Microbiota do solo: a diversidade invisível e a sua importância
Resumo
Micro-organismos estão presentes em todos os lugares da Terra que suportam vida. Os solos apresentam maior quantidade e diversidade bacteriana do que a água ou o ar, devido a sua heterogeneidade de substratos. Estima-se que há um milhão de espécies de bactérias em 30 gramas de solos florestais e que haverá pelo menos um bilhão de espécies em todo o mundo. Apesar de constituírem somente de 1 a 4% do carbono total e ocuparem menos de 5% do espaço poroso do solo, a diversidade e a quantidade de micro-organismos nesse ambiente é bastante elevada. Entretanto, como o solo é normalmente um ambiente estressante, limitado por nutrientes, somente 15 a 30% das bactérias e 10% dos fungos se encontram em estado ativo. Os componentes microbianos vivos do solo são também denominados de biomassa microbiana e as bactérias e fungos respondem por cerca de 90% da atividade microbiana do solo. A diversidade microbiana se encontra diretamente relacionada com um conjunto de fatores abióticos (atmosfera, temperatura, água, pH, potencial redox, fontes nutricionais, entre outros) e bióticos (genética microbiana, a interação entre os micro-organismos, entre outros), que permite o desenvolvimento microbiano e a estruturação da comunidade viva dos solos. A interação entre esses fatores influencia diretamente a ecologia, a atividade e a dinâmica populacional de micro-organismos no solo. Muitas transformações críticas dos principais ciclos biogeoquímicos da biosfera ocorrem nos solos e são facilitadas pelos organismos que nele vivem. Apesar da importância de todos os micro-organismos que compõem a microbiota dos solos, esse trabalho tratará mais detalhadamente da comunidade bacteriana desse ambiente e o seu papel no desenvolvimento das plantas e nos ciclos biogeoquímicos. Além disso, esse trabalho aborda os principais métodos de análise de comunidades bacterianas dos solos mais utilizados atualmente.
Downloads
Referências
Madigan, M., Martinko, J., Bender, K. 2016. Microbiologia de Brock. 14th. ed. Artmed, Porto Alegre.
Dykhuizen, D. 2005. Species numbers in bacteria. Proceedings of the California Academy of Sciences 3 (56): 62–71.
Torsvik, V., Øvreâs, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology 5: 240–245.
Mattos. A.M.L. 2015. Microbiologia do solo. Embrapa Clima Temperado, Pelotas.
Andreola, F., Fernandes, S.A.P. 2007. A Microbiota do Solo na Agricultura Orgânica e no Manejo das Culturas In: Silveira, A.P.D., Freitas, S.S. (eds). Microbiota do Solo e Qualidade Ambiental, pp. 30-37. Instituto Agronômico, Campinas, SP.
Van der Heijden, M.G.A., Bardgett, R. D., Van Straalen, N.M. 2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11(3): 296–310.
Cotta, S.R. 2016. O solo como ambiente para a vida microbiana. In: Cardoso, E.J.B.N., Andreote, F. D. (eds). Microbiologia do Solo, pp. 23-36. ESALQ, Piracicaba, SP..
Dabert, P., Delgen, J. 2002. Contribution of molecular microbiology to the study in water pollution removal of microbial community dynamics. Environmental Science & Bio/Technology 1: 39-49.
Lambais, M.R., Cury, J.C., Maluche-Baretta, C.R., et al. 2005. Diversidade Microbiana nos Solos: Definindo Novos Paradigmas. Tópicos em Ciência do Solo 4: 43-84.
Coûteaux, M.M., Darbyshire, J F. Functional diversity amongst soil protozoa. Applied Soil Ecology 10 (3): 229-237. https://doi.org/10.1016/s0929-1393(98)00122-x
Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41: 109–117.
Glick B.R., Patten C.L, Holguin G. et al. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London.
Kloepper, J.W., Lifshitz, R., Zablotowicz, R.M. 1989. Free-living bacterial inocula for enhancing crop productivity. Tibtech 7: 39-44.
Babalola, O.O. 2010. Beneficial bacteria of agricultural importance. Biotechnology Letters 32: 1559-1570.
Tyc, O., Song, C., Dickschat, J.S., Voz, M., Garbeva, P. 2017. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends in Microbiology 25 (4): 280-292. https://doi.org/10.1016/j.tim.2016.12.002
Dror, B., Jurkevitch, E., Cytryn, E. 2020. State-of-the-art methodologies to identify antimicrobial secondary metabolites in soil bacterial communities – A review. Soil Biology and Biochemistry, 107838. https://doi.org/10.1016/j.soilbio.2020.107838
Glick, B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research 169 (1): 30-39.
Lastochkina, O., Aliniaeifard, S., Seifikalhor, M et al. 2019. Plant growth-promoting bacteria: biotic strategy to cope with abiotic stresses in wheat. In: Hasanuzzaman, M., Nahar, K., Hossain, M.A. (eds). Wheat production in changing environments, pp. 179-614. Springer Nature, Cham. https://doi.org/ 10.1007/978-981-13-6883-7_23
Dimkpa, C., Weinand, T., Asch, F. 2009. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment 32: 1682-1694. https://doi.org/10.1111/j.1365-3040.2009.02028
Smith, K.P., Goodman, R.M. 1999. Host variation for interactions with beneficial plant-associated microbes. Annual Review of Phytopathology 37: 473-491.
Miransari, M. 2011. Soil microbes and plant fertilization. Applied Microbiology and Biotechnology 92: 875-885.
Glick, B.R. 2015. Beneficial plant-bacterial interactions. First ed. Springer International Publishing, Ottawa.
Hayat, R., Ali, S., Amara, U. et al. 2010. Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology 60 (4): 579–598.
Singh, V.K., Singh, A.K., Singh, P.P. et al. 2018. Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agriculture, Ecosystems & Environment 267: 129–140. https://doi.org/10.1016/j.agee.2018.08.020
Glick, B.R., Pasternak, J.J., Patten, C.L. 2010. Molecular Biotechnology: Principles and Applications of Recombinant DNA. American Society for Microbiology, Washington/D.C.
Erisman, J.W., Sutton, M.A., Galloway, J. et al. 2008. How a century of ammonia synthesis changed the world. Nature Geoscience 1 (10): 636-639.
Numan, M., Bashir, S., Khan, Y. et al. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, 209: 21–32. https://doi.org/10.1016/j.micres.2018.02.003
Souza, R. de, Ambrosini, A., Passaglia, L.M.P. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology 38 (4): 401–419.
Goldstein, A.H. 1994. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini, A., Yagil, E., Silver, S. (eds). Phosphate in microorganisms: cellular and molecular biology, pp. 197-203. ASM, Washington/D.C.
Khan, M.S., Zaidi, A., Wani, P.A. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture – A review. Agronomy for Sustainable Development 27: 29-43.
Eijk, D.V.D. 1997. Phosphate fixation and the response of maize to fertilizer phosphate in Kenyan soils. 186p. Master thesis, Wageningen Agricultural University, Wageningen.
Whitelaw, M.A., Harden, T J., Helyar, K.R. 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biology and Biochemistry 31: 655-665.
Reyes, I., Bernier, L., Simard, R.R. et al. 1999. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology 28: 281-290.
Rodriguez, H., Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechonology Advances 17: 319-339.
Silva Filho, G. N., Narloch, C., Scharf, R. 2002. Solubilização de fosfatos naturais por micro-organismos isolados de cultivos de Pinus e Eucalyptus de Santa Catarina. Pesquisa Agropecuária Brasileira 37: 847-854.
Ramakrishna, W., Rathore, P., Kumari, R. et al. 2019. Gold of Marginal Soil: Plant Growth Promoting Bacteria to Overcome Plant Abiotic Stress for Agriculture, Biofuels and Carbon Sequestration. Science of the Total Environment 135062. https://doi.org/10.1016/j.scitotenv.2019.135062
Morales-Cedeño, L.R., Orozco-Mosqueda, M.C., Loeza-Lara, P.D. et al. 2020. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiological Research 126612. https://doi.org/10.1016/j.micres.2020.126612
Peleg, Z., Blumwald, E. 2011. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology 14: 290-295.
Iqbal, N., Umar, S., Khan, N.A. et al. 2014. A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and Experimental Botany 100: 34-42.
Rodrigues, J.D., Godoy, L.J.G, Ono, E.O. 2004. Reguladores vegetais: Bases e princípios para utilização em gramados. II. Simpósio sobre gramados, Botucatu.
Glick, B.R., Bashan, Y. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens, Biotechnology Advances 15 (2): 353-378.
Lucy, M., Reed, E., Glick, B.R. 2004. Applications of free-living plant growth-promotor rhizobacteria. Antonie Van Leeuwenhoek 86: 1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
Olanrewaju, O.S., Glick, B.R., Babalola, O.O. 2017: Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology 33: 197. https://doi.org/10.1007/s11274-017-2364-9
Ruiu, L. 2020. Plant-Growth-Promoting Bacteria (PGPB) against insects and other agricultural pests. Agronomy 10: 861.
Blumer, C., Haas, D. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology 173: 170–177. 2000. https://doi.org/10.1007/s002039900127
Haas, D., Défago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews in Microbiology 3: 307-319. https://doi.org/10.1038/nrmicro1129
Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R.A. et al. 2014. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research 169 (5-6): 325-336. 2014.
Ramakrishna, W., Yadav, R., Li, K. 2019. Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology 138: 10-18. https://doi.org/10.1016/j.apsoil.2019.02.019
Goswami, D., Thakker, J.N., Dhandhukia, P.C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture, 2 (1): 1127500. https://doi.org/10.1080/23311932.2015.1127500
Khabbazl, S.E., Ladhalakshmi, D., Babu, M. et al. 2019. Plant Growth Promoting Bacteria (PGPB)—A Versatile Tool for Plant Health Management. Canadian Journal of Pesticides & Pest Management, 1 (1): 1-25. https://doi.org/10.34195/can.j.ppm.2019.05.001
Sansinenea, E. 2019. Bacillus spp.: As Plant Growth-Promoting Bacteria. In: Singh, H.B., Keswani, C., Reddy, M.S. et al. (eds). Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, pp. 225-237. Springer Nature, Cham. https://doi.org/10.1007/978-981-13-5862-3_11
Prosser, J.I. 2006. Microorganisms Cycling Soil Nutrients and Their Diversity. In: Van Elsas, J.D., Jansson, J.K., Trevors, J.T. (eds.). Modern Soil Microbiology, pp. 237-382. 2nd. ed. Taylor & Francis, Boca Raton.
Madsen, E.L. 2011. Microorganisms and their roles in fundamental biogeochemical cycles. Current Opinion in Biotechnology 22 (3): 456–464. https://dx.doi.org/10.1016/j.copbio.2011.01.008
Jickells, T.D. 1998. Nutrient Biogeochemistry of the Coastal Zone. Science 281 (5374): 217-222.
Middledrop, P, Briglia, M, Salkinoja-Salonen, M. 1990. Biodegradation of pentachlorophenol in natural polluted soil by inoculated Rhodococcus chlorophenolicus. Microbial Ecology 20: 123-139.
Burd, G, Dixon, D.G., Glick, B.R. 2000. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46: 237-245.
Zaidi, S., Usmani, S., Singh, B. R., Musaratt, J. 2008. Significance of Bacillus subtilis strains SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997.
Bottomley, P.J., Maggard, S.P. 1990. Determination of viability within serotypes of a soil population of Rhizobium leguminosarum biovar trifolii. Applied and Environmental Microbiology 56: 533-540.
Bottomley, P.J., Dughri, M.H. 1989. Population size and distribution of Rhizobium leguminosarum biovar trifolii in relation to total soil bacteria and soil depth. Applied and Environmental Microbiology 55: 959-964.
Lynch, J.M. 1983. Soil biotechnology. Blackwell, Oxford.
Brown, M.E. 1974. Seed and root bacterization. Annual Review of Phytopathology 12: 181-197.
Bruijn, F.J.d. 2015. Biological Nitrogen Fixation, Volume II. 1st. ed. John Wiley & Sons, Hoboken.
Brady, N.C. 1984. The nature and properties of soils. 9th ed. Macmillan Publishing Company, New York.
Ledger, T., Poupin, M.J., Timmermann, T. et al. 2019. PGPR compositions and methods for improved cultivation of tomato and potato species, US Patent 10513681.
Weil, R.R., Brady, N.C. 2017. The Nature and Properties of Soils. 15th ed. Pearson Education, Harlow.
Haynes, R.J., Mokolobate, M.S. 2011. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutrient Cycling in Agroecosystems 59: 47-63.
Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. et al. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2 (1): 1-14.
Ohtake, H., Wu, H., Imazu, K. et al. 1996. Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. Resources, Conservation & Recycling 18: 125-134.
Sperberg, J.I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research 9: 778-781.
Katznelson, H., Peterson, E.A., Rovatt, J.W. 1962. Phosphate dissolving microorganisms on seed and in the root zone of plants. Canadian Journal of Botany 40: 1181-1186.
Raghu, K., Macrae, I.C.1966. Occurrence of phosphate-dissolving microorganisms in the rhizosphere of rice plants and in submerged soils. Journal of Applied Bacteriology 29 (3): 582-586.
Alexander, M. 1977. Introduction to Soil Microbiology. Wiley and Sons, New York.
Dick, W.A., Kost, D., Chen, L. 2008. Availability of Sulfur to Crops from Soil and Other Sources. In: Jez, J. (ed.). Sulfur; A Missing Link between Soils, Crops, and Nutrients, pp. 59-82. 1st. ed. ASA, CSSA, SSSA, Madison.
McClung, A.C., Freitas, L.M.M. 1959. Sulfur deficiency in soils from Brazilian campus. Ecology 40 (2): 315-317.
Ribeiro, E.S., Dias, L.E., Alvarez., V.H. et al. 2001. Dynamics of Sulfur Fractions in Brazilian Soils Submitted to Consecutive Harvests of Sorghum. Soil Science Society of America Journal 65: 787-794.
Mishra, A., Sharma, S.D., Khan, G.H. 2003. Improvement in physical and chemical properties of sodic soil by 3-, 6- and 9-years old plantation of Eucalyptus tereticornis bio rejuvenation of sodic soil. Forest Ecology and Management 184 (1-3): 115-124.
Bardgett, R.D., Freeman, C., Ostle, N.J. 2008. Microbial contributions to climate change through carbon cycle feedbacks. ISME Journal 2 (8): 805-814.
Dean, J.F., Middelburg, J.J., Röckmann, T. et al. 2018. Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics 56 (1): 207-250.
Lemanceau, P., Maron, P-A., Mazuriei, S. et al. 2014. Understanding and managing soil biodiversity: a major challenge in agroecology. Agronomy for Sustainable Development 35: 67-81.
Bender, S. F., Wagg, C., van der Heijden, M.G.A. 2016. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology& Evolution 31: 440-452. https://doi.org/10.1016/j.tree.2016.02.016
Paul, E.A. 2015. Microbiology, Ecology, and Biochemistry. 4th. ed. Elsevier, Fort Collins. https://doi.wiley.com/10.1111/j.1365-2389.2008.01052_2.x
Allison, S.D. 2006. Soil minerals and humic acids alter enzyme stability: Implications for ecosystem processes. Biogeochemistry 81 (3): 361–373.
Standing, D., Killham, K. 2006. The Soil Environment. In: van Elsas, J.D., Jasson, J.K., Trevors, J.K. (eds.). Modern Soil Microbiology, pp. 1-22. 2nd. ed. Taylor & Francis, London, New York.
Nybroe, O., Brandt, K.K., Nicolaisen, J.H. et al. 2006. Methods to Detect and Quantify Bacteria in Soil. In: van Elsas, J.D., Jasson, J.K., Trevors, J.K. (eds.). Modern Soil Microbiology, pp. 284-316. 2nd. ed. Taylor & Francis, London, New York.
Kandeler, E. 2015. Physiological and Biochemical Methods for Studying Soil Biota and Their Functions. In: Paul, E.A. (ed). Soil Microbiology, Ecology, and Biochemistry, pp. 152-222. 4th. ed. Academic Press, London.
Hill, G.T., Mitkowski, N.A., Aldrich-Wolfe, L. et al. 2000. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology 15: 25-36.
Trevors, J.T. 1998. Bacterial biodiversity in soil with an emphasis on chemically-contaminated soils. Water, Air and Soil Pollution 101: 45-67.
Kirk, J.L., Beaudette, L.A., Hart, M. et al. 2004. Methods of studying soil microbial diversity. Journal of Microbiological Methods 58 (2): 169-188.
Oliver, J.D. 1993. Formation of Viable but Nonculturable Cells. In: Starvation Bacteria (Kjelleberg, S., ed). 1st. ed. Springer, New York, p. 239–272.
Stewart, E.J. 2012. Growing Unculturable Bacteria. Journal of Bacteriology 194 (16): 4151–4160.
Paul, D., Kumar, S., Mishra, M. et al. 2018. Molecular Genomic Techniques for Identification of Soil Microbial Community Structure and Dynamics. In: Adhya, T.K., Lal, B., Mohapatra, B. et al. (eds.). Advances in Soil Microbiology: Recent Trends and Future Prospects. Volume 1: Soil-Microbe Interaction, pp. 9-33. Singapure: Springer Nature Singapore Pte Ltd, Singapure.
Govaerts, B., Mezzalama, M., Unno, Y. et al. 2007. Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology 37 (1-2): 18–30.
Jesus, E.C., Marsh, T., Tiedje, J.M. et al. 2009. Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal 3 (9): 1004–1011.
Kaschul, G., Alberton, O., Hungria, M. 2011. Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: Inferences to improve soil quality. Plant and Soil 338 (1): 467-481.
Lan, G., Li, W., Wu, Z. et al. 2017. Soil bacterial diversity impacted by conversion of secondary forest to rubber or eucalyptus plantations: A case study of Hainan Island, South China. Forest Science 63 (1): 87-93.
Kulski, J. K. 2015. Next-Generation Sequencing — An Overview of the History, Tools, and “Omic” Applications. In: Kulski, J. K. (ed.). Next Generation Sequencing - Advances, Applications and Challenges, p. 3-60. IntechOpen, London.
Lombard, N., Prestat, E., van Elsas, D. J. et al. 2011. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiology Ecology 78: 31-49.
He, Z., Gentry, T.J., Schadt, C.W. et al. 2007. GeoChip: A comprehensive microarray for investigating biogeochemical, ecological, and environmental processes. ISME Journal 1 (1): 67-77.
Vibhuti, M., Kumar, A., Sheoran, N. et al. 2017. Molecular basis of endophytic Bacillus megaterium-induced growth promotion in Arabidopsis thaliana: Revelation by microarray-based gene expression analysis. Journal of Plant Growth Regulation 36 (1): 118-130.
Thies, J. E. 2015. Molecular Approaches to Studying the Soil Biota. In: Paul, E. A. (ed.). Soil Microbiology, Ecology, and Biochemistry, pp. 151-185. 4th. ed. Elsevier, Fort Collins.
Zhou, J.K.D. 2002. Challenges in applying microarrays to environmental studies. Current Opinion in Biotechnology 12: 204–207.
Chang, T.W. 1983. Binding of Cells to Matrixes of Distinct Antibodies Coated on Solid Surface. Journal of immunological Methods 65: 217-223.
Schena, M., Shalon, D., Davis, R.W. et al. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270 (5235): 467-470.
Letowski, J., Brousseau, R., Masson, L. 2011. DNA Microarray Applications in Environmental Microbiology. Analytical Letters 36 (15): 37-41.
Zhou, J. 2003. Microarrays for bacterial detection and microbial community analysis. Current Opinion in Microbiology 6: 288-294.
Bodrossy, L., Sessitsch, A. 2004. Oligonucleotide microarrays in microbial diagnostics. Current Opinion in Microbiology 7: 245-254.
Loy, A., Lehner, A., Lee, N. et al. 2002. Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment. Applied and Environmental Microbiology 68 (10): 5064-5081.
Rhee, S., Liu, X., Wu, L. et al. 2004. Detection of Genes Involved in Biodegradation and Biotransformation in Microbial Communities by Using 50-Mer Oligonucleotide Microarrays. Applied and Environmental Microbiology 70 (7): 4303-4317.
Steward, G.F., Jenkins, B.D., Ward, B.B. 2004. et al. Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Applied and Environmental Microbiology 70 (3): 1455–1465.
Taroncher-Oldenburg, G., Griner, E.M., Francis, C.A. et al. 2003. Oligonucleotide Microarray for the Study of Functional Gene Diversity in the Nitrogen Cycle in the Environment. Applied and Environmental Microbiology 69 (2): 1159-1171.
Tiquia, S. M., Wu, L., Chong, S.C. et al. 2004. Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. BioTechniques 36 (4): 664-675.
Wu, L., Liu, X., Schadt, C. W. et al. 2006. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Applied and Environmental Microbiology 72 (7): 4931-4941.
Zhou, J., Thompson, D. K., Xu, Y. et al. 2004. Microbial Functional Genomics. 1st. ed. John Wiley & Sons, Hoboken.
Graham, R.P., Yeh, M.M., Lam-Himlin, D. 2017. et al. Molecular testing for the clinical diagnosis of fibrolamellar carcinoma. Modern Pathology 31 (1) 141–149. https://dx.doi.org/10.1038/ modpathol.2017.103
Parolin, C., Giordani, B., Palomino, R.A.N. et al. 2017. Design and validation of a DNA-microarray for phylogenetic analysis of bacterial communities in different oral samples and dental implants. Scientific Reports 7 (1): 1-12.
Russell, S., Meadows, L.A., Russell, R.R. 2009. Microarray Technology in Practice. 1st. ed. Elsevier, San Diego.
Bumgarner, R. Overview of DNA microarrays: Types, applications, and their future. Current Protocols in Molecular Biology 101: 22.1.1-22.1.11.
Levy, S.E., Myers, R.M. Advancements in next-generation sequencing. Annual Review of Genomics and Human Genetics 17 (1): 95-115.
Margulies, M., Egholm, M., Altman, W.E. et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437 (7057): 376-380.
Bentley, D.R., Balasubramanian, S., Swerdlow, H.P. et al. 2008. Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry. Nature 456 (7218): 53-59.
Kumaresan, D., Stephenson, J, Doxey, A. C. et al. 2018. Aerobic proteobacterial methylotrophs in movile cave: genomic and metagenomic analyses. Microbiome 6 (1): 1-10.
Li, Q., Zhang, B., Yang, X. et al. 2018: Deterioration-Associated Microbiome of Stone Monuments: Structure, Variation, and Assembly. Applied and Environmental Microbiology 84 (7): 1-19.
Mandal, S. de, Lalremsanga, H.T., Senthil, N. 2015. Genomics Data Bacterial diversity of Murlen National Park located in Indo-Burman Biodiversity hotspot region: A metagenomic approach. Genomics Data 5: 25-26. https://dx.doi.org/10.1016/j.gdata.2015.04.025
Patel, R., Mevada, V., Prajapati, D. et al. 2015. Genomics Data Metagenomic sequence of saline desert microbiota from wild ass sanctuary, Little Rann of Kutch, Gujarat, India. Genomics Data3: 137-139, 2015. https://dx.doi.org/10.1016/j.gdata.2015.01.003
Yasir, M. Analysis of bacterial communities and characterization of antimicrobial strains from cave microbiota. Brazilian Journal of Microbiology 49 (2): 248–257. https://doi.org/10.1016/j.bjm.2017.08.005
Glasl, B., Webster, N.S., Bourne, D. G. 2017. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Marine Biology 164 (4): 1-18.
Vargas, R.S., Bataiolli, R., Costa, P.B. et al. 2015. Microbial quality of soil from the Pampa biome in response to different grazing pressures. Genetics and Molecular Biology 38 (2): 205-212.
Wang, R., Zhang, H., Sun, L. et al. 2017. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Scientific Reports 7 (1): 1-10. https://dx.doi.org/10.1038/s41598-017-00472-6
Rodrigues, J.L.M., Pellizari, V.H., Mueller, R. et al. 2013. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 110 (3): 988-993.
Yanagui, K. 2016. Novas tecnologias, novos desafios. Ciência e Cultura 68: 8-11.
Lugtenberg, B., Kamilova, F. 2009. Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology 63 (1): 541-556. https://doi:10.1146/annurev.micro.62.081307.162918
Dall’Agnol, L.T., Moura J.J.G. 2014. Sulphate-reducing bacteria (SRB) and biocorrosion. In: Liegen et al. (eds.): Understanding Biocorrosion. Fundamentals and Applications. Woodhead Publishing. https://doi.org/10.1533/9781782421252.1.77
Richardson, A.E., Barea, J.M.; McNeill, A.M. et al. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321: 305-339. https://doi.org/10.1007/s11104-009-9895-2
Mathewson, J.H. 2003. Oceanography - Chemical. Encyclopedia of Physical Science and Technology (Third Edition). Academic Press. https://doi.org/10.1016/B0-12-227410-5/00509-3
Hirsch, P.R., Mauchline, T.H., Clark, I.M. 2010. Culture-independent molecular techniques for soil microbial ecology. Soil Biology and Biochemistry 42 (6): 878-887. https://doi:10.1016/j.soilbio.2010.02.019