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COVID-19 Detection Using Forced Cough Sounds and
Medical Information
Detecção de COVID-19 Usando Sons de Tosse Forçada e Informações Médicas

Lucas A.M. de Souza1, Heder S. Bernardino1*, Jairo F. de Souza1, and Alex B. Vieira1

Abstract: The World Health Organization (WHO) has declared the novel coronavirus (COVID-19) outbreak a
global pandemic in March 2020. Through a lot of cooperation and the effort of scientists, several vaccines have
been created. However, there is no guarantee that the virus will shortly disappear, even if a large part of the
population is vaccinated. Therefore, non-invasive methods, with low cost and real-time results, are important to
detect infected individuals and enable earlier adequate treatment, in addition to preventing the spread of the
virus. An alternative is using forced cough sounds and medical information to distinguish a healthy person from
those infected with COVID-19 via artificial intelligence. An additional challenge is the unbalancing of these data,
as there are more samples of healthy individuals than contaminated ones. We propose here a Deep Neural
Network model to classify people as healthy or sick concerning COVID-19. We used here a model composed
by an Convolutional Neural Network and two other Neural Networks with two full-connected layers, each one
trained with different data from the same individual. To evaluate the performance of the proposed method, we
combined two datasets from the literature: COUGHVID and Coswara. That dataset contains clinical information
regarding previous respiratory conditions, symptoms (fever or muscle pain), and a cough record. The results
show that our model is simpler (with fewer parameters) than those from the literature and generalizes better the
prediction of infected individuals. The proposal presents an average Area Under the ROC Curve (AUC) equal to
0.885 with a confidence interval (0.881 - 0.888), while the literature reports 0.771 with (0.752 - 0.783).
Keywords: COVID-19 detection — Cough sounds — Deep Neural Networks

Resumo: A Organização Mundial da Saúde (OMS) declarou o surto do novo coronavı́rus (COVID-19) uma pandemia global
em março de 2020. Por meio de muita cooperação e esforço dos cientistas, várias vacinas foram criadas. No entanto, não
há garantia de que o vı́rus desapareça em breve, mesmo que grande parte da população seja vacinada. Portanto, métodos
não invasivos, com baixo custo e resultados em tempo real, são importantes para detectar indivı́duos infectados e possibilitar
tratamento adequado precocemente, além de evitar a disseminação do vı́rus. Uma alternativa é usar sons de tosse forçados
e informações médicas para distinguir uma pessoa saudável daquelas infectadas com COVID-19 por meio de inteligência
artificial. Um desafio adicional é o desbalanceamento desses dados, pois há mais amostras de indivı́duos saudáveis do
que contaminados. Propomos aqui um modelo de Rede Neural Profunda para classificar pessoas como saudáveis ou
doentes em relação ao COVID-19. Neste trabalho, usamos um modelo composto por uma Rede Neural Convolucional e
duas outras Redes Neurais com duas camadas totalmente conectadas, cada uma treinada com dados diferentes do mesmo
indivı́duo. Para avaliar o desempenho do método proposto, combinamos dois conjuntos de dados da literatura: COUGHVID
e Coswara. Esse conjunto de dados contém informações clı́nicas sobre condições respiratórias anteriores, sintomas (febre
ou dor muscular) e um registro de tosse. Os resultados mostram que nosso modelo é mais simples (com menos parâmetros)
do que aqueles da literatura e generaliza melhor a predição de indivı́duos infectados. A proposta apresenta uma área média
sob a curva ROC (AUC) igual a 0,885 com intervalo de confiança (0,881 - 0,888), enquanto a literatura relata 0,771 com
(0,752 - 0,783).
Palavras-Chave: Detecção de COVID-19 — Sons de Tosse — Redes Neurais Profundas
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1. Introduction
On March 11, 2020, the World Health Organization (WHO)
declared the COVID-19 pandemic caused by the new coro-

navirus (Sars-Cov-2) due to its fast geographic spread. On
August 15, 2021, more than 243 million confirmed cases and
more than 4.9 million deaths from the disease have been regis-
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tered worldwide1. After much effort by scientists around the
world, in December 2020, the population around the world
started to get vaccinated against COVID-19. Nowadays, bil-
lions of doses have been administered in at least 201 coun-
tries2. Although, people can be infected even when they
are vaccinated. Therefore, the best way to prevent the virus
from spreading and ensure that people infected with COVID-
19 have access to adequate treatment as soon as possible is
through extensive testing and isolation of those infected ones.
Currently, the Reverse Transcription Polymerase Chain Re-
action (RT-PCR) test is considered a gold standard in the
diagnosis of COVID-19. However, the report of this test can
take days to be obtained. In addition, RT-PCR has not an
accessible price and there is a limitation in the number of tests
that can be performed daily, depending on the infrastructure
and the amount of raw material available.

In the literature, there are several studies on the detection
of diseases using recordings of human sounds, such as speech,
breathing, and coughing, through Artificial Intelligence (IA)
techniques. In these studies, several acoustic analysis tech-
niques are used, capable of extracting information from those
audios, which will be used in the training of classification
models to discriminate individuals who have the disease from
those who do not. Next, studies that used Machine Learning
(ML) algorithms in the detection of diseases such as Parkin-
son’s, Amyotrophic Lateral Sclerosis, and tuberculosis will
be presented.

A scheme for breath analysis to detect irregular patterns
in respiratory cycles due to diseases is proposed in [1]. In
that study, the data is obtained using smartphones, a Discrete
Wavelet Transform (DWT) is adopted for reducing the noise,
segments of the sounds are selected, the main features are
extracted by the Bag-of-Features (BoF) technique [2], and the
Support Vector Machine (SVM) is used as the classifier. The
proposal was used to identify asthmatic inspiratory cycles and
reached an accuracy of 75.21%.

Machine Learning (ML) models were trained in [3] to
detect Parkinson’s disease based on the analysis of speech
recordings from patients. As it is a binary classification prob-
lem, with the class of each sample previously known, the
models used in this task were: Random Forest (RF), Neural
Networks (NN), and SVM. The data used consists of three
databases with speech recordings. The first one is composed
of 22 people who have Parkinson’s disease, totaling 88.8
minutes of recorded speeches. Whereas, the second one is
formed by 30 healthy people, totaling 28.2 minutes of audio.
In addition, a third database available in the literature was
used to validate the performance of the models used. The
results reported show that the Random Forest obtained the
best performance according to the metrics used, and obtained
an accuracy of 99.94%.

In addition, Vashkevich et al. [4] trained a K-Nearest

1⟨https://covid19.who.int/⟩
2⟨https://graphics.reuters.com/world-coronavirus-tracker-and-maps/

vaccination-rollout-and-access/⟩

Neighbor (kNN) classifier in the detection of bulbar dysfunc-
tion in patients with Amyotrophic Lateral Sclerosis (ALS),
which is a progressive neurodegenerative disease that affects
the nervous system that causes the death of neurons responsi-
ble for the control of voluntary muscles. The database used
consists of recordings of 54 people, 39 healthy ones, and 15
patients with ALS. All participants produced the sustained
vowel /a/ in a comfortable tone and constant sound for as
long as possible. This phonation was performed in one breath.
Acoustic characteristics extracted from these recordings were
used in training the model. The authors report that the best
result obtained by the model has an accuracy of 90.7%, with
a sensitivity of 86.7% and specificity of 92.2%. Sensitivity
corresponds to the percentage of positive results obtained by
the model among people with a certain disease, while speci-
ficity is the proportion of negative results of the method in
individuals who do not have the disease.

The potential of using ML techniques for reporting symp-
toms of respiratory diseases and sleep disorders is investigated
by Vhaduri [5]. Mel-frequency cepstral coefficient (MFCC)
features and different classification techniques were applied
to three datasets with combinations of nocturnal noises (such
as sounds from air conditioners, dog barks, and sirens). In
that work, an RF model found the best results and was able
to identify respiratory diseases with an average accuracy of
96%, and AUC-ROC of 0.98.

Also, in [6] the authors have used forced coughing sounds
and medical information to detect patients infected with tu-
berculosis, which is still one of the deadliest diseases in the
world. The database used consisted of recordings of coughing
from 38 individuals, 17 of whom were infected with the dis-
ease, and 21 were healthy. In addition, 5 clinical information
were added: (i) arm circumference; (ii) temperature; (iii) body
mass index; (iv) presence of pale conjunctiva and (v) heart
rate. A Logistic Regression model was trained using these
data, and obtained in the best case an Area Under the ROC
Curve (AUC) of 0.95 with an accuracy of 78%.

These studies demonstrate the ability of AI algorithms
to detect individuals infected with different diseases, based
on acoustic analysis of sounds produced by human beings.
There are promising studies on the use of AI methods to detect
patients infected with COVID-19, using forced cough record-
ings. These works are presented in Section 2. Considering
that these models can classify infected patients, they can be
adopted on a large scale, as it would be possible to use cell
phones and computers to record sounds that would be fed
to the model. Thus, the objective of this work is to propose
a model capable of differentiating individuals infected with
COVID-19, which can be used to detect the disease, at a low
cost, in a non-invasive way, and with the ability to generate
results in real-time. It is noteworthy that these methods should
not be used as a determining factor for the diagnosis of a pa-
tient, but as a form of pre-screening for performing medical
tests, such as the RT-PCR test.

In this work, we proposed modifications in the topology
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of the Deep Learning (DL) model proposed in [7] for the
detection of individuals infected with COVID-19 through the
analysis of acoustic characteristics of forced cough sounds
and clinical information reported by them. In addition, we
proposed a training protocol that includes an early stopping
strategy. The results obtained were compared with those
reported in the literature and prove that the proposed modi-
fications increased the model’s classification capacity. Thus,
the contributions of this work are a simpler DL model than
those available in the literature, and an approach capable of
obtaining better results in the classification of people infected
with COVID-19.

In the following sections we present the related work
(Section 2), the datasets and methods used (Section 3), the
computational experiments performed and the results achieved
(Section 5). Finally, in Section 6 we present the conclusions
obtained in this work, its limitations, and future work.

2. Related Work
Since COVID-19 was declared a pandemic in 2020, many
groups [8, 9, 10, 11] started to collect data, mostly by crowd-
sourcing through mobile apps and websites on the internet, to
set up systems capable of detecting individuals infected with
COVID-19. The systems and algorithms these groups created
can be used as pre-screening for conducting medical exami-
nations, such as the RT-PCR test, by identifying individuals
most likely to be infected. Another possibility of applying
the algorithms is for contact tracing and preventive quarantine
for individuals who had recent contact with a patient with a
high probability of infection until the medical examination
is performed. The data collected by these groups comprise
human sounds (coughing, breathing, and/or speech), medical
information, symptoms, and the patient’s diagnosis.

The COUGHVID database [9] contains more than 20,000
cough recordings, collected between April 1, 2020, and Septem-
ber 10, 2020, through a website deployed on a private server.
According to the authors, this database has a wide range
of ages, genders, geographic areas, pre-existing respiratory
conditions, and health status (infected or healthy), with the
potential to allow computational models to obtain a good gen-
eralization. Despite the abundance of recordings available,
only 1,010 of these were recorded by patients claiming to be
infected with a COVID-19. A disadvantage observed in the
crowd-sourced databases is the fact that the COVID-19 status
of an individual (infected or healthy) can be a self-diagnosis,
without necessarily having undergone any medical examina-
tion, thus, messing with the data and potentially confusing the
model. To try to minimize this problem and legitimize that
samples marked as COVID-19 positive came from infected
individuals, Orlandinc et al. [9] analyzed the geographic
location from which the samples came. The authors combined
World Health Organization new case statistics3 with a 2019
group database of United Nations 4, to determine the infection

3⟨https://data.humdata.org/dataset/coronavirus-covid-19-cases-and-deaths⟩
4⟨https://population.un.org/wpp/Download/Standard/CSV/⟩

rate in the country of origin of the sample 14 days before it
is standardized. According to the authors, this analysis re-
vealed that 94.4% of recordings of infected patients originated
from countries with more than 20 confirmed cases per million
population.

To avoid samples with no coughs, the authors trained an
eXtreme Gradient Boosting (XGB) classifier, based on 121
cough sounds and 94 non-cough sounds, to determine the
probability that a given recording contains a coughing sound.
This model obtained an AUC of 0.97 and was used to classify
the available audios in the database. The output probabilities
of the classifier were included in the metadata of each record
under the label cough detected.

The objective of Coswara [10] project, according to the au-
thors, is to create a database with sound samples from healthy
and contaminated individuals. Unlike the COUGHVID base,
the Coswara project collected 9 different categories of sounds,
namely: breathing (shallow and deep), coughing (shallow and
heavy), sustained vowel phonation of three different types,
and digit counting from 1 to 20 (normal and fast). In addi-
tion, metadata was collected with information on gender, age,
location, health status (healthy, exposed, cured, or infected),
and the presence of pre-existing medical conditions. As in
the COUGHVID database, data collection took place online,
through a website that can be accessed by computer or cell
phone, where the individual must provide the aforementioned
metadata, as well as the 9 categories of recordings. However,
in this project, the process of cleaning and checking the qual-
ity of the samples is done manually and is still taking place.
In the first version, published on August 7, 2020, in a GitHub
repository5 the project had data from 941 participants. The
project contains 1575 samples, where there are 109 records of
patients infected with COVID-19 labeled as positive asymp,
positive mild, or positive moderate, and 1476 COVID-19
negative records labeled healthy, no resp illness exposed,
recovered full, or resp illness not identifier.

In the literature, some studies show promising results in
the detection of individuals infected with COVID-19 based
on human sounds. For example, the contributions of a group
of researchers from MIT [12], researchers from the Virufy
group [7] and Brown et al. [8] stand out. All these studies used
forced cough sounds in the model training, however, [7] added
medical information of symptoms reported by the individuals
in addition to coughing, while [8] also used breathing sounds.
Regarding the extraction of characteristics of sound signals,
the study of [12] used MFCC to train the model. Meanwhile,
[7] besides the MFCC also used the Log Mel Spectrogram.
On the other hand, [8] extracted several characteristics of the
signal, some examples are: Duration, Onset, Time, Period,
RMS Energy, Spectral Centroid, etc. In total, 477 characteris-
tics of coughing and breathing sounds were extracted. About
the databases used in the training of the model, all of them
used different databases. [8] and [12] used their databases,
collected online, while the first one is available through the

5⟨https://coswara.iisc.ac.in/⟩
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signing of an agreement, whereas to the best of our knowl-
edge the second one was not made available. [7] combined
data from the COUGHVID and Coswara databases, which are
available for the entire scientific community.

DL models were used in [12, 7, 11], while other ML mod-
els were used in [8]. In [12], a model formed by 3 ResNet50
networks in parallel, each pre-trained on different datasets to
identify different cough characteristics, was proposed. The
output of these networks was concatenated and the method
provided as output the binary classification of an individual’s
condition. This model achieved an AUC of 0.97 when vali-
dated with samples from individuals diagnosed with an official
test, and sensitivity of 100% with a specificity of 83.2% for
asymptomatic ones.

On the other hand, Chaudhari [7] developed a DL model,
with 3 networks in parallel, being a Convolutional Neural
Network (CNN) and two Neural Network (NN). The out-
put of these networks is concatenated and used to feed a
Fully-Connected Layer that will be responsible for classifying
people infected by COVID-19. These networks receive as
input the Log Mel Spectrogram and the MFCC extracted from
cough recordings, as well as the medical information reported
by the individuals. The model had a mean AUC of 0.771, with
a 95% confidence interval of (0.752 - 0.783).

Logistic Regression, Gradient Boosting Trees and Sup-
port Vector Machines classifiers were used in [8]. These
models were trained in three distinct tasks: (i) correctly clas-
sify healthy and infected individuals with COVID-19, (ii)
distinguish an individual who tested positive for COVID-19
and has cough as a symptom from a healthy individual with
cough, and (iii) differentiate the cough of people with COVID-
19 from those with asthma. The researchers report that the
model was able to achieve an AUC greater than 0.8 for each
task. One has an extension of [8] in [11], where a CNN was
adopted. That proposed CNN contains a key module called
VGGish, which is a model pre-trained with an external mas-
sive general-audio dataset. An AUC-ROC of 0.71 with a 95%
confidence interval of (0.65 – 0.77) was obtained in [11] in
its more realistic situation. The dataset used in [11] is not
publicly available.

In this work, the study developed by [7] was used as a
basis, as the model was made available on Github6 by the
authors, as the databases used for training78. Modifications
to the topology of the model and its training protocol were
proposed, which resulted in a simpler model (i.e. with fewer
parameters to be adjusted), and capable of obtaining better
results, as shown by the computational experiments carried
out.

3. Materials and Methods
In this study, cough sounds and medical information from
individuals collected by the COUGHVID [9] and Coswara

6⟨https://github.com/virufy/virufy-covid⟩
7⟨https://zenodo.org/record/4048312⟩
8⟨https://github.com/iiscleap/Coswara-Data⟩

Project [10] groups were used. The first one obtained cough
samples from individuals from different countries, in addition
to age, gender, geographic location, and COVID-19 status.
The collection was made through the website9 and made avail-
able in September 2020 on the zenodo10. Whereas, the second
one collected the data on the website11 and made available on
GitHub12. Coswara project requires participants to provide a
recording of breath sounds, cough sounds, sustained vowel
phonation, a counting exercise, and health conditions, as well
as medical information.

3.1 Combined Dataset
Similarly to [7], in this work the datasets of the COUGHVID
group and the Coswara project were combined. In this case,
all 1,575 records from the Coswara database were selected,
109 from contaminated individuals and 1466 from healthy
ones. Only short cough recordings were used. Regarding
COUGHVID data, only samples with cough detected ≥ 0.9
were selected. This process resulted in 441 samples from
infected individuals and 5,651 healthy ones, which represents
a high imbalance where only approximately 7.80% of the
samples belong to the positive class. Thus, an undersam-
pling was applied to the majority class, where 1,000 instances
of the negative instances were randomly selected. In addi-
tion, all positive instances were considered. This process was
performed as in the literature. As a result, 3,016 samples
were available for training the model, with 550 data from
the positive class (18.24% of the database) and 2,466 from
the negative class (81.76% of the database). Although the
final dataset is imbalanced, we respected the same process
of creating the datasets performed by [7] to fairly compare
the proposed modifications on the topology of the model and
training protocol.

As there is no standard in the medical information col-
lected, as each project collects different sets of data, it was nec-
essary to define the information collected by both databases so
that they could be aggregated. The common information that
was used to train our model is the cough record available in
both cases and two clinical information represented by logical
values: (i) it indicates whether the subject has any pre-existing
respiratory condition and (ii) it reveals whether the patient has
the symptoms, fever or muscle pain.

The data preparation process started with the aggregation
of metadata (cough audio path, symptoms, and individual con-
tamination status) of the selected samples in a single database.
Then, for each of the available recordings, the Log Mel Spec-
trogram was calculated, and the first λ Mel Frequency Cep-
stral Coefficients were extracted using the librosa [13] pack-
age. It is a package for audio and music analysis available
for the Python language. The characteristics extracted from
the cough recordings (Log Mel Spectrogram and MFCC), as
well as the medical information, were used as input to the

9⟨https://coughvid.epfl.ch/⟩
10⟨https://zenodo.org/record/4048312⟩
11⟨https://coswara.iisc.ac.in/⟩
12⟨https://github.com/iiscleap/Coswara-Data⟩
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classification model for the prediction of individuals infected
with COVID-19.

4. The Proposed Model
We present here the proposed model, which uses three net-
works, an CNN and two other NNs with two full-connected
layers, each one trained with different data from the same
individual. The outputs of these three networks are inputs
of a Fully-Connected (FC) layer, whose result is the proba-
bility of an individual being infected with COVID-19. The
flowchart in Figure 1 presents our proposal and the most rele-
vant information. One of the two NNs is trained with MFCCs
extracted from the cough audio, while the other one receives
the individuals’ medical information as input. Finally, CNN
is trained with the Log Mel Spectrogram images generated
from the audio.

Figure 2 details the representation of the model proposed
here. The two NNs are composed of two hidden layers with a
ReLU activation function, followed by a dropout layer. The
first NN receives the medical information of patients as input
and contains the following FC layers: FC1 with 64 neurons
and a dropout rate of 0.4, and FC2 with 32 nodes and a dropout
rate of 0.2.

The second network is a CNN with the Log Mel Spectro-
gram images with dimensions (64, 64, 1) as inputs. This is
formed by three 2D Convolution Layers (CL) with kernels of
size 3×3, where CL1 is formed by 32 kernels with a stride
of size 2, and CL2 and CL3 consist of 64 kernels with a stride
of 1. Each of these convolution layers is followed by a 2D
average pooling layer with a kernel of size 2×2 and a stride
of 2, followed by a layer of batch normalization and ReLU
activation. The output of CL3 is flattened and used to feed the
FC5 dense layer composed of 128 nodes with ReLU activation
and a dropout rate of 0.5.

The last NN receives as input the first λ MFCCs extracted
from the coughing sound and is formed by two dense layers
similar to the first network, but the FC3 layer is formed by 64
neurons and a dropout rate of 0.4 and the FC4 layer by 32 and
0.2 dropout rate. Finally, the outputs of these networks are
concatenated, and fed through the two dense layers FC6 with
64 nodes and FC7 with 32, both with ReLU activation, and
combined into two nodes with softmax activation that predicts
the probability of a subject being infected with COVID-19.

The DL model proposed here is based on that described
in [7] and whose code is available at GitHub13. From this
initial model, some changes were proposed in the structure
of the network and in its training procedure to reduce over-
fitting, increase its prediction capability, and its performance
in classifying infected patients. These changes were made
to the number of neurons present in some of the FC layers,
reducing the complexity of the network and preventing over-
fitting. With these modifications, the number of parameters
in the model reduced from 279,826 (in the baseline model) to

13⟨https://github.com/virufy/virufy-covid⟩

154,370 in the proposal. This represents a reduction of about
45% in the number of parameters of the model.

As a form of regularization to avoid overfitting and degra-
dation of the generalization of the model during the training,
we proposed here the use of an Early Stopping (ES) policy.
ES [14] is a technique used to monitor the model’s perfor-
mance through a validation dataset to prevent the deterioration
of its generalization performance during the training. In this
study, ES was implemented by monitoring the AUC of the val-
idation data and the training stops when this value decreases
by some epochs (a user-defined parameter).

5. Computational Experiments
Here we present the computational experiments performed,
the metrics used to evaluate the model, and the results ob-
tained. Furthermore, the results obtained by the model used
in the literature base are presented [7], called here simply the
Base Model (BM). For each proposed approach, the compu-
tational experiments were repeated 30 times, with different
random divisions of data into training, validation, and testing
sets. A division 70, 15, and 15 was used, as in the literature.
The same proportion of the classes observed in the original
dataset was kept in these sets. The number of samples for
each class in these sets is shown in Table 1.

Table 1. Data distribution in training, validation and testing
sets.

Training Validation Test

COVID-19 positive 385 83 82
COVID-19 negative 1,726 370 370

The experiments performed used the dataset generated
from the combination of COUGHVID and Coswara datasets.
In this case, the first λ = 39 MFCC were extracted. Experi-
ments were carried out to understand the impact of the inputs
provided to the model (Log Mel Spectrogram, MFCC, and
medical information). Initially, experiments were performed
with the complete model (called MEL+MFCC+MI). Then,
new experiments were executed with one of the inputs was dis-
regarded. For example, the MEL+MI model is composed of
networks that receive the Log Mel Spectrogram and the med-
ical information as input. The MFCC+MI indicates that the
DL model is fed with the symptoms and the MFCC. Whereas
the MEL+MFCC model is composed of the networks with the
MFCC and the Log Mel Spectrogram. Table 2 summarizes
the composition information of the models.

Categorical cross-entropy as loss function and an Adam
optimizer with a learning rate of 0.0001 was used in the train-
ing of the model. Data were split into batches of size 32
and the model was trained for 50 epochs. An ES policy was
adopted, where AUC is monitored using a validation dataset
and with a limit of 20 epochs.

The model and the data pre-processing were implemented
using the Python programming language and the Keras pack-
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Figure 1. Flowchart with the highlights of each step of the process.
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Figure 2. Representation of the Artificial Neural Network proposed here to identify the individuals infected by COVID-19.
This model is based on that described in [7].

age, and the source code is public available14. The exper-
iments were performed in the Google Colab development
environment15, and the model was trained with an Nvidia
Tesla P100 graphics card.

In the study performed by [7], the only metric presented
for the model is the mean AUC and the 95% confidence inter-
val for 5 runs of the model. AUC is a metric based on the Re-
ceiver Operating Characteristic (ROC) Curve [15] that shows
how good a model is to distinguish two classes and plots the
True Positive rate against the False Positive rate. The AUC is
a good way to summarize the ROC Curve in just one value
that can assume a value in the interval [0, 1]. These metrics
were calculated considering different random splits of the data
in the training, validation, and test. In this study, in addition to
the AUC, we present the model’s Sensibility, Sensitivity, Pos-

14⟨https://bit.ly/3LPvEwq⟩
15⟨https://colab.research.google.com/⟩

itive Predictive Value (PPV), and Negative Predictive Value
(NPV). Those metrics are calculated considering the number
of True Positives (TP), True Negative (TN), False Positive (FP),
and False Negative (FN). Sensibility (or sensitivity) is the
probability of a positive prediction truly being positive, and
can be calculated as Sensitivity = TP/(TP +FN). The Speci-
ficity is the probability of a negative test to truly be negative,
and can be expressed as Speci f icity= TN/(TN +FP). Another
metric, the PPV is the proportion of positive results that are
true positive and can be computed as: PPV = TP/(TP +FP).
Still, the NPV is the proportion of negative results that truly
are negative: NPV = TN/(TN +FN). AUC is an important
metric as it indicates the model’s ability to differentiate be-
tween classes. Therefore, the higher the AUC, the better the
method’s ability to distinguish between infected and healthy
individuals. In addition, PPV and NPV are important metrics
to measure the model’s performance in predicting correctly
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Table 2. Summary of the models.

Model Name Description

MEL + MI + MFCC Complete model.
MEL + MI Model composed by the networks fed with the Log Mel Spectrogram and the medical information.
MI + MFCC Model composed by the networks fed with the MFCCs and the medical information.
MEL + MFCC Model composed by the networks fed with the Log Mel Spectrogram and the MFCCs.

samples in the positive and negative classes, respectively.
The results found by the complete version of the proposed

model, as well as its variants, are presented in Table 3. This
table contains values calculated using the test sets.

Considering the mean AUC and the confidence interval
of 95%, one concludes that the proposals were able to gener-
ate models with greater capacity for classifying individuals
infected by COVID-19. The results show that all proposed
models obtained an average AUC larger than that of BM. This
is also observed in the confidence interval: the worst case is
still higher than the result from the literature (there are no over-
lapping values). Comparing the average AUC of the MEL+MI
model with the result from the literature, it is possible to see
that this model obtained a result about 16% better.

The AUC results indicate that the MEL+MI model, fed
with the Log Mel Spectrogram and individuals’ medical in-
formation, has the greatest ability to distinguish between an
infected individual and a healthy one. Therefore, from the
point of view of classification, this is the model with the best
performance among those proposed. However, from a med-
ical point of view, the MFCC+MI model is the one with the
highest rates of correct classification of individuals in the
positive class (infected) and in the negative class (healthy),
as indicated by the VPP and VPN metrics. Therefore, this
is the model with the highest success rates in the existing
classes, which represents a lower rate of false negatives and
false positives. The false negative rate is very important, as a
sample from an infected individual classified as negative by
the model could represent a person potentially spreading the
virus.

Furthermore, it is possible to observe that MEL+MFCC
reached the worst result in the classification of people infected
with COVID-19. Thus, a patient’s symptoms have a great
contribution to the predictive capacity of the model and, when
disregarded, the model’s performance decreases. Figure 3
shows the ROC curve and the average AUC obtained by the
methods.

6. Conclusion
Disease detection through forced cough sounds is a recent
field of research, and it gained much prominence with the
emergence of the new coronavirus pandemic in 2020. Here,
we propose Deep Learning topologies and a training proto-
col with an Early Stopping (ES) policy to classify people as
healthy or sick concerning COVID-19.

The proposals were evaluated using data from the

COUGHVID and Coswara databases. The databases are
formed of forced cough recordings and clinical information
which were combined into a single dataset. To deal with the
large unbalance of the data, with 81.76% belonging to the
negative class, a data augmentation technique applied to the
training set was proposed. Furthermore, to understand the
contribution of each input provided to the proposed algorithm,
the model performance was evaluated when one of the inputs
was disregarded.

To evaluate the model, the average values and the confi-
dence interval of 95% of AUC, Sensitivity, Specificity, Pos-
itive Predictive Value (VPP), and Negative Predictive Value
(VPN) were presented. The results prove that the proposed
model is superior to that from the literature. The proposals
obtained an average AUC larger than that reached by the base-
line in all experiments. Furthermore, it was possible to notice
that the MEL+MI model considering only the Log Mel Spec-
trogram and the medical information of an individual obtained
the best results. However, the model that obtained the high-
est success rates for each of the classes was the MFCC+MI
model, fed with MFCC and the symptoms of a patient.

Despite the good results obtained in this work, further stud-
ies are needed for adopting this approach in real-world situa-
tions. There are still limitations in understanding whether the
model can identify specific cough characteristics of COVID-
19, or whether it only detects an anomaly. In the latter case,
other diseases that have cough as a symptom would also be
classified as COVID-19. In addition, it is necessary to under-
stand how age, gender, place of birth, and other characteristics
can influence the performance of the model.

As future work, new studies can be carried out on the
increase in data applied to forced cough sounds, given that
many of the available databases have unbalanced data. An-
other possibility is increasing the spectrogram data, as in
Automatic Speech Recognition applications. To understand
the capacity of the model to identify characteristics present
in the cough of an individual with COVID-19, a study can
be carried out using a database built with audios from indi-
viduals infected with COVID-19, as well as individuals who
have other diseases whose cough is presented as a symptom.
Thus, it will be possible to observe whether the model can
extract specific characteristics for COVID-19 identification.
Furthermore, evaluating the model in other databases is an
interesting research avenue.
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Table 3. The mean (X̄) and the Confidence Interval (CI) of 95% obtained by the proposed models for the metrics used.
MEL+MFCC+MI MEL+MI MFCC+MI MEL+MFCC BM

AUC X̄XX 0.88 0.89 0.87 0.85 0.77

CI (0.88, 0.89) (0.88, 0.89) (0.87, 0.88) (0.84, 0.85) (0.74, 0.80)

Sensibility X̄XX 0.82 0.82 0.82 0.80 —

CI (0.81, 0.82) (0.82, 0.83) (0.82, 0.83) (0.80. 0.81) —

Specificity X̄XX 0.95 0.96 0.96 0.97 —

CI (0.94, 0.96) (0.96, 0.97) (0.95, 0.97) (0.96, 0.98) —

PPV X̄XX 0.82 0.82 0.82 0.80 —

CI (0.81, 0.82) (0.82, 0.83) (0.82, 0.83) (0.80. 0.81) —

NPV X̄XX 0.84 0.84 0.85 0.82 —

CI (0.84, 0.85) (0.84, 0.85) (0.84, 0.85) (0.82, 0.82) —
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Figure 3. ROC curve and mean AUC obtained by the methods.

Acknowledgements
We thank the financial support provided by the funding agen-
cies.

Author contributions
The authors contributed equally to this work.

References
[1] AZAM, M. A. et al. Smartphone based human
breath analysis from respiratory sounds. In: 40th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). USA: IEEE, 2018. p.
445–448.

[2] SIVIC, J.; ZISSERMAN, A. Efficient visual search of
videos cast as text retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence, USA, v. 31, n. 4, p.
591–606, April 2009.

[3] BRAGA, D. et al. Automatic detection of parkinson’s
disease based on acoustic analysis of speech. Engineering
Applications of Artificial Intelligence, United Kingdom, v. 77,
p. 148–158, January 2019.

[4] VASHKEVICH, M.; PETROVSKY, A.; RUSHKEVICH,
Y. Bulbar als detection based on analysis of voice perturbation
and vibrato. In: 2019 Signal Processing: Algorithms,
Architectures, Arrangements, and Applications (SPA). USA:
IEEE, 2019. p. 267–272.

[5] VHADURI, S. Nocturnal cough and snore detection
using smartphones in presence of multiple background-noises.
In: Proc. of the SIGCAS Conference on Computing and
Sustainable Societies. New York, USA: ACM, 2020. p.
174–186.

[6] BOTHA, G. et al. Detection of tuberculosis by automatic
cough sound analysis. Physiological measurement, United
Kingdom, v. 39, n. 4, p. 045005, April 2018.

[7] CHAUDHARI, G. et al. Virufy: Global applicability
of crowdsourced and clinical datasets for ai detection of
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