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Multi-Objective, Multi-Armed Bandits: Algorithms for
Repeated Games and Application to Route Choice
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Abstract: Multi-objective decision-making in multi-agent scenarios poses multiple challenges. Dealing with
multiple objectives and non-stationarity caused by simultaneous learning are only two of them, which have
been addressed separately. In this work, reinforcement learning algorithms that tackle both issues together
are proposed and applied to a route choice problem, where drivers must select an action in a single-state
formulation, while aiming to minimize both their travel time and toll. Hence, we deal with repeated games, now
with a multi-objective approach. Advantages, limitations and differences of these algorithms are discussed.
Our results show that the proposed algorithms for action selection using reinforcement learning deal with
non-stationarity and multiple objectives, while providing alternative solutions to those of centralized methods.
Keywords: Multi-objective decision-making — Multi-objective route choice — Reinforcement learning —
Repeated games — Multiagent systems — Multi-armed Bandit algorithms

Resumo: Tomada de decisão considerando múltiplos objetivos em cenários multiagente coloca múltiplos
desafios. Entre eles, pode-se mencionar o fato de ter que lidar com mais de um objetivo, bem como a não
estacionariedade que é causada por aprendizado simultâneo; ambos os desafios têm sido endereçados
separadamente. Neste trabalho são propostos algoritmos de aprendizado por reforço que lidam com ambos
os desafios em conjunto. Tais algoritmos são aplicados em um problema de escolha de rotas, onde os
motoristas precisam selecionar uma ação em uma formulação de estado único, objetivando minimizar tanto
o tempo de viagem quanto o pedágio. Desta forma, nós lidamos com jogos repetidos, agora sob uma
abordagem multiobjetivo. Vantagens, limitações e diferenças dos algoritmos são discutidas. Nossos resultados
mostram que os algoritmos de aprendizado por reforço propostos para seleção de ação lidam tanto com a não
estacionariedade quanto com os múltiplos objetivos, provendo soluções alternativas aos métodos centralizados.
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1. Introduction

Decision-making using reinforcement learning (RL) is turn-
ing increasingly popular in multi-agent systems. Particularly,
many tasks are more naturally described by means of multi-
ple, possibly conflicting objectives. This poses a challenge
when more than few agents interact and when such interplay
is modeled by a repeated game. Recall that repeated games
are useful to formalize RL tasks that relate to single-state
scenarios. While a single-state formulation somehow means a
simplified modeling, it is useful in real-world problems such
as route choice, in which, usually, a single choice is made in
the entire decision-making process. One popular approach to

deal with single-state settings is through multi-armed bandit al-
gorithms (henceforth MABs), which can efficiently deal with
the exploration/exploitation dilemma [1]. For this class of RL
problems, some algorithms have been proposed, such as the
UCB (Upper Confidence Bound) family [1, 2, 3], learning au-
tomata [4], and even simplifications of the popular Q-learning
(QL), as for instance in [5].

In route choice and traffic assignment problems, multi-
ple drivers must select a route to travel from an origin to a
destination. Usually, a single objective is considered, namely
minimizing their travel times. However, frequently, there are
other objectives to be considered, as for instance, toll. Bi-
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objective approaches were proposed in [6, 7, 8]. However,
these are centralized and do not involve learning. In contrast,
we assume that each agent or driver performs its optimiza-
tion process locally, by means of (multi-objective) RL, in a
decentralized way.

Other characteristics of the route choice problem is that it
involves many (potentially thousands) of agents, and that there
is competition for resources. These pose challenges to RL
methods, even if only one objective is considered. Specifically,
the fact that there are many agents learning simultaneously
causes the environment to be non-stationary.

In short, a realistic, decentralized RL-based approach to
route choice involves the following issues: (i) agents learn-
ing simultaneously result in non-stationarity; (ii) there are
potentially two or more objectives to be optimized; (iii) the
underlying learning task is modeled as a repeated game, where
there is only one state.

In the literature, existing works deal with these problems
separately, focusing on a single-agent scenario with multiple
objectives or tackling only the non-stationarity issue. Pro-
posals like Pareto UCB1 [9] and Pareto Q-learning [10] deal
with a multi-objective scenario but focus on a single agent
(though in different ways). Pareto UCB1 is a multi-armed
bandits algorithm, while Pareto Q-learning is an extension
of Q-learning and, as such, considers a set of states rather
than a single state. Further, Pareto Q-learning has issues to
deal with non-stationarity. Non-stationarity was tackled by
other members of the UCB family, such as the discounted
UCB [2] and sliding-window UCB [3]. However, these do
not deal with more than one objective. Meanwhile, works in
multi-objective decision-making via reinforcement learning
are recent [11, 12]. Most existing proposals for extending
those popular algorithms for the multi-objective case concen-
trate on single-agent scenarios.

Therefore, most approaches concentrate on either the
multi-objective case in a single-agent scenario or non-station-
arity in a single-objective setting. There is a need of further
investigation when we deal with multi-objective RL (MORL)
and multiple agents that compete for scarce resources and
make the environment non-stationary for each other. The
present paper proposes and analyze extensions of existing al-
gorithms for multi-objective decision-making in a multi-agent
system, i.e., where there is inherent non-stationarity due to
multiple learners acting simultaneously.

Specifically, the contributions of our work are manifold.
First, we introduce extensions to Pareto UCB1 [9] (which,
originally, only works in scenarios with a single agent), to
cope with the severe non-stationarity of a multi-agent set-
ting. Non-stationarity is addressed by other UCB-based al-
gorithms, such as the aforementioned discounted UCB and
sliding-window UCB. They do not deal with multiple objec-
tives though. Besides, it is unclear whether these two variants
of the UCB can indeed handle the kind of non-stationarity
due to other agents learning simultaneously, where the pace
of change is continuous or at least very fast. It seems that the

extensions of UCB are able to successfully deal with changes
that happen in large intervals of time, which is not the same
type of non-stationarity that arises due to multiple learners.

Another contribution is a modification of the Pareto Q-
learning algorithm. While this algorithm originally deals
with more than one objective, it has issues when dealing with
rapidly changing environment. We introduce extensions in
order to enable its use in this kind of environment, in which
the learning tasks are modeled as repeated games since the
agents perform action selection in a single state.

The remainder of this paper is organized as follows. The
next section discusses the background concepts and gives an
overview on the related work. Section 3 details the proposed
algorithms; for their evaluation, a proof of concept scenario
is discussed in Section 4. Concluding remarks and future
directions are given in Section 5.

2. Background and related work
In this section, we briefly introduce some relevant concepts on
traffic assignment and route choice (including multi-objective
variants), as well as RL. The former is necessary as it relates
to the case study we discuss in Section 4.

2.1 Conventional and multi-objective traffic assign-
ment

A traffic network can be modeled as a graph G= (V,L), where
V is the set of vertices that represent the intersections, and
L is the set of links that describes the segments connecting
a pair of vertices. There are origin-destination (OD) pairs
and each one of them has a certain demand for trips, which
then translates into flows on the various links. The traffic
assignment problem (TAP) aims at computing the flow per
link l, so that the individual (agent) travel time is minimized. It
is assumed that agents (drivers) are rational, thus each selects
the route with the least perceived individual cost, in order to
travel from its origin to its destination.

One solution for this optimization problem is via the
method of successive averages (MSA), which is an iterative
algorithm that calculates the current flow on a link as a linear
combination of the flow on the previous iteration and an auxil-
iary flow produced by an all-or-nothing (AON) assignment in
the present iteration. For details on these methods, a textbook
such as [13] can be consulted.

As mentioned, this assumes that each traveler aims at min-
imizing only its travel time. However, as aforementioned,
route choices may depend on multiple cost functions, not just
one. Traditionally, multi-objective traffic assignment is mod-
eled by using a linear combination of the various objectives,
as proposed, for instance, by Dial in [14] for a bi-objective
assignment. Such a linear combination has some drawbacks.
Some efficient routes are missed, as discussed in [8]. The
key point is that algorithms that use a linear combination only
identify supported solutions at extreme points, while there
may be other efficient solutions that are not considered in that
group but could be preferred by some users.
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Hence, it is necessary to have alternative solutions. One
is based on the aforementioned MSA. One issue that arises is
that, in a multi-objective scenario, there is a set of efficient
routes instead of just one. For the particular application of
route choice we deal here, this is illustrated, with examples,
at the end of Section 4.

To determine how users will choose their preferred route,
it can be assumed that all of them are equally attractive. This
leads to an equal share assignment (EQS); see [7] for more
details. EQS may be unrealistic, but it is a good start point for
iterative methods to compute an assignment based on multiple
objectives. In order to address the limitations of an EQS-like
traffic assignment for the bi-objective case, [7] has proposed
a method called time surplus maximization. This is defined
as the maximum time minus the actual time. This means
that, given a set of routes, the one with the least negative
time surplus will be the preferred one, for each traveler. This
method requires information about the value of time, i.e., extra
information, which is not always available.

Finally, we mention that other authors have also addressed
various forms of multi-objective traffic assignment: in [6], the
authors formulate heuristic solutions to compute the assign-
ment; [15] extends their previous bi-objective user equilibrium
model based on time surplus maximisation ([7]) in order to
incorporate the concept of travel time budget to model how
users might react to uncertainty induced by day-to-day vari-
ability in travel time caused by traffic incidents; [16] deals
with edges whose costs are non-monotonic, also accounting
for emission of gases (as a second objective).

In Section 4, we use some of these approaches as com-
parison to our results. We recall, however, that both the time
surplus maximization and those heuristics are centralized ap-
proaches.

2.2 Solving the single objective TAP by means of
RL

As an alternative to the MSA, the (single objective) TAP can
also be solved in a decentralized fashion by letting agents
select one in a set of routes. Normally, the task of the agent is
to select one in a set of k shortest routes connecting its origin
to its destination; such set can be computed by the agent
via the k-shortest paths algorithm proposed in [17], which
requires no information about other agents choices, as the
input to the algorithm is only the graph G (i.e., the network
topology).

Once each agent knows k routes (actions), RL is then used
to let agents select routes in G that will lead to minimal costs
for each agent. This can be done by means of multi-armed
bandit algorithms or by a single-state formulation of QL. Nor-
mally, in both cases, the goal is to reach the Nash or user
equilibrium. Each agent is rewarded by its own travel time
taken to go from its origin to its destination, i.e., a single
objective underlies the reward function. This kind of learn-
ing task is associated with repeated games; the only state is
the node where the decision on which route to take is made

(normally this node is the origin).
Examples of RL-based approaches for the TAP are: (i)

Ramos et al. [18], where a regret-minimization method was
proposed, in which the performance of each route in compar-
ison to the best one experienced is used as an estimation of
the regret; (ii) Oliveira et al. [19], where the authors compare
stateless QL to multi-armed bandit algorithms, concluding
that none of the variants of the UCB algorithm (see next sec-
tion) outperform QL, possibly due to the highly non-stationary
nature of the route choice problem; (iii) departing from re-
peated games, [20] formulated the TAP as a stochastic game,
where the states are the vertices in which the agent finds itself,
actions are the selection of links that leave a vertex, and the
reward is a function of the travel time in each link.

Apart from RL, other artificial intelligence methods have
also been used to model single-objective route choice: [21]
proposed a fuzzy-rule based routing, which includes qualita-
tive decisions, whereas [22] proposed a fuzzy-based method
to take the uncertainties of the travelers into account.

Finally, in the bi- or multi-objective front, we recall the
aforementioned works by [14, 6, 8, 7], which, as said, are
centralized.

2.3 RL algorithms for single and multi-objective ac-
tion selection

Single-state learning tasks (such as route choice) are formal-
ized as repeated games and can be solved by MABs algorithms
such as UCB [1] and its variants. Next, we give just a brief
overview on them and note that the terms arm and action are
used interchangeably.

2.3.1 Upper Confidence Bound (UCB) family of algorithms
The UCB family of algorithms addresses the multi-armed
bandit problem, where we have a set K of gambling arms,
i.e., actions. Each play of an arm yields rewards, drawn from
a fixed distribution. These are independent and identically
distributed according to an unknown law with an unknown
expectation vector. Rewards across actions are also indepen-
dent.

In UCB1, the simplest algorithm, the arm that maximizes
the upper bound of a confidence interval for the arm’s expected
reward is selected. The bound is the sum of two terms. The
first one is the current average reward. The second term is a
padding function related to a one-sided confidence interval
of the average reward [1]. The second term grows with the
total number of actions the player has taken but decreases
with the number of times this particular action has been tried.
If an action was played several times, its average reward is
considered accurate and the value of the padding function
is small. If the action was played a few times, the padding
function has a higher value, representing the lower accuracy of
its average reward. Thus, an action that has not been explored
as often as other actions will have a bigger padding function.
This makes the algorithm quickly explore unknown actions, by
initially playing each arm once, before engaging in selecting
the more promising action.
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The discounted UCB algorithm [2] was proposed to deal
with non-stationarity. It is an adaptation of the UCB and works
by averaging all past rewards while using a discount factor
to give more weight to more recent observations. Another
variant of UCB is sliding-window UCB ([3] apud [23]). It
also addresses the non-stationary case, but averages the past
rewards using only the last w plays.

It is worth mentioning that these two variants were cre-
ated primarily to deal with a single agent learning in a non-
stationary environment. This differs from the non-stationarity
that arises from simultaneous learning by many agents. While
the latter is also attributed to the environment, its nature is
such that changes occur much more frequently, thus leading
to a more challenging environment.

2.3.2 Pareto UCB1 (PUCB1)
The PUCB1 algorithm was proposed in [9] as an extension of
the standard UCB1 algorithm for the multi-objective, multi-
armed bandit problem using the Pareto dominance relation-
ship. In the multi-objective setting, the reward vector R⃗ con-
tains one dimension for each objective.

Similar to the UCB1 algorithm, during the t-th episode,
for each arm, the sum of two terms is calculated: the average
reward vector R̄(a), for arm a, and a padding function ct
corresponding to the size of a one-sided confidence interval of
the average reward. This is shown in Eq. 1, where |O| denotes
the number of objectives, A ∗ is the set of Pareto optimal set
of arms, ne is the number of plays and N(a) is the number of
times arm a was played.

ct =

√
2ln(ne

4
√
|O||A ∗|)

Nt(a)
(1)

Aiming to maximize all objectives, in each episode, the
Pareto set A ′ is found, such that ∀ℓ /∈A ′, there exists an arm
a ∈A ′ that dominates arm ℓ, as stated by Eq. 2. Then, an arm
is selected uniformly at random from A ′.

R̄(ℓ)+ ct(ℓ)⊁ R̄(a)+ ct(a) (2)

If A ∗ is not known a priori, the term |A ∗| can be replaced
by the number of actions |K|.

Exploitation is satisfied by the average reward vector,
while exploration depends on the upper bound represented
by the padding function. The agent explores more during the
initial episodes, allowing the less selected actions to be even-
tually chosen against the arms with a high average reward.

On a related note, apart from PUCB1 there are other al-
gorithms that have been proposed in the MORL literature,
which use a multi-objective MAB setting. Roijers et al. [24]
proposed two algorithms using online MORL with user in-
teraction to learn the utility function of the user. A strategy
was proposed by [25] to discretize the continuous action space
according to samples that were Pareto-dominating from the ob-
jective space in order to approximate the Pareto front. In [26]
Pareto ε-dominance is applied, which assumes the existence

of a set of representative actions as a good approximation of a
large Pareto optimal set of actions. Drugan et al. [27] focus on
removing sub-optimal arms (actions) given a fixed budget of
arm pulls. These works employ different approaches to solve
the multi-objective MAB problem which are far from our aims
in the present paper, such as interaction with an user, contin-
uous set of arms (rather than discrete), an alternative Pareto
dominance relation, or a budget for arm pulls. Furthermore,
they focus on a single-agent setting.

2.4 Pareto Q-learning (PQL)
Pareto Q-learning [10] (PQL) integrates the Pareto dominance
relation into a MORL approach. Based on Q-learning [28],
PQL was not designed for repeated games. However, we
include it for sake of comparison with algorithms of the UCB
family (see Section 4.4).

PQL considers both the average reward vector and the
set of expected future discounted reward vectors in order to
compute the so-called Q-sets, which are composed of vec-
tors. As PQL was initially defined for a state-based case (thus
formulated as stochastic games), the set of expected future dis-
counted reward vectors relies on a function, called ND (from
non-dominated), that finds those vectors that correspond to the
possible future states, and which are not Pareto-dominated.

Eq. 3 shows how the Q-sets are calculated. R̄(s,a) denotes
the average reward vector and NDt(s,a) is the set of non-
dominated vectors in the next state s, which is reached by
performing action a at time step t. R̄(s,a) is added to each
element of γ NDt(s,a). When action a is selected at state s,
both terms are updated. R̄(s,a) is updated according to Eq. 4,
where R⃗ is the new reward vector and N(s,a) is the number
of times action a was selected in s. NDt(s,a) is updated as
shown in Eq. 5, using the non-dominated vectors in the Q̃set
of every action a′ in the next state s′.

Q̃set(s,a) = R̄(s,a)⊕ γ NDt(s,a) (3)

R̄(s,a) = R̄(s,a)+
R⃗− R̄(s,a)

N(s,a)
(4)

NDt(s,a) = ND(∪a′Q̃set(s′,a′)) (5)

PQL learns the entire Pareto front, finding multiple Pareto
optimal solutions, provided that each state-action pair is suffi-
ciently sampled. This algorithm is not biased by the Pareto
front shape (algorithms that find a single policy and use scalar-
ization can not sample the entire Pareto front if it is non-
convex) or a weight vector (it guides the exploration to specific
parts of the search space).

Note that PQL is not directly useful in rapidly changing
environments in which the presence of multiple agents learn-
ing simultaneously cause non-stationarity, as for instance the
route choice domain we use ahead.
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Our contribution (called mPQL, detailled ahead) is an
algorithm that is adapted from PQL in order to deal with
multiple objectives in a non-stationary environment.

2.5 Overview
The first five lines of Table 1 summarize the gaps in the re-
search around the related algorithms presented before. Note
that only PQL and PUCB1 deal with multi-objective learning.
However, neither were designed to handle non-stationarity, be
it because there are multiple agents, or due to a change on
the environment dynamics itself. The latter is, for example,
the case of both discounted UCB and sliding-window UCB,
which were formulated primarily to deal with single-agent
scenarios. Hence, the obvious gap refers to the ability to deal
non-stationary cases, when caused by multiple agents learning
simultaneously, together with the case where there are multi-
ple objectives. The next section then describes the algorithms
we propose to address such gap.

3. Proposed algorithms
Recall that the aforementioned PUCB1 does not deal with
non-stationarity (or with a multi-agent scenario for that mat-
ter). To handle non-stationarity, we developed the discounted
Pareto UCB (DPUCB) and the sliding-window Pareto UCB
(SWPUCB) algorithms based on ideas borrowed from the dis-
counted and the sliding-window variants of UCB, so that we
maintain those features from PUCB1 that are able to handle
multiple objectives.

To address multi-objective problems, both DPUCB and
SWPUCB calculate variants of the average reward vector and
padding function from PUCB1, and keep using the Pareto
dominance relation to find a set of efficient solutions from
which they choose an action uniformly at random. In the
case of mPQL, changes were made to PQL to deal with a
non-stationary environment by enabling the use of previous
knowledge, while adapting it to focus on single-state settings.

The last three rows of Table 1 show the features the pro-
posed algorithms share and how they address issues the algo-
rithms presented previously did not.

Before detailing the algorithms we propose here (sec-
tions ahead), we briefly discuss the general formulation and
representation. A multi-agent, multi-objective RL problem,
formulated as a repeated game can be defined as a single-state
multi-agent Markov decision process (MMDP), in which G is
the set of agents, A is the set of actions, and R(a) : A→ R|O|
is the reward function defined over the set O of objectives.
Note that R(a) is specific for each agent; however, for clarity,
we drop the index that indicates the particular agent.

In particular, as the present paper uses a route choice
scenario for illustrating the performance of the proposed algo-
rithms, the aforementioned MMDP is instantiated as follows.
A is a set K containing the |K| shortest routes that take each
agent from origin o to its destination d. The reward function
is then R(a) : K→ R|O|. We evaluate two objectives: travel
time and flow-independent toll. Eq. 6 shows the definition of

R(a), where a ∈ K is a route and R⃗ is a reward vector whose
elements are the travel time and toll of route a. The travel
time of route a is calculated as the sum of the travel times of
its links. Its toll is calculated analogously.

R(a) = R⃗ (6)

Lastly, we recall that the route choice problem is highly
non-stationary, given that the actions by an agent affect the
travel time of the others.

3.1 Discounted Pareto UCB (DPUCB)
DPUCB takes the discount factor γ from the discounted UCB
algorithm [2] to average past rewards and give more weight
to recent observations in order to deal with non-stationarity.
This discount factor is introduced in the calculations of the
average reward vector R̄t and the padding function ct defined
in Eq. 1 from the Pareto UCB1 algorithm, where ub is the
upper confidence bound of agent i.

At episode t, for action a, the upper bound in Eq. 7 is
composed of the discounted average reward vector R̄t(γ,a),
as stated in Eq. 8 (where Im is the action selected in episode
m), and the discounted padding function ct(γ,a) defined by
Eq. 9. As rewards are upper-bounded by B, its value was set
to 1 in Eq. 9 since PUCB1 assumes the rewards are defined
on the interval [0,1].

ub = R̄t(γ,a)+ ct(γ,a) (7)

R̄t(γ,a) =
1

Nt(γ,a)

t

∑
m=1

γ
t−mR⃗m(a)1{Im=a}

Nt(γ,a) =
t

∑
m=1

γ
t−m

1{Im=a}

(8)

ct(γ,a)= 2B

√√√√2 ln
(

nt(γ)
4
√
|O||A ∗|

)
Nt(γ,a)

, nt(γ)=
|K|

∑
i=1

Nt(γ, i)

(9)

In each episode, the Pareto set A ′ is found, such that
∀ℓ /∈A ′, there exists an action a ∈A ′ that dominates ℓ:

R̄t(γ, ℓ)+ ct(γ, ℓ)⊁ R̄t(γ,a)+ ct(γ,a) (10)

Finally, an action is randomly selected from A ′.
To further deal with the non-stationarity that arises due

to multiple agents learning simultaneously, DPUCB employs
a random initialization phase that ensures that not all agents
chose the same action at each episode. Agents are also pre-
vented from choosing already selected actions during this
phase.
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Table 1. Comparison of algorithms.

Deals with Single-state
non-stationarity Multi-objective settings

(i.e., repeated game)

UCB [1] – –
√

PUCB1 [9] –
√ √

Discounted UCB [2]
√

–
√

Sliding-window UCB [3]
√

–
√

PQL [10] –
√

–

DPUCB
√ √ √

SWPUCB
√ √ √

mPQL
√ √ √

In Eq. 7, the exploitation part of the algorithm is defined
by the discounted average reward R̄ from by Eq. 8. The ex-
ploration is determined by the discounted padding function
ct from Eq. 9. The denominator Nt(γ,a) represents the dis-
counted number of times action a was played. Each episode in
which action a is not played, Nt(γ,a) decreases, causing the
value of the padding function ct to increase. This increment
makes action a more likely to be chosen, as the algorithm
aims to maximize ub.

DPUCB is presented in Algorithm 1. Note that, in this
case, the parameter w is not required. For each agent, the
initialization phase (lines 5 and 6) guarantees that each action
is selected once in random order. After this phase, the Pareto
set A ′ is computed according to Eq. 10 by finding those
actions whose associated upper bound (Eq. 7) is not Pareto-
dominated by another action (line 8). An action is selected
randomly from A ′ at line 9. The agent’s average reward
vector R̄(γ,a) is updated using Eq. 8 (line 11). Afterwards,
the current episode is updated at line 13, and the previous
steps repeat until ne episodes have passed.

3.2 Sliding Window Pareto UCB (SWPUCB)

Although the original sliding-window UCB algorithm does
not employ the discount factor γ , SWPUCB considers it to
average past rewards using the last w plays while also giving
more weight to recent observations. The formulation of SW-
PUCB is essentially the same of DPUCB, while introducing
the parameter w in the calculations of R̄t and ct . This is done
by making Eq. 8 and Eq. 9 require w and by setting γ = 1
and s = t−w+1 in them. Changes are needed in some terms
of those two equations: now we denote the average reward
vector and the padding function by R̄t(γ,w,a) and ct(γ,w,a),
respectively. The upper bound of SWPUCB is defined by
Eq. 11.

ub = R̄t(γ,w,a)+ ct(γ,w,a) (11)

Algorithm 1 Discounted + Sliding window Pareto UCB

1: procedure DISCOUNTEDSLIDINGWINDOWPARE-
TOUCB(G , |K|,γ,w,ne) ▷ G is the set of agents; |K|, the
number of actions; γ , the discount factor; w, the window
size and ne, the number of episodes

2: t← 1
3: while t ≤ ne do
4: for each agent g ∈ G do
5: if t < |K| then
6: Select randomly an action that has not

been taken yet
7: else
8: Find the Pareto set A ′ as stated in Eq. 10

if not using w; otherwise, use Eq. 14.
9: Select action a uniformly at random from

A ′

10: end if
11: Update R̄t of g according to Eq. 8 if not using

w; otherwise, use Eq. 12.
12: end for
13: t← t +1
14: end while
15: end procedure

R̄t(γ,w,a) =
1

Nt(γ,w,a)

t

∑
m=t−w+1

γ
t−mR⃗m(a)1{Im=a}

Nt(γ,w,a) =
t

∑
m=t−w+1

γ
t−m

1{Im=a}

(12)

ct(γ,w,a) = B

√√√√2 ln
(

nt(γ,w) 4
√
|O||A ∗|

)
Nt(γ,w,a)

nt(γ,w) =
|K|

∑
i=1

Nt(γ,w, i)

(13)

These changes are extended to Eq. 10, which is now re-
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presented by Eq. 14.

R̄t(γ,w, ℓ)+ ct(γ,w, ℓ)⊁ R̄t(γ,w,a)+ ct(γ,w,a) (14)

If one wants to use SWPUCB without discount, it suffices
to set γ = 1.

SWPUCB is also presented in Algorithm 1, essentially
following the same steps of DPUCB, though it requires an
additional parameter w for line 8 and line 11. The Pareto set
A ′ is found at line 8 according to Eq. 14. Besides, the aver-
age reward vector R̄t(γ,w, i) is updated applying the changes
already mentioned to Eq. 8 and represented by Eq. 12.

We remark that SWPUCB is a generalization of the
DPUCB algorithm (Section 3.1), where we can obtain DPUCB
from SWPUCB with an infinite sliding window and a discount
factor greater than zero. We opted to discuss the two as sepa-
rate algorithms because drivers using DPUCB and SWPUCB
perform differently, as shown in Section 4.

3.3 Modified Pareto Q-learning (mPQL)
As mentioned, we modified the PQL algorithm to better deal
with non-stationary environments and to enable its application
to action selection problems. This modified PQL is denoted by
mPQL. Eq. 3 considers the simple mean reward. For mPQL to
work in non-stationary environments, we use an exponential
average (see Eq. 15). More recent rewards are exponentially
more important than older ones, which is a good feature to
deal with non-stationarity environments. As there is only one
state, Eq. 3 changes and the new update rule is the same as
that of Q-learning, but the rewards and Q-values are vectors
instead of scalars, as shown in Eq. 15, where R⃗ is the observed
reward vector. In fact, mPQL simplifies the procedure to
update the Q-sets of each action and changes the Q-sets for
Q-vectors denoted by Q⃗. Q-vectors are updated according to
Eq. 15.

Q⃗(a) = αR⃗+(1−α)Q⃗(a) (15)

4. Evaluation
Even in the transportation engineering literature, there are not
many works that deal with bi or multi-objective TAP. Thus,
finding benchmarks or even scenarios to compare with is not
an easy task.

In what follows, as a proof of concept, we recur to a four-
node network, formulated in [7] and depicted in Fig. 1, for
which we know the solution, i.e. the optimal solutions for the
bi-objective traffic assignment.

In that figure, links in red are toll-free; links 3 and 8 have
a toll τ = 1; τ = 15 for link 2; and τ = 20 for link 1. The
demand from vertex o to d is 10,000 vehicle per hour, and
there are six possible routes from o to d (the authors in [7]
excluded routes such as 3-5-6-7). We note that all six routes
are efficient when there is no flow. Details about the six
routes are described in [7]. The cost functions associated with
each link follow the BPR1 family of cost functions: Tl( fl) =

1So called due to the Bureau of Public Roads, [29].

o

a

b

d

3

4

1

2

7

5
8

6

Figure 1. Four-node network (adapted from [7, 30]); red
links are toll-free.

Table 2. Route characteristics of the four-node network.

Route Links FFTT Toll

1 1 18.0 20
2 2 22.5 15
3 3–7 36 1
4 4–8 36 1
5 3–5–8 26.4 2
6 4–6–7 54 0

T 0
l (1 + a( fl/Cl)

b), where a = 0.15, b = 4. T 0
l (free flow

travel time, or FFTT, at link l) and Cl (l’s capacity) are as
defined in [7]. The tolls and FFTTs of the six routes are given
in Table 2.

The algorithms we propose (see Section 3 for DPUCB,
SWPUCB and mPQL) are compared with the assignment
yielded by two methods: EQS (where the assignment is done
equally among all efficient routes), and PUCB1. Note that we
are including mPQL for comparison purposes, even though
its original formulation, PQL, it is not a MABs algorithm.

Travel time and average toll are used as metrics to com-
pare the approaches. To this aim, Table 3 reports the values
of average travel time and average toll for both objectives.
The values shown in Table 3, as well as the results of each
algorithm, are explained in more detail in the following sub-
sections.

All plots and tables shown ahead report mean values, as
well as standard deviations, calculated over 30 repetitions of
the same setting (except if the method is deterministic). All
experiments were carried out on a PC with a processor Intel
Core i7-8700 3.20 GHz and 31 Gb of RAM under Ubuntu
18.04 operating system. The algorithms were implemented
using Python 3.7.

Recall that the action set A of each agent is formed by a
set of |K| routes. The reward vector R⃗, calculated by Eq. 6,
is composed by the negative values of travel time and toll
of the corresponding route (action) chosen by the agent, i.e.,
the negative of R⃗. Thus we follow the standard practice of
maximizing rewards.
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Table 3. Four-node network. Average travel time and toll, for
each algorithm. Values are means over 30 repetitions (std.
dev. is also given). Best values in each criterion are
highlighted in bold.

Algorithm Avg. toll Avg. travel time

EQS 7.60 56.88
PUCB1 6.25 ± 0.01 94.31 ± 0.55

DPUCB (γ = 0.77) 9.72 ± 0.02 35.94 ± 0.11
SWPUCB (γ = 1) 8.52 ± 0.10 48.06 ± 1.04
SWPUCB (γ = 0.77) 8.44 ± 0.04 45.44 ± 0.54
mPQL 7.59 ± 0.09 57.05 ± 1.30

We have implemented the EQS assignment following [8].
EQS iteratively divides the flow equally among all efficient
routes. Obviously, for the reasons discussed before, we do
not expect EQS to have a good performance, but it serves as a
baseline.

Indeed, the EQS assignment does not perform well in this
network. This method results in an allocation where all routes
are efficient and, thus, they have the same flow.

4.1 PUCB1
Recall that this algorithm does not require parameters to be
tuned, but rewards need to be normalized, if one wishes to
comply with the proof regarding the upper confidence bound
of PUCB1 given in [9], which is based on a support of the
rewards in [0,1]|O|, where O is the objective set.

For travel time, the min and max values used for normal-
ization are the travel time of the fastest route with a single
agent and the travel time of the slowest route when all agents
are assigned to it, respectively. For toll, those min and max
values are the minimum and maximum toll of the six routes.
These values are 0 and 20, as it can be observed in Table 2.
PUCB1 shares the initialization phase of DPUCB, described
in Section 3.1.

While normalization certainly plays a role in the perfor-
mance of PUCB1, the second – and most important – issue
regarding this algorithm is the fact that PUCB1 does not
fully deal with non-stationarity. Like UCB1, this algorithm
assumes the reward vectors of the routes are identically dis-
tributed. This means that if an agent chooses route k at episode
t and then chooses it again at episode t +1, the reward vectors
received at both episodes should be drawn from the same
probability distribution. That is the case of toll (whose values
are flow independent), but travel time depends on the flow
(thus, on the decision of the whole set of agents). Hence, the
distribution of values for travel times may vary across time.

Note also that PUCB1 has the highest running time among
all algorithms of the UCB family; moreover, it yields the most
unbalanced result, as it achieves the highest average travel
time and the lowest average toll. This is due to PUCB1 con-
verging to values that do not deviate too much from the initial
sampling of average travel time and average toll due to nor-

Figure 2. Average travel time of DPUCB for different values
of γ .

malization. The min and max values used to normalize travel
time provide a too wide interval, mapping the normalized
travel time rewards to a very narrow interval. Consequently,
the differences between the normalized rewards are too low,
and the algorithm relies more on the normalized toll values,
which are less affected by such a mapping/normalization.

In short, the PUCB1 yielded the worst performance, thus
stressing our point that a novel approach was needed. Next
we discuss the performance of our algorithms, which were
detailed in Section 3, namely DPUCB, SWPUCB and mPQL.

4.2 DPUCB
As just mentioned, normalization poses problems when PUCB1
is used. For that reason, we do not include normalization in
DPUCB and SWPUCB.

For the experiments using these two algorithms, the dis-
count factor used was γ = 0.77. This value was obtained after
extensive tests. Figure 2 shows the average travel time when
different values of γ are used.

For the sake of information, we note that when γ is too
low, there are great oscillations in the average travel time and
average toll. This may be caused by a frequent change of
the set (and thus, the number) of efficient routes. A low γ

quickly increases the exploration term (Eq. 9), which means
that a route that has not been selected as much as the others,
eventually will become the most, or one of the most, attractive.
Therefore, when there are just one or two of such attractive
routes, traffic congestion occurs, while a higher number of
efficient routes produces the opposite effect. When γ is high
(e.g., γ = 0.9), the exploration term increases slowly and also
slows down convergence. As such, initial rewards have a
weight close to that of more recent ones. Therefore, most
of the routes are efficient, as it was the case in the initial
episodes.

A compromise is achieved with γ = 0.77. It ensures the
fastest routes 1, 2 and 5 (see Table 2) have more probability
to be chosen in the first episodes after initialization. Hence
the decrease in the average travel time, while the average toll
increases as these routes have the highest tolls.
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Figure 3. Route flows obtained by using DPUCB with
γ = 0.77.

Note that the padding function from Eq. 9, that determines
exploration, will produce low values as it depends on the ln
function. As we work with non-normalized rewards, travel
time is not affected as much as toll since it is in a higher
scale. Particularly, routes 3, 4, 5 and 6 are more affected since
their tolls are very low when compared to those of routes 1
and 2. This leads to travel time having more influence on the
agents’ decisions, as presented in Figure 3, that shows the flow
distribution obtained with DPUCB. Routes 1 and 2, which
share no links with other routes, are the most preferred routes
as they are the fastest ones. The remaining routes maintain
an order according to their FFTTs: route 5 is the third most
chosen, while routes 3 and 4 have the same flow (as they have
the same toll and FFTT). Finally, route 6 is the slowest one
and the least preferred route.

4.3 SWPUCB
As aforementioned, SWPUCB requires a further parameter,
when compared to DPUCB, namely the window size w. There-
fore, to study the effect of w alone, initially we kept γ = 1
and made experiments changing the value of w. Given that
this network has six routes, we tested values of w that are
multiples of six. Figures 4 and 5 show the results. Note that
there is a period (roughly between episodes 0 and 100), in
which almost all cases show that exploration is more intense,
thus having visible oscillations. After, most curves start to
converge or stabilize.

An exception is the case when w = 6, which shows oscilla-
tions from beginning to end. The reason is that this window is
too short to allow agents to learn something. It is observed that
other values of w produce varied effects, such as increasing
the average toll and decreasing the average travel time. When
w = 12 the average toll also increases while the average travel
time decreases, as agents begin to select faster routes more
frequently, with the consequent increase in tolls. A higher
value (w = 24) produces the same effect on a higher scale, af-
fecting mainly the average toll as it grows considerably. Note
also that the deviations are higher (see green curve). Finally,
when the window size is large (36 and 60), the opposite effect
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Figure 4. Average travel time for non-discounted SWPUCB
with different values of w.

occurs and the average travel time increases, depending on
how high the value of w is (w = 60 leads to a higher average
travel time than w = 36), with decrease in the toll.

As using w = 12 Pareto-dominates most of the other cases,
i.e., has a lower average travel time and average toll, while
not incurring such a high increase in average toll as w = 24
does, we decided to use w = 12 for the experiments regarding
SWPUCB.
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Figure 5. Average toll for non-discounted SWPUCB and
different values of w.

Given this selection, the next step is to analyze how SW-
PUCB with γ = 1 and w= 12, compares to the other algorithm,
not only in terms of the final values shown in Table 3, but
also in terms of oscillations and how these value change along
episodes. When w = 12, the agents have a short window to
acquire experience. This affects their decisions and produces
initial oscillations, because the number of times a route has
been chosen inside that window frame may be low, taking into
account there are six possibly efficient routes to choose from.
After about 200 episodes, the agents have chosen each route
enough times to prefer one.

In short, while using w = 12 produces oscillations in the
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Figure 6. Average travel time of mPQL for different values
of α .

initial episodes, it was selected because it Pareto-dominates
the most of the window sizes.

Next, the value of the discount γ was also varied. In the
discounted SWPUCB, γ plays an important role, especially
when w is high. Depending on the value of γ , the window
size may become less relevant, i.e., the higher the w, the less
relevant this window becomes. This happens because least
recent rewards (inside the window) may have almost zero
weight if γ is low. For comparison purposes, we took the same
γ = 0.77 used in DPUCB and kept the window size w = 12.
Using γ < 1 accelerates the convergence when compared
to the non-discounted SWPUCB. If w were higher, more
rewards could be considered and the discounted SWPUCB
could approximate more the results of DPUCB. Even so, note
that discounting rewards helps, as SWPUCB with discount
achieves a lower average travel time and average toll than
non-discounted SWPUCB, as shown in Table 3.

4.4 mPQL
The modified Pareto Q-learning was tested using different
values of α in Eq. 15, namely 0.1, 0.3, 0.5, 0.7 and 0.9, while
using the decaying ε-greedy method to balance exploitation
and exploration. The parameter ε was initially set to 1, while
a decay rate was applied to promote exploration for about
70% of the episodes. This ensures that the initialization does
not produce biased results.

Different values of α tended to converge to very similar
solutions (even if the oscillation pattern along episodes dif-
fers), as depicted in Figure 6, which shows the average travel
time along episodes when using the aforementioned values
of α . The main difference lies in the number of episodes
required to converge. Higher values of α reduce this value.

It is worth mentioning that the solutions obtained by
mPQL are approximately the same as those expected by the
EQS assignment (compare the EQS and mPQL lines of Ta-
ble 3). This happens because of the uniformly random se-
lection, which promotes an equal number of agents in each
efficient route. The exploration in mPQL also does not give

preference to specific routes. As exploration decays, there are
less agents switching routes and the algorithm reaches a point
where the efficient routes have (almost) the same flow and
the current assignment is a multi-objective user equilibrium
solution (MUE), where the agents have no incentives to switch
routes. Therefore, by adding certain random elements, mPQL
reaches different solutions, but these are very similar in terms
of average travel time, average toll and flow per route. It is
that randomness that makes possible to produce solutions very
similar to that of EQS, as mPQL follows a similar process to
allocate flow but does not always make an evenly distribution
of the agents between the efficient routes.

4.5 Discussion
Experiments show that most of the decentralized algorithms
provide alternative solutions to those produced by centralized
algorithms like EQS. Such solutions fall under MUE condi-
tions [6], where no individual trip maker can improve at least
one of their objectives without worsening any of the others by
unilaterally switching routes.

Pareto UCB1, applied to a multi-agent scenario, does
not deal well with non-stationarity due to giving the same
importance to previous and current rewards.

DPUCB and non-discounted SWPUCB rely on a discount
factor γ and a window size w. Different values for them may
favor one objective over the other. When SWPUCB uses
a discount factor, it has both parameters to tune. w has a
less relevant role when it is increased, as γ can downplay the
weights of the least recent rewards inside the window.

The modified Pareto Q-learning (mPQL) faces difficulties
as the value of the learning rate α does not influence its final
result, which tends to be almost unique and equal to that of
EQS. Unlike DPUCB and SWPUCB, mPQL is not sensible
to variations of the parameters, i.e., mPQL outputs essentially
similar traffic allocations. As such, the learning rate does
not influence the final solution. This happens because of
the uniformly random selection, which happens also during
exploration, and that leads to an equal number of agents in
each efficient route.

While the UCB algorithms use the same rule to select ran-
domly a route between those that are efficient, their padding
function and the discount factor (and the window size to a
lesser extent, as explained before) provide a variety of dif-
ferent solutions. The padding function gives incentives to
agents choosing less explored routes, while the exploration
in mPQL does not give preference to specific routes. The
discount factor in the UCB algorithms helps to deal with the
non-stationarity, as giving more importance to recent rewards
lets the agents adapt to the changing environment.

Figures 4 and 5 show how different average toll and aver-
age travel time can be obtained by varying the window size w
parameter. Analogously, using other values for other param-
eters of the UCB family can result in other solutions. Also,
DPUCB and SWPUCB tend to converge more quickly when
there is a discount factor.
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Figure 7. Average travel time and average toll of the algorithms presented in Table 3.

Overall, DPUCB and SWPUCB offer more flexibility to
find different alternative solutions, but DPUCB is slightly
more advantageous. Meanwhile, mPQL tends to find a solu-
tion that is similar to a centralized method (EQS).

Finally, Figure 7 shows the Pareto front formed by the
results presented in Table 3. Recall that mPQL and EQS
have almost the same result, which is why they overlap in
the figure. Every result reached by the algorithms, except
non-discounted SWPUCB, is an efficient solution. Still, as
it was pointed before, the UCB-based algorithms can pro-
duce different results when their parameters vary and another
combination of values could yield an efficient solution for
non-discounted SWPUCB. This enables a better coverage of
the Pareto front of efficient solutions. However, recall that
mPQL can reach different solutions, but all of them tend to be
very similar, so it would cover a very small area of the Pareto
front. On the other hand, results of centralized algorithms,
such as EQS, will not change since they are deterministic.
Though time surplus maximization may yield another result if
the additional information it uses changes, that is beyond the
scope in this work, as the algorithms proposed do not require
such information.

5. Conclusion
Multi-objective decision-making in a multi-agent system is a
challenging topic as it not only deals with multiple possibly
conflicting objectives, but the adaptation of an agent makes
the environment non-stationary scenario for the others.

While there are works that address multiple objectives
and non-stationarity, they have focused on only one of these
topics. There is a need for methods that can deal with such
still open challenges jointly.

In this paper we deal specifically with decision-making
and learning in repeated games. For single-objective case, this
is normally tackled by the UCB family of MABs algorithms.

The algorithms proposed in this work – SWPUCB, DPUCB
and mPQL – address both of the issues, extending existing al-
gorithms that approach those problems in separate ways. SW-
PUCB, DPUCB and mPQL were applied to the route choice
problem while considering two objectives: to minimize travel
time and toll, and compared to a centralized algorithm as
well as a MABs algorithm that deals with multiple objectives
(PUCB1).

Recall that, in the multi-objective case, there is a set of
efficient solutions (as opposed to a single one in the case a
single objective such as travel time is considered). Hence,
there is a need for another means to compare the output of
the algorithms. Indeed, an assessment based on solely aver-
age travel time or average toll would be inconclusive. Other
criteria for such a comparison is, for instance, the variety of
solutions that allows a better coverage of the Pareto front of
efficient solutions that SWPUCB and DPUCB offer thanks
to variation of their parameters values. It must be noted that
DPUCB performs better as it does not require the additional
parameter w and its discount factor γ can downplay w.

mPQL does not perform as well as the UCB algorithms
since it converges to solutions very similar to that of the cen-
tralized EQS algorithm. Moreover, the use of an exponential
average scheme does not significantly influence results. The
main difference between mPQL and DPUCB and SWPUCB
lies in how the agents explore.

In summary, the proposed algorithms address both non-
stationarity and multiple objectives by taking and combining
strengths from algorithms that deal with only one of those is-
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sues. DPUCB and SWPUCB offer varied alternative solutions
to those of centralized methods in a route choice problem
due to changes in their parameters, but DPUCB is more ad-
vantageous due to the discount factor having more relevance
than the window size parameter. Meanwhile, though mPQL
also deals with non-stationarity and multiple objectives, its
solutions are very similar to that of a centralized method.

As multiple objective decision-making is likely going to
become more relevant in the route choice problem in the
future, one could consider battery autonomy, or further ob-
jectives that are pertinent to the driver agents. Among these
additional objectives, those that are flow-dependent would
be more challenging. Other possible future directions to be
explored are the addition of information provided by the user
to guide the learning process, and to consider dynamically
changing the value along time for some of the parameters,
such as γ .
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Instituto de Informática, UFRGS, Porto Alegre, 2021.
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