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ABSTRACT

Introduction: The transcranial direct current stimulation (tDCS) is a non-invasive 
technique, which induces neuroplastic changes in the central nervous system of 
animals and humans. Furthermore, tDCS has been suggested as a therapeutic tool 
for pain management. The aim of this study was to standardize a non-invasive tDCS 
technique indexed by the nociceptive response of rats submitted to different conditions 
necessary to the tDCS application.

Method: 60-day-old male Wistar rats (n=65), divided into 6 groups: control(C); 
non‑active sham (NAS); active-sham (AS); active-sham restrained (ASR); non-active 
sham restrained (NASR); active tDCS treatment. Animals received treatment during 
30 seconds (sham-active) or 20 minutes (restraint and tDCS)/8 days. Nociceptive 
threshold was assessed by Hot Plate test at baseline, immediately and 24h after the 
first session, immediately and 24h after the last session. Variance analysis of repeated 
measurements followed by Bonferroni was performed for intra-group comparison.

Results: Physical restraint and 30 seconds stimulation (sham-tDCS) increased pain 
sensitivity (P≤0.05), and tDCS treatment was able to prevent the thermal hyperalgesia. 
Our original tDCS montage is similar to that used in the procedure with humans, 
because it is not an invasive technique. The electrodes are positioned on the head, and 
the animals are immobilized during the 20-minute treatment. As this procedure could 
involve behavior and neurochemical alterations due to stress induced by restriction 
(thus, it creates a research bias), we hypothesized that a 30-second electrical stimulus 
application (sham-tDCS) and the physical restriction used during tDCS treatment 
might alter nociceptive response in rats.

Conclusion: There are methodological limitations in the present tDCS-technique. 
Although active-tDCS treatment is able to prevent these harmful effects, interference 
of these factors has to be considered during the results’ analysis. Future adaptations 
of the tDCS-technique in rats are required to evaluate its therapeutic effects.
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Transcranial direct current stimulation (tDCS) 
is a non-invasive technique that has emerged as a 
promising treatment for several pain syndromes1-3. 
This technique consists in the applying of a weak, 
direct, constant and low intensity electric current. 
Interestingly, the treatment with tDCS is painless, 
and has been used to treat chronic pain syndromes3 
and many neuropsychiatry disorders1,2. It has also 
been proposed that the mechanisms by which 
tDCS induce changes across different levels of the 
nervous system may involve membrane polarization 
and, consequently, the modulation of neuronal 
activity4. Besides, the effects of tDCS on cortical 
excitability are polarity-dependent. An interesting 
issue is that tDCS modifies not only the activity of 
cortical areas located directly under the electrodes, 
but also from distant areas possibly due to primary 
interconnections5. The current model of tDCS effects 
is based on cortico-cortical interactions, with some 
subcortical components (e.g., anterior cingulate cortex 
and thalamic nuclei) in those circuits6. Importantly, 
clinical studies have revealed that tDCS can improve 
cognition performance7 in stroke patients8. Likewise, 
tDCS is a good option to treat chronic disorders such 
as fibromyalgia9, chronic pain10, Parkinson’s disease9, 
major depression11-13, and central post-stroke pain14. 
The changes caused by weak and constant current in 
the scalp alter the excitability at different levels of the 
nervous system15,16, probably leading to membrane 
potential alterations and, consequently, modulating 
the neuronal activity4. Nevertheless, the specificity 
of tDCS implies application-specific customization of 
protocols to maximize desired outcomes and minimize 
undesired effects. An important issue is that given 
the simplicity of tDCS and the complexity of brain 
function, understanding the mechanisms leading 
to specificity is fundamental to the advancement 
of tDCS17.

Moreover, previous studies of our research 
group using rats have confirmed the immediate and 
long‑lasting effects of repeated tDCS treatment on 
chronic pain inflammation18 and hyperalgesia induced 
by chronic restraint stress models19. In addition, we 
demonstrated that tDCS was able to decrease BDNF 
levels in the structures involved in the descending 
systems only in unstressed animals20. On our 
montage, the animals received tDCS treatment with 
both electrodes positioned on the head, a montage 
similar to a treatment for humans18. The electrodes 
were placed, without surgery or anesthesia; the 
animals were immobilized during the 20-minute 
treatment to prevent the electrodes removal from the 
head. Similar to a stress model, the immobilization of 
animal body could activate the sympatho-adrenal21 
and pituitary-adrenocortical22 axis. Moreover, the 

physiological stressor may increase heart rate, blood 
pressure, and plasma levels of norepinephrine and 
epinephrine, leading to the activation of intrinsic 
mechanisms of pain inhibition23. Also, 30 seconds 
of stimulation is the parameter used for sham-tDCS 
in humans. Thus, we also applied this procedure in 
rats, mimicking the technique used in clinical trials. 
However, in previous studies we observed a possible 
sham effect on pain threshold in naive and chronic 
stressed animals20. Therefore, we hypothesized that 
forced immobilization could interfere with the tDCS 
effects and that the application of 30 seconds of tDCS 
(sham stimulation) could change the nociceptive 
behavior of rats.

Thus, the aim of the present study was to evaluate 
the influence of different procedures (restraint, 
active-sham tDCS - 30 seconds stimulation, and 
tDCS-active) that are involved in our protocol of tDCS 
technique in rats. This information is necessary to 
better adjust the application of tDCS protocol in rats 
for nociception conditions.

METHODS

Animals
Sixty-five male Wistar rats weighing 250-350g were 

used (n=10-15 for group). Experimentally naive animals 
were housed in groups of five in home cages made of 
Polypropylene material (49×34×16 cm). All animals 
were maintained in a standard 12:12 light/dark cycle 
(lights on at 07:00 a.m. and lights off at 07:00 p.m.) 
in a temperature controlled environment (22 ± 2 °C). 
Animals had ad libitum access to water and food. 
All experiments and procedures were approved by 
the Institutional Animal Care and Use Committee 
(GPPG-HCPA protocol N. 10.0381) and conducted 
in compliance with Brazilian laws/2013 and the 
Laboratory Guide for the Care and Use of Animals 
(The National Academies Press, Eighth Edition, 
2011). The husbandry of the animals followed Law 
No. 11794 (Brazil), which regulates the scientific 
use of animals. The experimental protocol complied 
with the ethical and methodological standards of the 
ARRIVE guidelines24. Vigorous attempts were made 
to minimize animal suffering and decrease external 
sources of pain and discomfort, as well as to use 
the minimum number of animals required to produce 
reliable scientific data. To control the possible effect 
of outliers, animals that did not present behavioral 
responses were excluded.

Experimental Design
Rats were habituated to the maintenance room for 

1 week before the experiment started. After this period, 
the animals were randomly allocated in six groups: 
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1 - control (C) without intervention; 2 - non‑active 
sham (NAS): the animals were not restrained, the 
electrodes were positioned on the head, but the 
stimulator was turned off; 3 - active sham (AS): the 
animals were not restrained, the electrodes were 
positioned on the head, and the stimulator was turned 
on for 30 seconds; 4 - non‑active sham restrained 
(NASR): the animals were restrained during 20 minutes, 
the electrodes were positioned on the head, but the 
stimulator was turned off; 5 - active‑sham restrained 
(ASR): the animals were restrained during 20 minutes, 
the electrodes were placed on the head, and the 
stimulator was turned on for 30 seconds; 6 - tDCS: 
the animals were restrained, the electrodes were 
placed on the head, and the stimulator was turned 
on for 20 minutes (figure 1).

Maintenance of Blinding
To control for possible measurement bias in the 

present study, the following measures were taken: 
trichotomy was performed in all animals on the region 
where the electrodes were placed in groups treated 
with tDCS / Sham and control groups. In addition, 
there was the participation of a third researcher, who 
conducted the numbering of the boxes prior to the tests, 
without the involvement of the researcher responsible 
for the behavioral assessment. Therefore, the animal 
groups receiving active treatment with tDCS / Sham 
and control could not be identified. The behavioral 
tests were conducted by two researchers, who filmed 
the tests, and three researchers analyzed the results. 
To avoid unblinding of the outcomes evaluators, it 
is important to inform that these researchers were 

unaware of the experimental protocol. Thus, it is 
believed that the possibilities of influence on behavior 
results were eliminated.

Transcranial Direct Current Stimulation (tDCS)
The animals of the active-tDCS group received 

anodal tDCS therapy, which consists of a constant 
low intensity current (0.5 mA) applied for 20 minutes 
every afternoon during 8 days as described by Spezia 
Adachi et al.19 and Laste et al.18.

The direct current was delivered from a 
battery‑driven, constant current stimulator, using 
silver-silver chloride (Ag/AgCl) sensor electrodes. 
Rat heads were shaved for better adherence of the 
electrodes and were trimmed to 1.5 cm2 for a better fit. 
The electrodes had a conductive adhesive hydrogel 
and were fixed onto the head using adhesive tape 
(Micropore™) and covered with a protective mesh 
to prevent removal. During the 20-minute session of 
anodal tDCS, the animals remained gently wrapped 
in a towel. The anodal electrode was placed between 
the ears, on the neck of the rat (parietal cortex), 
and the cathodal electrode was positioned at the 
midpoint between the lateral angles of both eyes 
(supraorbital  area)18,19,25. This technique mimics 
tDCS protocols used in humans26,27, and it has been 
applied by our research group showing antinociceptive 
effects18,19.

According to an earlier study15, a constant current 
intensity of 1 mA causes skin lesions, as current 
density is comparatively much higher than the 
traditional 1 mA tDCS using large pads in humans. 
Further, a current density higher than 142.9 A/m2 is 

Figure 1: Experimental design of groups. C: control; NAS: non-active sham; AS: active sham; NASR: non-active sham 
restrained; ASR: active-sham restrained; tDCS: active tDCS treatment.
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associated with brain lesions. Based on this threshold, 
our stimulation parameters consisted of a current 
density of 33.4 A/m215. Nevertheless, in our study, 
electrodes were fixed onto the skin, and we did not 
observe any lesions using this montage and current 
intensity. Notably, this model of application required 
no anesthesia, unlike models used in previous tDCS 
studies in rats15. In fact, this lack of anesthesia 
strengthens the study because volatile anesthesia 
(such as isoflurane) has been shown to decrease 
excitatory transmission and to increase inhibitory 
transmission28, altering BDNF levels and, therefore, 
neuroplasticity29. Thus, we removed this confounding 
factor by adapting the human model using Ag/AgCl 
sensor electrodes30 in rats.

For the non-active sham group, the electrodes 
were placed in the same positions as the active tDCS 
stimulation; however, the stimulator was turned off 
and, after 30 seconds the animals returned to their 
respective home cages. For the active-sham group, 
the electrodes were placed in the same positions as 
the active tDCS stimulation and the stimulator was 
turned on just for 30 seconds so that the animals 
could maintain the physical sensation of active tDCS 
conditions31. Then, the animals returned to their home 
cages. For the non-active restrained sham group, 
the animals were restrained for 20 minutes and the 
electrodes were placed in the same positions as 
the active tDCS stimulation, but the stimulator was 
turned off. For the active restrained sham group, the 
animals were restrained for 20 minutes, the electrodes 
were placed in the same positions, and stimulator 
was turned on for only 30 seconds.

Hot Plate Test
The hot plate test was carried out to assess the 

effects of tDCS on the thermal nociceptive threshold 
adapted from Woolfe and MacDonald19,32. The baseline 
measure was performed before starting the groups’ 
protocols. This test was applied again immediately 
and 24h after the first and last session.

The hot plate was pre-heated and kept at a 
temperature of 55 ± 0.5 °C. All rats were acclimated to 
the hot plate for five minutes, 24 hours prior to testing, 
as the novelty of the apparatus itself could induce 
antinociception33. Rats were placed in glass funnels 
on the heated surface, and the nociceptive threshold 
was assessed by recording the time taken to first 
response (foot licking, jumping, or rapidly removing 
paws), as described by Minami et al.34. We used the 
hot plate test to determine changes in latency as an 
indicator of modifications of the supraspinal pain 
process35, as licking or jumping responses during this 
test are considered to be the result of supraspinal 

sensory integration36,37. The response was recorded 
in seconds(s) and a cutoff time of 10 s was used.

Statistical Analyses
Data were expressed as the mean ± standard 

error of the mean (S.E.M). Variance analysis of 
repeated measurements (ANOVA RM) followed by 
Bonferroni was performed for intra-group comparison. 
P values lower than 0.05 were reported as statistically 
significant. SPSS 19.0 for Windows was used for 
statistical analysis.

RESULTS

Control Group Showed no Differences During 
the Experiment

The control group (figure 2) did not present any 
difference in the paw withdrawal test at different 
times assessed (F(4,36)=2,29; P≥ 0.05).

Restraint Stress Was Able to Increase Pain 
Sensitivity (Hyperalgesia)

The NASR (figure 3) group demonstrated time 
effect (F(4,56)=2,83; P≤ 0.05), when compared to data 
from basal and immediately after the last session 
(P≤ 0.05). Thus, restriction applied during 20 minutes 
for 8 consecutive days without active stimulation 
was effective in decreasing the pain threshold on 
the hot plate test.

Figure 2: Evaluation of Control group at different times on 
hot plate test. Data were expressed as the mean ± standard 
error of the mean (S.E.M). Variance analysis of repeated 
measurements (ANOVA RM) followed by Bonferroni was 
performed for intra-group comparison. The control group 
did not present variation at different times. Equal lowercase 
letters (a) indicate that there is no statistically significant 
difference between the different times (P>0.05). Immed_1: 
Immediately after first session of treatment; 24h_1: 24h 
after first session of treatment; Immed_2: Immediately after 
last session of treatment; 24h_2: 24h after last session 
of treatment.
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The 30-second Electrical Stimulation (sham-
tDCS) Was Able to Increase Pain Sensitivity

The ASR group (figure 4) (which was restricted and 
had 30 seconds of active stimulation) demonstrated 
time effect (F(4,36)=4,92; P≤ 0.05) and there was a 
significant difference between baseline and immediately 
after the last session data (P≤ 0.05). Likewise, the 
group that received 30 seconds of active stimulation 
and was not restricted (AS) (figure 5) also presented 
time effect (F(4,36)=6,84; P≤ 0.05), showing a decrease 
on pain threshold on the hot plate test immediately 
after the first (P≤ 0.05) and the last (P≤ 0.05) session 
of tDCS.

The Handling of Animals Did Not Alter Pain 
Sensitivity

The group of animals that was manipulated 
during 30 seconds without sham stimulation (NAS) 
(figure 6) did not show variation on pain threshold 
at different times of measures (F(4,36)=0.54; P≥0.05). 
These data indicate that the handling of animals 
during the sham-tDCS did not alter pain sensitivity.

tDCS Prevented Pain Sensitivity Induced by 
Physical Immobilization

The tDCS group (figure 7) did not show a variation 
on pain threshold at different times of measures 
(F(4,36)=3,40; P≥0.05) demonstrating that, on this 
montage, the tDCS was able to prevent the effect of 
immobilization and the effect of the first 30 seconds 
of stimulation.

DISCUSSION

We demonstrated that the procedures of immobilization 
of animal body and the sham stimulation (30 seconds) 
induced a pain threshold decrease, and our montage 
of the tDCS animal model was able to prevent this 
effect. It is important to note that the hyperalgesic 
effect was assessed by two behavioral components 
on hot plate test (paw licking and jumping), both 

Figure 3: Evaluation of Non-active Sham Restraint group 
at different times on hot plate test. Data were expressed as 
the mean ± standard error of the mean (S.E.M). Variance 
analysis of repeated measurements (ANOVA RM) followed 
by Bonferroni was performed for intra-group comparison. 
Different lowercase letters (a through b) indicate statistically 
significant difference between the different times (P<0.05). 
Immed_1: Immediately after first session of treatment; 
24h_1: 24h after first session of treatment; Immed_2: 
Immediately after last session of treatment; 24h_2: 24h 
after last session of treatment.

Figure 4: Evaluation of Active Sham Restraint group at 
different times on hot plate test. Data were expressed as 
the mean ± standard error of the mean (S.E.M). Variance 
analysis of repeated measurements (ANOVA RM) followed 
by Bonferroni was performed for intra-group comparison. 
Different lowercase letters (a through b) indicate a 
statistically significant difference between the different 
times (P<0.05). Immed_1: Immediately after first session 
of treatment; 24h_1: 24h after first session of treatment; 
Immed_2: Immediately after last session of treatment; 
24h_2: 24h after last session of treatment.

Figure 5: Evaluation of Active Sham group at different 
times on hot plate test. Data were expressed as the mean 
± standard error of the mean (S.E.M). Variance analysis 
of repeated measurements (ANOVA RM) followed by 
Bonferroni was performed for intra-group comparison. 
Different lowercase letters (a through b) indicate a 
statistically significant difference between the different 
times (P<0.05). Immed_1: Immediately after first session 
of treatment; 24h_1: 24h after first session of treatment; 
Immed_2: Immediately after last session of treatment; 
24h_2: 24h after last session of treatment.
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considered supraspinally-integrated responses. 
According to wide evidence, this constitutes the 
rationale for testing of the antihyperalgesic effect 
of tDCS. Based on the montage of our electrode, 
it is plausible that the sham effects (30-second 
stimulation) found here may be due to motor cortex 
stimulation. It is likely that the impact of transcranial 

Figure 6: Evaluation of Non-active Sham group in different 
times on hot plate test. Data were expressed as the mean 
± standard error of the mean (S.E.M). Variance analysis 
of repeated measurements (ANOVA RM) followed by 
Bonferroni was performed for intra-group comparison. 
The NAS group did not present variation on different 
times. Equal lowercase letters (a) indicate that there is 
no statistically significant difference between the different 
times (P>0.05). Immed_1: Immediately after first session 
of treatment; 24h_1: 24h after first session of treatment; 
Immed_2: Immediately after last session of treatment; 
24h_2: 24h after last session of treatment.

Figure 7: Evaluation of tDCS group at different times on hot 
plate test. Data were expressed as the mean ± standard 
error of the mean (S.E.M). Variance analysis of repeated 
measurements (ANOVA RM) followed by Bonferroni was 
performed for intra-group comparison. The tDCS group did 
not present variation at different times. Equal lowercase 
letters (a) indicate that there is no statistically significant 
difference between the different times (P>0.05). Immed_1: 
Immediately after first session of treatment; 24h_1: 24h 
after first session of treatment; Immed_2: Immediately after 
last session of treatment; 24h_2: 24h after last session 
of treatment.

stimulation on pain relief depends on the projection 
of fibers from the motor cortex to other structures 
involved in pain processing, such as the thalamus 
and brainstem nuclei that downregulate processing 
from sensitized neurons38,39. Besides, it is recognized 
that the neuromechanisms of tDCS treatment seem 
to induce changes in different systems.

Similarly, tDCS causes physiological changes 
that result in local and distant plastic changes40. 
Another important finding of this study is that the 
immobilization used in the NASR group during 
the tDCS treatment (20 minutes for 8 consecutive 
days) induced hyperalgesia22,41 indexed by the pain 
threshold decrease in the hot plate test. An important 
point is that the animals did not present analgesia 
immediately after 20 minutes of restraint, showing 
that these animals were not able to respond with 
stress‑induced analgesia (SIA) or 20 min of restraint 
is not enough to promote SIA. Unlike acute stress, 
which has been related to a reduction in pain sensitivity, 
probably mediated by brainstem pain modulation42, 
chronic stress exposure has been associated with 
decreased pain threshold. Indeed, chronic stress is 
associated with increased sensitivity to pain, producing 
hyperalgesia19,22,43,44, and allodynia19,43. It is known that 
stress situations can activate the endogenous opioid 
system and promote behavioral changes, such as 
diminished anxiety levels, a protective mechanism 
of body resistance to stress45.

Furthermore, a human study has shown that 
a reduction in pain threshold after long-term 
psycho‑emotional stress probably occurs due to a 
decrease in the activity of the brain’s opioid system46. 
Previous data from our group suggest the involvement 
of the opioid system in the hyperalgesic response 
induced by repeated restraint stress22,41,44,47. Under 
these conditions, we can also suggest that data 
found in our study may be related to an effect of 
stress on the opioid system. Another possibility is 
that the activation of stress-related circuitry in the 
hypothalamus activates pain-facilitating neurons in the 
rostral ventromedial medulla to produce hyperalgesia, 
suggesting possible changes in brain activity42. It has 
also been postulated that the opioid system, which is 
an important modulator of the descending pathway 
of pain, could be implicated in the pain suppression 
mechanism48. Additionally, chronic stress is able to 
decrease the efficiency of the descending inhibitory 
systems49 and consequently facilitates the nociceptive 
processing. Further, it is well-known that exposure to 
stress situations can lead to alterations in the central 
dopaminergic and serotonergic nervous systems that 
can be involved in nociceptive response41,50, and 
trigger HPA axis deregulation which are associated 
with psychiatric disorders51.
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An interesting finding of this study is that the 
hyperalgesia caused by restraint stress was not 
lasting. Restrained rats had their pain thresholds 
normalized after 24 hours, being close to the 
baseline measurement. This effect probably occurred 
because eight days of restrain were not enough to 
produce long-lasting stress-induced hyperalgesia41. 
Interestingly, the 30 seconds of stimulation without 
immobilization-induced hyperalgesia lasted for at 
least 24 hours, indicating that this stimulation has a 
synergic stressor potential, thus we can hypothesize 
that active-sham potentiates the mechanisms of 
restraint stress. Moreover, the hyperalgesia could be 
related to the fact that patients with stress disorder 
have constant complaints of increased sensitivity to 
pain and other disorders involving persistent pain52. 
Therefore, at the clinical level, the present data could 
indicate that chronic pain patients need to receive 
a multifactorial approach to have success in the 
treatment. It is recognized that in the first 30 seconds 
of stimulation patients can feel itching and discomfort31, 
thus we also can propose that 30 seconds of active 
electric current worked like a stressor. In addition, 
this decreased threshold can be similar to the effect 
produced by a brief intense inescapable shock that 
can cause long-term behavioral sequelae, such 
as avoidance for the traumatic spatial context and 
increased anxiety, accompanied by increases in the 
nociceptive response53.

In the present study, the control and NAS groups 
that were just handled and the electrodes applied for 
30 seconds, without active electric current, did not 
present variation on pain threshold. In the same way, 
the tDCS group, which was restrained and received 
20 minutes of active stimulation, did not show variation 
on pain threshold. We can suggest that our montage 
was efficient to prevent the deleterious effect of chronic 
restraint stress. In this context, the analgesic effect 
of tDCS could be mediated by modulatory effects in 
pain sensation in several neurotransmitter systems, 
including opioid, adrenergic, substance P, glutamate 
and neurokinin receptors54,55. Viewed as a whole, the 
tDCS may lead to a cascade of events resulting in 
the modulation of synaptic neural chains that include 
several thalamic nuclei, the limbic system, brainstem 
nuclei, and the spinal cord56. The increased expression 
of inhibitory neurotransmitters in the dorsal horn of 
the spinal cord, like GABA and glycine, may explain 
the analgesic effects of tDCS, as observed in other 
neuromodulatory therapies57,58. Interestingly, brain 
modulation by electrical stimulation can induce 
changes to the endogenous opioid system in humans59. 
Likewise, motor cortex stimulation (MCS) induced 
an increase in endogenous opioid activity in patients 

with chronic pain59,60, and anodal tDCS enhanced 
endogenous opioid release in healthy humans3.

Unlike tDCS montage in humans1, the tDCS animal 
model is not focal, and may have a widespread effect 
in cortical circuits, acting on several neural centers. 
Among them, we can mention those involved in 
neuromatrix, as discussed by Melzack, reaching 
affective-motivational (anterior cingulate and insular 
cortices) and sensory-discriminative (primary and 
secondary somatosensorial cortices) components, 
acting on the pain and stress processing61,62.

In summary, the immobilization of animal body 
and the sham-active stimulation (30 seconds) used 
separately, acted like stressors decreasing pain 
threshold (hyperalgesia). However, when these two 
factors were added to the tDCS treatment this effect 
was prevented, demonstrating that the analgesic 
effect of tDCS treatment is not due to restraint stress 
or sham stimulation in naïve animals. In addition, 
the tDCS treatment was able to prevent the harmful 
effect of the restraint or sham-tDCS (30 seconds 
stimulation). Thus, our model could be safe for 
nociception evaluation in animals.

CONCLUSIONS

This study showed that there are methodological 
limitations in the present tDCS-technique, since 
physical restraint and 30 seconds stimulation 
(sham-tDCS) increased pain sensitivity. Then, the 
interference of those factors has to be considered 
during the result analysis. Although active-tDCS 
treatment is able to prevent these harmful effects, 
demonstrating that our model is a safer and effective 
method for tDCS application. Further studies about 
the tDCS-technique in rats are required to evaluate 
its therapeutic effects in pain and other conditions. It 
requires a good experimental model, without bias of 
sham model, and which closely resembles the model 
used in clinical research. Consequently, it allows the 
conduction translational research with potential to 
produce quality reliable results.
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