 divisions (cv=>5), carried out in 30 independent

iterations. SCV was chosen to ensure that each of the splits
maintains the original proportion of classes, which is crucial in
unbalanced datasets. For each iteration, a new set of training
and test divisions is generated, ensuring robustness in the
results. The training set is then further split into training
and validation using the frain_test_split method with 25% of
the data reserved for validation. This stage is essential for
evaluating the performance of the different hyperparameters
during the Grid Search process. The details of the candidate
solutions for the internal parameters are shown in Table 3.

Table 3. Hyperparameter candidates for the grid search

procedure.
Classifier Hyperparameter Candidates
K-Neighbors n_neighbors [1,2,3,5,10,50,100]
weights [uniform,distance]
Decision Tree max_depth [2,5,10,15]
criterion [gini,entropy,log_loss|
splitter [best, random)
Random Forest max_depth [2,5,10,15]
n_estimators [10,50,100,200]
criterion [gini,entropy,log_loss]

The Grid Search process was used to exhaustively explore
all possible combinations of the specified hyperparameters.
For each combination, the model is trained on the training set
and evaluated on the validation set. After testing all the com-
binations, the combination that results in the best performance
on the validation set is selected as the best. This process is
repeated for each iteration of cross-validation, and the best
hyperparameters found in each iteration are stored for later
analysis.

It is worth noting that the computational experiments
conducted without the GS optimization process considered
the same internal parameters as the experiments carried out
by [17]. Thus, max_depth = 2 and n_estimators = 10 were
considered for the Random Forest model, K = 2 for the k-
neighbors classifier and, finally, the Decision Tree model
tuning was kept to the implementation standards of the scikit-
learn library [26].

4. Computational Experiments

The database used in this research was kindly made available
by Wei S. upon request. With the exception of these data, all
other materials necessary for the reproduction of this work
can also be made available upon request.

The developed codes were implemented in Python and the
feature extraction process was based on libraries numpy [34]
(version 1.23.5) and scipy [35] (version 1.9.3) for statistical
ones, python_speech_features [31] (version 0.6) for extract-
ing MFCCs and TSFEL [33] (version 0.1.4) to retrieve spec-
tral information from the dynamical signals. Additionally,
the computational experiments were conducted on a com-
puter with the following specifications: Intel(R) Core(TM)
i5-1135G7 CPU @ 2.40GHz, 8 GB RAM, and Windows 10
Home as an operational system.
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To assess the model’s performance comprehensively, the
computational experiments were conducted 30 times using dif-
ferent random data splits via a 5-fold stratified cross-validation.
It resulted in a total of 150 model evaluations across various
dataset partitions and from the perspective of 5 performance
metrics: accuracy, ROC-AUC, Jaccard, precision, and recall.

Table 4 shows the results achieved by the original method
implemented and by the modified method with the first pro-
posed changes, i.e. with the addition of the input variable, and
finally by the optimized proposed method.

When evaluating the anomaly detection capacity of the
original method - without considering the spectral features, it
is possible to see that the best average accuracy is about 75%,
as was expected, when considering the statistical features
and DT. However, KNN with the same feature set obtained
similar results in all metrics, even showing a better average
precision score. Furthermore, the superiority of the spectral
features suggested here could be observed. The KNN model
achieved an average accuracy of 83.99%, which corresponds
to an increase of 8.63%. After introducing the proposed mod-
ifications but without considering the optimization process
of the models yet, it can be seen that it was possible to raise
the classification performance even further. In this case, an
average accuracy of 95.58% was achieved using the set of
spectral features and the KNN classifier. In addition, the fact
of simply indicating the main constituent material of the wall
led to an improvement in the classification performance of the
models, with an average increase in accuracy of up to 17.04%
(60.30% to 77.34%).

A significant performance enhancement resulting from
model optimization can also be observed, mainly when con-
sidering the RF classifier and the signal characteristics from
statistical and spectral domains. In these cases, an increase of
23.39% (68.01% to 91.40%) and 21,96% (70.72% to0 92.68%)
was observed in the average accuracy of the respective fea-
ture sets. The model’s improvement was so remarkable that,
when combined with the statistical features, its performance
exceeded that of the DT model when applied to the set of
spectral attributes. Still in this sense, it can be noted that in
general, except for the set of MFCCs, the optimized RF and
KNN models performed better than the DT. It can also be
seen that the best performances in each case are related to the
KNN classifier.

As a complementary analysis, Figures 2 and 3 shows
the average confusion matrices of the best models of both
the original framework and when adopting the suggested im-
provements respectively. Returning to the classification per-
formances presented in Table 4, when considering the original
method, the usage of spectral features leads to an increase in
the average performance of the models. However, analyzing
the confusion matrices related to the best results of this method
(Figures 2a and 2b) reveals that, even though a reduction in
the error of identifying healthy structures was reduced from
24.89% to 8.17%, a subtle increase in the classification error
of signals from damaged structures was observed (24.39% to

25.03%). Similarly, optimizing the hyperparameter of KNN
improved the quality of the solutions, albeit in a limited way.
However, an evaluation of the confusion matrices (Figures 3a
and 3b) reveals a change in the behaviour of the classification
mistakes. Thus, after the optimization process, there was an
increase in the misclassification rate of signals from healthy
structures and a reduction in the proportion of mistakes classi-
fication regarding signals from damaged structures.

Healthy

True Class

Damaged

Healthy Damaged
Predicted Class

(a) Statistical and DT

Healthy

True Class

Damaged

Healthy
Predicted Class

Damaged

(b) Spectral and KNN
Figure 2. Confusion matrices from the best cases of the
original method.

After verifying that the models were effective in detecting
anomalies when considering the statistical and spectral per-
spectives, we generated models using a set of features formed
by combining them. Therefore, a new set was constructed con-
taining 21 features from the signals (9 statistical + 12 spectral)
in addition to the information relating to the wall materials.
The results achieved in this case are shown in Table 5. When
evaluating them, it can be seen that the combination of these
sets of features led to an increase in the performance of the
models in the three methods analyzed: original, modified, and
optimized. In this way, it was possible to increase the average
accuracy to about 97.78%.

Complementary, the highest average misclassification rate
drops from 4.57% (value of false positives in Figure 3b) to
2.73%, in the latter case being associated with signals from
damaged structures (false negatives), as can be seen in Fig-
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Table 4. Average performance metrics and their standard deviation (%) achieved by using the original method and the modified
ones. The bold value indicated the highest average performance achieved in each method evaluated. The underlined ones

highlight the best performance by considering the reference paper approach.

Feature ML Performance Metrics
Method Set Model Accuracy ROC-AUC Jaccard Precision Recall

KNN  74.69 (1.54) 74.67 (1.54) 55.02(2.41) 76.40(1.85) 74.67 (2.28)
Statistical DT 75.36 (1.68) 75.36 (1.68) 60.52(2.20) 75.39 (1.89)  75.36 (2.39)
RF 68.06 (1.82) 68.08 (1.82) 55.70(1.90) 69.39 (2.50) 68.08 (4.15)
Té KNN  56.31(1.81) 56.26 (81) 26.88 (4.26) 58.44(2.86) 56.26(7.12)
& MFCC DT 60.30 (2.07) 60.30 (2.07) 42.99 (2.39) 60.31 (2.12) 60.30 (2.97)
5 RF 62.17(1.99) 62.18 (1.99) 47.11(2.42) 62.37(2.20) 62.18 (3.54)
KNN  83.99 (1.43) 83.98 (1.43) 70.37 (2.42) 84.88(1.68) 83.98 (1.95)
Spectral DT 81.31 (1.56) 81.31(1.56) 68.54(2.17) 81.35(1.88) 81.31(2.28)
RF 70.66 (1.78) 70.69 (1.78) 59.37(1.98) 72.98 (2.70) 70.69 (4.37)
KNN  89.66 (1.02) 89.65(1.02) 80.23(1.88) 90.18 (1.40) 89.65 (1.61)
Statistical DT 89.04 (1.18) 89.04 (1.18) 80.26 (1.92) 89.06 (1.53)  89.04 (1.71)
RF 68.01 (1.66) 68.03 (1.66) 55.43 (1.77) 69.24 (2.45) 68.03 (4.65)
E KNN  56.31(1.75) 56.26 (1.74) 26.80(4.28) 58.48(2.83) 56.26 (7.28)
= MFCC DT 7734 (1.75) 77.34(1.75) 62.97(2.42) 77.37(2.03) 77.34(2.53)
§ RF 62.11 (2.10) 62.13 (2.10) 47.01 (2.45) 62.30(2.28) 62.13 (3.54)
KNN  95.58 (0.82) 95.58 (0.82) 91.37 (1.56) 95.67 (1.10) 95.58 (1.17)
Spectral DT 89.12 (1.80) 89.12(1.80) 80.43(2.92) 89.15(2.16) 89.12 (2.36)
RF 70.72 (1.89) 70.75 (1.89) 59.37 (2.04) 7292 (2.62) 70.75 (4.06)
KNN  90.45(1.06) 90.45(1.06) 82.45(1.84) 90.51(1.82) 90.45(2.11)
§ Statistical DT 88.92 (1.38) 88.92(1.38) 80.00(2.28) 88.98 (2.04) 88.92 (2.40)
2 RF 91.40 (1.05) 91.40(1.05) 84.12(1.79) 91.42(1.49) 91.40 (1.66)
E KNN  5591(2.28) 5591 2.27) 37.34(8.89) 57.17(4.18) 55.91(20.43)
= MFCC DT 78.87 (2.86) 78.87 (2.86) 64.19 (4.00) 79.21 (3.87) 78.87 (5.18)
S RF 67.49 (1.97) 67.50(1.97) 52.97(2.38) 67.78(2.18) 67.50 (3.06)
.E KNN  95.87 (0.84) 95.87 (0.84) 92.09 (1.54) 95.89(1.29) 95.87 (1.37)
o"" Spectral DT 90.24 (2.29) 90.24 (2.29) 82.30(3.77) 90.28 (2.63)  90.24 (2.85)
RF 92.68 (1.16) 92.68 (1.16) 86.38 (1.99) 92.70 (1.56)  92.68 (1.68)

ure 4.

4.1 Parametric Analysis
The best classification performance achieved in this paper was
found when using the KNN model combined with the con-
catenated set of statistical and spectral features. In this case,
a parametric analysis conducted after the optimization pro-
cess via GS revealed that the parameters n_neighbors = 1 and
weights = uniform were the configurations mostly selected
as the best, respectively in 75 and 131 of the 150 model runs,
as can be seen in Figure 5. A similar behaviour of the internal
parameters was found in the evaluation of the best case when
only spectral attributes were considered. In this case, the
same best configurations were found (n_neighbors = 1 and
weights = uni form), but with a respective selection frequency
of 95/150 and 126/150. Thus, it can be noted that, among
the possible configurations for n_neighbors, the grid search
selections were more concentrated on the lower values of this
parameter, revealing a better fit of the KNN model when using
a smaller number of neighbors for class prediction.
Parametric and feature importance analyses were also
carried out for DT and RF. Firstly, this analysis revealed a

difficulty in defining the best model parameters, as the fre-
quency distribution was very similar between some of the
candidate solutions, as can be seen in Figures 6 and 7. The
most obvious case is related to the criterion parameter of the
DT model, whose selection frequency is equally distributed
between the gini and entropy candidates. On the other hand,
the n_estimators parameter for the RF model showed the best
convergence in the selection, so the configuration comprising
15 estimators was selected in 147 of the 150 iterations. In
general, however, it can be said that the other best parameter
settings were max_depth = 15, Splitter = best for DT, and
criterion = entropy, n_estimators = 200 for RF.

Concerning the cumulative relevance of the features, Fig-
ure 8 shows the importance of each feature in the decision-
making process of two machine learning models: Decision
Tree and Random Forest. The height of each bar represents
the contribution of a given attribute to the model’s perfor-
mance. The higher the bar, the more important the feature
is for the model in question. When analysing the bar chart,
the importance of the variable containing information on the
wall’s constituent material is noticeably higher in both mod-
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Table 5. Average performance metrics and its standard deviation (%) achieved by considering the concatenated statistical and
spectral features set. The bold value indicated the highest average performance achieved in each method evaluated.

ML Performance Metrics
Method Model Accuracy ROC-AUC Jaccard Precision Recall
KNN  87.90 (1.27) 87.90(1.27) 77.20 (2.26) 88.48 (1.53) 87.90 (1.77)
Original DT 83.57 (1.65) 83.57(1.65) 71.87(2.45) 83.60(1.97) 83.57(2.28)
RF 72.05 (1.80) 72.05(1.80) 60.76 (1.91) 74.22(2.60) 72.05 (4.05)
KNN  97.59(0.59) 97.58 (0.59) 95.20 (1.17) 97.64 (0.77) 97.58 (0.81)
Modified DT 94.29 (1.14) 94.29 (1.14) 89.21(2.05) 94.31 (1.47) 94.29 (1.55)
RF 72.24 (2.09) 72.27(2.09) 61.03(2.08) 74.49 (2.65) 72.27 (3.88)
KNN  97.78 (0.62) 97.77 (0.62) 95.62 (1.21) 97.79 (0.93) 97.77 (0.96)
Optimized DT 94.08 (1.46) 94.08 (1.46) 88.81(2.55) 94.11(1.85) 94.08 (1.96)
Proposed RF 95.58 (1.02) 95.58 (1.02) 91.44(1.91) 95.62(1.30) 95.58 (1.36)
80 80
Healthy Healthy
@ 60 2 60
O O
E E
= 40 = 40
Damaged Damaged
20 20
Healthy Damaged Healthy Damaged
Predicted Class Predicted Class
Figure 4. Confusion matrices of the best cases when
(a) Spectral and KNN considering the optimized proposed method and the set
composed of the statistical and spectral features.
80
Healthy
- of importance among the other attributes is observed, indicat-
3 60 ing that the model considers a wider range of characteristics
e when making its decisions.
2 40
Damaged 4.2 Overall Discussion
20 Analysing the results, it is clear that the three main modifi-

Healthy

Damaged
Predicted Class

(b) Spectral and KNN
Figure 3. Confusion matrices from the best cases of the
proposed method without (a) and with (b) hyperparameter
optimization.

els. The following 6 features are also more prominent than
the other ones for both classifiers: MAV, Frequency Skew-
ness, Frequency Kurtosis, Energy, RMS, and Spectral Spread.
Specifically analysing the importance of the variables for each
model, it can be seen that the DT model tends to focus on a
smaller number of highly informative attributes, which can
be an advantage in terms of interpretability. For the Random
Forest model, on the other hand, a more uniform distribution

cations proposed have had a positive effect, increasing the
assertiveness rate of the models. In particular, optimising
the models’ hyperparameters combined with cross-validation
enabled the models to perform better, especially the RF. This
indicates that the proposed model could mitigate possible over-
fitting effects. Still, in this sense, it was possible to achieve
an average accuracy (97.78%) as good as that obtained in the
best case of the original article (99.20%), with the difference
that the approach used in this work takes only the accelerome-
ter signals perspective, without introducing the information
collected by the gyroscope.

It was also possible to observe that, in general, the set
formed by the MFCCs was associated with the lowest aver-
ages of the performance metrics evaluated. This is probably
due to the inefficient configuration of the library method used
to extract them, which generated a feature matrix made up of
approximately 6460 columns, while the other sets were made
up of 9 (statistical) and 12 (spectral) attributes. As an alterna-
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1 3 2 5 10

(a) Parameter: n_neighbors

1 3 2 5 10

(b) Parameter: weights.
Figure 5. Best internal parameters identified by the grid
search process after executing KNN with the statistical and
spectral combined features set.

tive to be evaluated in future work to remedy this problem of
the hyperdimensionality of the MFCC, it is suggested that a
more simplified MFCC extraction method be applied, such as
that used in [36].

When evaluating the best set of features (a combination
of statistical and spectral characteristics), it can be seen that
the 7 attributes that stood out were the same for DT and RF.
Furthermore, 5 out of them come from the statistical set, 1
from the spectral set, and the last one consists of wall material
information, which was found to be the most relevant feature
in both classifiers. It is therefore clear that the proposed
approach was able to contribute to progress in the problem
of detecting wall damage from smartphone accelerometer
signals.

4.3 Strengths and Limitations

Various approaches have been explored for detecting struc-
tural damage in walls, most notably non-destructive moni-
toring methods. However, these methods tend to be costly
and sensitive to environmental changes such as lighting and
ambient noise. In this sense, the proposal in this study dif-
fers from these approaches by employing affordable sensors,
such as accelerometers built into smartphones, combined with
machine learning techniques to analyse spectral data and mate-
rial information. This combination offers significant potential
for reducing costs and facilitating data collection in the field,
highlighting the feasibility of large-scale applications. Fur-
thermore, to the best of the authors’ knowledge, there is no

gini entropy

(a) Criterion.

Frequency of Selection
H N W A U O
©O OO o oo o o

o

15

(b) max_depth.

best random

(c) Splitter.
Figure 6. Best internal parameters identified by the grid
search process for DT model in the set formed by the
statistical and spectral features.

other record, apart from the reference paper [17], of this type
of technique being used to monitor walls.

When considering applications in real conditions, even
though the reference paper [17] carried out tests in this sce-
nario and sought to assess the effect of different data collection
conditions, it is possible that materials other than those already
analysed could be subjected to the monitoring process. In this
case, classification performance could be affected. In this
respect, even though this work has obtained promising results
and outlined strategies to guarantee a level of generality in the
model, dealing with a different scenario could still be a prob-
lem. For this reason, we suggest that future efforts be made
to increase the model’s degree of generalisation by acquir-
ing vibration data from different types of walls and materials
in real situations. Furthermore, we suggest that these new
acquisitions seek to vary the data collection conditions.

In addition, the integration of the proposed models into
mobile applications could facilitate the automation of the
detection process, allowing users to carry out real-time as-

R. Inform. Teor. Apl. (Online) e Porto Alegre o V. 32 ¢ N. 2 ¢ p.60/63 ¢ 2025



Spectral Data and Constituent Material for Identification of Damage Walls

entropy gini

(a) Criterion.

140+
120+
100+

A O
o O o

Frequency of Selection

N
o

o

15 10

(b) max_depth.

40+
30
20
104
_ B
0 200 50 100 10

(¢) n_estimators.
Figure 7. Best internal parameters identified by the grid
search process for RF model in the set formed by the
statistical and spectral features.

Frequency of Selection

sessments in a practical and efficient manner. Combined with
this, the nature of the problem and the solution developed
motivate the development of a federated learning structure to
detect anomalies in the walls of modern buildings, as well
as transfer learning techniques to adjust predictive models to
different scenarios, making them more robust to regional and
environmental variations.

Finally, the authors also encourage evaluating more com-
plex ML models, such as artificial neural networks, due to
their greater pattern recognition capacity, including those that
can act directly on the raw vibration data. Furthermore, in this
scenario of using complex ML models, it is strongly suggested
the usage of more robust hyperparameters optimisation tech-
niques, such as differential evolution [37] or other bio-inspired
algorithm.

Decision Tree

Random Forest

MAV

RMS

Spectral Spread
VAR

STD

IQR

MAD

Frequency Skewness
Energy

Constituent Material
Frequency Kurtosis
Spectral Distance
Spectral Entropy
Spectral Kurtosis
Spectral Decrease
Spectral Skewness
Power Bandwith
Spectral Rolloff

Max Frequency
Median Frequency
Spectral Centroid
Max Power Spectrum

Figure 8. Accumulated importance of the features during the
150 runs of the model.

5. Concluding Remarks

We proposed here the use of spectral features and wall mate-
rial information as features for ML models in the context of
damage detection in modern building walls using only smart-
phone accelerometer data. In addition, due to the introduction
of these features, a grid search process was also carried out to
optimize the hyperparameters of the models. The proposed
contributions lead to an increase in average performance in
terms of accuracy by approximately 23%.

Although the best scenario found for detecting damage
was with the combination of statistical and spectral informa-
tion from the signals, the evaluation of the set of spectral
features showed that these characteristics extracted from the
signals were sufficient to increase the performance of the mod-
els evaluated. A similar behaviour was seen after introducing
wall material information as an input variable. The process of
optimizing the internal parameters of the models also showed
its contribution to the increase in average accuracy, especially
in the case of the RF classifier, where the highest increases
were observed. For the DT and KNN models, this process
showed less significant improvements.
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