Pesquisas em Geociências

http://seer.ufrgs.br/PesquisasemGeociencias

Proveniência de metassedimentos das sequências Arroio Areião, Cerro Cambará e Quartzo Milonitos no Complexo Metamórfico Porongos, Santana da Boa Vista, RS

Leonardo Gruber, Carla Cristine Porcher, Cristine Lenz, Luís Alberto D'ávila Fernandes Pesquisas em Geociências, 38 (3): 205-224, set./dez., 2011.

Versão online disponível em: http://seer.ufrgs.br/PesquisasemGeociencias/article/view/35157

Publicado por

Instituto de Geociências

Informações Adicionais

Email: pesquisas@ufrgs.br

Políticas: http://seer.ufrgs.br/PesquisasemGeociencias/about/editorialPolicies#openAccessPolicy **Submissão:** http://seer.ufrgs.br/PesquisasemGeociencias/about/submissions#onlineSubmissions **Diretrizes:** http://seer.ufrgs.br/PesquisasemGeociencias/about/submissions#authorGuidelines

Proveniência de metassedimentos das sequências Arroio Areião, Cerro Cambará e Quartzo Milonitos no Complexo Metamórfico Porongos, Santana da Boa Vista, RS

Leonardo GRUBER¹, Carla Cristine PORCHER², Cristine LENZ³ & Luís Alberto D'ávila FERNANDES⁴

Recebido em 12/2010. Aceito para publicação em 08/2011. Versão *online* publicada em 05/11/2012 (www.pesquisasemgeociencias.ufrgs.br)

Resumo - Estudos de proveniência em grãos de zircão detríticos através do método U-Th-Pb (LA-ICP-MS) dos metassedimentos do Complexo Metamórfico Porongos determinaram a existência de duas áreas-fontes principais de idades paleoproterozóicas e mesoproterozóicas para os protólitos dos xistos Arroio Areião, Cerro Cambará e quartzo milonitos associados. Foram obtidas idades entre 1041 ± 46 Ma e 2414 ± 31 Ma para a sequência Arroio Areião, entre 1010 ± 17 Ma e 2652 ± 32 Ma para a sequência Cerro Cambará, e idades entre 1619 ± 39 Ma e 2910 ± 24 Ma para os quartzo milonitos associados. A idade máxima de deposição das sequências Arroio Areião e Cerro cambará é neoproterozóica, enquanto os quartzo milonitos possuem idade máxima de deposição mesoproterozóica. A origem dos grãos de idade paleoproterozóica pode ser correlacionada às rochas do Complexo Encantadas, que faz parte do embasamento das unidades supracrustrais, além de rochas do embasamento do cráton Kalahari. Entretanto áreas-fontes de idade mesoproterozóica (entre 1041 = 1619 Ma) não foram ainda reconhecidas no Cinturão Dom Feliciano. Estes grãos de zircão podem ser derivados de associações de rocha pertencentes aos terrenos mesoproterozóicos (tipicamente associados com as orogêneses Elzeverian e Greenville) associados ao sistema geodinâmico que incluí os crátons Amazonas, Kalahari, Congo – São Francisco e Laurencia e cinturões associados. Este trabalho demonstra que do ponto de vista isotópico e estratigráfico, não existem diferenças significativas de idades detríticas entre as sequências metassedimentares que afloram nos flancos da Antiforme de Santana da Boa Vista.

Palavras-chave: Complexo Metamórfico Porongos, idades U-Pb em zircão, proveniência.

Abstract - (Palaeoproterozoic and mesoproterozoic provenance ages of zircons from the sequences Arroio Areião, Cerro Cambará and quartz mylonites of the Porongos Metamorphic Complex in Santana da Boa Vista, South of Brazil). Provenance studies based upon detritic zircon grain U-Th-Pb methodology (LA-ICP-MS) from metasediments of Porongos Metamorphic Complex have determined the existence of two principal source-areas with paleoproterozoic and mesoproterozoic ages to the protolith of the schists of Arroio Areião, Cerro Cambará and associated quartz mylonites. To the Arroio Areião Sequence, ages between 1041 ± 46 Ma and 2414 ±31 Ma Ma were obtained, between 1010 ± 17 Ma and 2652 ± 32 Ma to Cerro Cambará sequence, and 1619 ± 39 Ma and 2910 ± 24 Ma to the associated quartz mylonites. The source-area with paleoproterozoic ages can be related to the Encantadas Complex rocks, which is basement of the supracrustal sequences, and Kalahari embasament rocks. The source-areas to the mesoproterozoic zircon grains (between 1041 and 1619 Ma) are not recognized in the Dom Feliciano Belt. These zircon grains can be related to mesoproterozoic petrotectonic associations (typically associated with Greenville and Elzeverian orogens) associated to the geodynamic system that includes the Amazon, Kalahari, Congo – São Francisco and Laurentia cratons, and associated belts. This work shows that from isotopic and stratigraphyc point of view there is no significantly differences between the metasedimentary sequences cropping out in both Santana da Boa Vista antiform flanks. **Keywords:** Porongos Metamorphic Complex, zircon U-Pb ages, provenance.

1. Introdução

Estudos de proveniência em metassedimentos pré-cambrianos são relevantes para o entendimento da evolução planetária ao longo do tempo geológico, pois sedimentos representam uma média da composição crustal. Para tal, a análise isotópica e geocronológica das unidades metassedimentares é necessária, uma vez que os processos geológicos anteriores ao metamorfismo

¹ Programa de Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, CEP 91540-000. E-mail: leonardo.gruber@ufrgs. br

^{2,4} Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, CEP 91540-000. E-mail: cporcher@ufrgs.br, ladfernandes@gmail.com.

³ Laboratório de Geologia Isotópica, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, CEP 91540-000. E-mail: crislenz@yahoo.com.br.

e deformação se encontram comumente obliterados. O uso de técnicas analíticas de alta precisão como a datação U-Th-Pb em zircão permite inferir a idade de deposição de sedimentos e as características gerais de possíveis áreas-fonte, como distância (rolamento e tamanho dos grãos) e ambiente de cristalização dos grãos (i.e, razão Th/U) (Williams & Claesson, 1987; Williams, 2001; Rubatto, 2002).

O Complexo Metamórfico Porongos (CMP) é parte de um cinturão de orientação NE-SW (Cinturão Dom Feliciano), metamorfizado em fácies xisto verde a anfibolito, formado durante o amalgamento dos crátons Kalahari e Rio de La Plata durante o neoproterozóico (Fig. 1A) (Fragoso-César, 1991; Fernandes *et al.*, 1995ab; Frantz & Botelho, 2000; Chemale Jr., 2000; Basei *et al.*, 2000, 2008). Esse cinturão (Fig. 1B) é composto por rochas supracrustais com restrita contribuição vulcânica, depositadas sobre embasamento siálico paleoproterozóico.

O ambiente, idade de deposição e as áreasfonte dos metassedimentos do CMP, contudo, ainda são controversos. Estudos de proveniência em quartzitos deformados que ocorrem nos flancos leste e oeste da antiforme de Santana da Boa Vista e norte da antiforme da Serra do Godinho indicam o embasamento como uma de suas principais áreasfonte (Hartmann *et al.*, 2004).

Com o objetivo de definir as idades das fontes dos sedimentos metapelitos do CMP, foram realizadas análises de U-Pb em zircão detrítico de amostras de clorita-muscovita xistos e quartzo milonitos das sequências Arroio Areião e Cerro Cambará, que afloram nos flancos das antiformes de Santana da Boa Vista e Serra do Godinho.

2. Geologia

2.1. Geologia regional

As rochas do Complexo Metamórfico Porongos são parte dos cinturões de xistos de SE e S do Brasil e Uruguai, e estão localizadas na porção central do Escudo Sul-rio-grandense, no domínio central-leste do Cinturão Dom Feliciano (Fig. 1B) (sensu Fernandes et al., 1995ab; Frantz et al., 1999; Frantz & Botelho, 2000). As rochas estudadas afloram sob a forma de um corpo alongado na direção NE-SW, com aproximadamente 170 km (N-S) por 30 km (W-E). É delimitado a oeste pela bacia tardi-orogênica do Camaquã, a nordeste pela falha Passo dos Marinheiros, e nas regiões central e sudeste pela Zona de Cisalhamento Transcorrente Dorsal de Canguçu, além dos granitóides do

Batólito Pelotas.

As principais rochas aflorantes no CMP são metassedimentos de origem terrígena com restrita ocorrência de rochas vulcanogênicas, entre mica xisto, grafita xistos, filitos, lentes de quartzitos deformados associadas aos xistos, quartzo milonitos, metarcóseos e ocorrências restritas de mármores e meta*cherts*. As rochas metavulcânicas são metabasaltos, metandesitos, metariolitos e metadacitos, além de limitada ocorrência de lentes de rochas meta-ultramáficas na porção oriental do complexo (Jost & Bitencourt, 1980; Marques *et al.*, 1998).

As rochas do CMP já foram definidas como Série Porongos (Carvalho, 1932), Grupo Porongos (Goni, 1962) e Suíte Metamórfica Porongos (Jost & Bitencourt, 1980; Jost, 1981). A denominação de suíte metamórfica foi justificada pelo reconhecimento de duas unidades estratigráficas principais: Complexo Cerro dos Madeiras, compreendendo sequências depositadas sobre o embasamento (Gnaisses Encantadas) dividido nas formações Arroio das Neves (metarcóseos) e Olaria, composto por quartzitos e xistos intercalados; e Complexo Cerro da Árvore, dividido nos litodemas Cerro Cambará, Arroio Areião e Arroio Irapuãzinho. Os metassedimentos das sequências Xistos Arroio Areião, Arroio Irapuazinho e Cerro Cambará possuem variações no grau metamórfico de acordo com a localidade. Os metapelitos das sequências Arroio Areião apresentam em sua porção leste predominância de metamorfismo da zona da estaurolita (quartzo + muscovita + almandina + clorita, até a ocorrência da estaurolita), enquanto a porção oeste é identificado metamorfismo da zona da clorita (Jost, 1982).

Dados termométricos indicam uma temperatura de 488-520°C para biotita-granada, e 529-534°C para granada porfiroblástica póstectônica (Porcher *et al.*, 1995). Para a Antiforme Cerro do Facão, a paragênese de pico metamórfico (M1) foi estimada em 6 Kb de pressão e temperatura em torno de 590°C, e a paragênese M2 (biotita, granada, estaurolita, cloritóide, plagioclásio e quartzo) teve temperatura estimada em 550-560°C e 5 Kb, sendo interpretada como resultante de metamorfismo de contato com as rochas da Suíte Intrusiva Encruzilhada do Sul, na porção leste da antiforme (Lenz, 2006).

2.2. Ambientes tectônicos

As rochas metassedimentares e metavulcânicas associadas do CMP foram interpretadas como depósitos de ambiente de retro-arco, representados pelas sequências Metariolitos Cerro do Alemão, Xistos Arroio Areião, Cerro Cambará e Rincão do Maranhão (Jost & Bitencourt, 1980) do Complexo Cerro da Árvore, e formações. Arroio das Neves e Arroio Olaria do Grupo Cerro dos Madeiras. Estes dois complexos foram considerados, conforme suas rochas e estruturas como uma porção alóctone (Complexo Cerro da Árvore) e outra autóctone (Grupo Cerro dos Madeiras). As assembléias minerais identificadas no Complexo Cerro da Árvore levaram Fragoso-César *et al.* (1984) e Fragoso-César (1991), a interpretá-lo

como o registro de uma retaguarda de arco magmático. Posteriormente, Hartmann et al. (2000) denominaram ambos complexos como Complexo Metamórfico Porongos, em virtude da intensa deformação, que oblitera as relações estratigráficas originais. Issler (1983) considera que os litotipos do CMP caracterizam um sistema de arcofossa. Fernandes et al. (1993) definem que toda a sequência do CMP representa a associação de bacia de retroarco com fragmentos de embasamento siálico intercalados, com transporte tectônico na direção NE-SW.

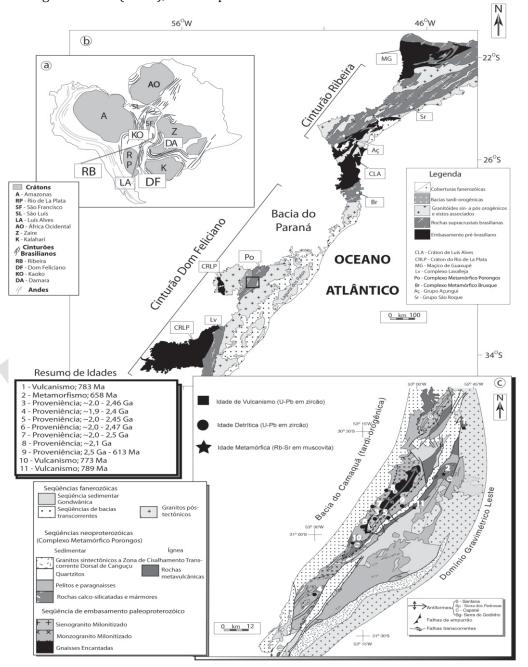


Figura 1. Localização do CMP no Cinturão Dom Feliciano (B) e contexto geotectônico gondwânico (A) extraído de Morales (2002); Mapa geológico do CMP (C) (extraído de Porcher, 1992). Idades de vulcanismo (1) de Porcher et al. (1999); Metamorfismo (2) de Lenz et al. (2005); Proveniência (3-8) de Hartmann et al. (2004); Proveniência (9) de Basei et al. (2008); Vulcanismo (10) de Chemale Jr. (2000) e (11) de Saalmann et al. (2011).

Estas sequências metassedimentares e metavulcâncias encontram-se intercaladas com quartzitos e quartzo milonitos, além de mármores (Jost & Bitencourt, 1980; Remus et al., 1990) e rochas ultramáficas localizadas (Jost & Bitencourt, 1980; Marques, 1996; Marques et al., 1998). Marques (1996) e Marques et al. (1996) interpretam que parte das rochas ultramáficas corresponderia a fragmentos ofiolíticos, implicando no envolvimento de litosfera oceânica além de embasamento siálico. Segundo esses autores, existe uma forte afinidade geoquímica dos Gnaisses Alcalinos Capané com ofiolitos, caracterizando-os como gerados em ambiente tipo rift. Este rift marcaria um evento extensional precursor da bacia vulcano-sedimentar do CMP. Já as rochas metavulcânicas ácidas e intermediárias apresentam características geoquímicas transicionais entre as séries toleítica e cálcio-alcalina; o que levou os autores a sugerir que teriam se formado em ambiente de subducção, possivelmente em arco magmático, enquanto os granitóides sintectônicos cálcio-alcalinos teriam se desenvolvido nos estágios finais da evolução do arco magmático.

As variações de elementos-traço de LILE (U, Th), ETR_L, HFSE e ETR_P, definem quatro grupos principais para os metandesitos, metadacitos, metariolitos e metabasaltos da Antiforme Capané. O comportamento de Th/Ta x Yb indica que as rochas metavulcânicas foram geradas em um ambiente do tipo arco magmático ou margem continental ativa (Gollmann, 2007; Gollmann *et al.*, 2008).

O embasamento do CMP aflora principalmente no núcleo da Antiforme de Santana e é representado pelo Complexo Encantadas (Tessari & Picada, 1966; Jost & Bitencourt, 1980) e granitóides milonitizados Santana da Boa Vista (Machado et al., 1987). Os Gnaisses Encantadas compreendem uma associação predominantemente ortoderivada, que inclui gnaisses dioríticostonalíticos a trondhjemíticos metamorfizados em pelo menos três fases deformacionais (Jost & Bitencourt, 1980; Porcher & Fernandes, 1990; Remus et al., 1990; Fernandes & Porcher, 1998; 2000; Philipp et al., 2008), apresentando lentes anfibolíticas (Porcher & Fernandes, 1990). Os Gnaisses Encantadas possuem padrão de ETR característicos de arco magmático de margem ativa paleoproterozóico (Phillipp et al., 2008). As idades de cristalização magmática de 2263 ± 18 Ma e metamorfismo de 2045 ± 10 Ma e 2021 ± 11 Ma foram determinadas por U-Pb (SHRIMP) em zircão (Chemale Jr., 2000).

2.3. Geoquímica isotópica e geocronologia aplicada à interpretação de proveniência

Os metassedimentos e rochas metavulcânicas do CMP foram analisados usando metodologias de Sm-Nd e Rb-Sr em rocha total, U-Pb em zircão e Rb-Sr em muscovita (resumo de idades na Fig. 1). Estudos de proveniência realizados em metassedimentos do CMP (Fig. 2) por Hartmann et al. (2004) analisaram 166 grãos de zircão extraídos de 10 quartzitos e quartzo milonitos ao longo da Antiforme de Santana e região de Aberto do Cerro, Figueiras e Jaíba, identificando fontes paleoproterozóicas distribuídas em 8 picos de ocorrência. As possíveis áreas-fonte indicadas pelos autores são: o Gnaisse Neto Rodrigues (2470 Ma), o Complexo Diorítico Santa Maria Chico (2350 Ma), os tonalitos do Complexo Encantadas (2200 Ma), o Dacito Paso Severino e Milonitos Miséria (2140 Ma), o Granito Sierra Azul (2100 Ma), o Tonalito Chacofy e o Monzogranito Villa Monica (2080 Ma), o Monzogranito Itapema (2040 e 2020 Ma), rochas estas de idade paleoproterozóicas, do Escudo Sul Rio-Grandense-Uruguaio ou das unidades paleoproterozóicas do cráton Rio de La Plata.

Estudos comparativos de conteúdos de Sr, Nd e de idades modelo Sm-Nd dos metassedimentos da antiforme Serra dos Pedrosas não permitem interpretar o Gnaisse Encantadas como única área-fonte. Os dados indicam que um importante componente mais jovem (provavelmente meso-proterozóicas) que rochas de idades paleo-proterozóicas devem ter fornecido material para a paleobacia, explicando assim os dados obtidos por Lenz (2006).

Com base em valores de ɛNd fortemente negativos (entre -13.72 e -32.25), idades modelo Sm-Nd e dados de comportamento dos ETR Th e Sc, de rochas que afloram ao longo da Antiforme de Santana, o CMP pode ser classificado como um ambiente de margem passiva ou rift continental (Saalmann *et al.*, 2006).

Os dados de U-Pb em zircão obtidos por Basei *et al.* (2008) são contrastantes em relação aqueles previamente relatados por outros autores. Datando grãos detríticos principalmente de metapelitos coletados ao sudeste da Antiforme de Santana, estes autores obtiveram idades de 2500 Ma, 2000 Ma, 1600 Ma, 1200 Ma, 800 Ma e 698 Ma. Neste panorama de idades, diferente daquele apresentado por Hartmann *et al.* (2004), são identificadas fontes meso- e neoproterozóicas, que são correlacionadas pelos autores a terrenos localizados no Cinturão Gariep, à leste do cráton

Kalahari.

Dados de Sm/Nd para as rochas metavulcânicas da Antiforme Capané foram discutidos por Gollmann *et al.* (2008). O fator ɛNd das rochas vulcânicas divide as sequências metavulcânicas de Capané em dois grupos principais: um com caráter mantélico, que foi interpretado pelos autores como relacionados aos ofiolitos descritos por Marques (1996) e outro de assinatura crustal, interpretado como pertencente ao magmatismo que gerou os granitóides da porção leste do Cinturão Dom Feliciano.

3. Materiais e métodos

Foram coletadas amostras ao longo da antiforme de Santana da Boa Vista (RIP 03, 05, 06, 08; POR 06A, 04A, 12A e 13A), e ao norte da antiforme Serra do Godinho (RIP 11). Um resumo dos litotipos estudados é mostrado na tabela 1.

3.1 Geologia e petrografia das sequências estudadas

3.1.1 Xistos Arrojo Areião

A sequência Xistos Arroio Areião é composta predominantemente por cloritamuscovita xistos, intercalados com rochas metavulcânicas ácidas a intermediárias, além de mármores na porção sul do CMP. Lentes de quartzitos ocorrem ao longo de toda sequência, aflorando em uma faixa semi-contínua ao redor do Antiforme de Santana da Boa Vista, até a Antiforme Serra dos Pedrosas ao norte, e na Antiforme Cerro do Godinho, ao sul. Os clorita-muscovita xistos são cinza-esverdeados a marrom claro, compostos principalmente de muscovita, clorita e quartzo, e secundariamente por biotita, plagioclásio e feldspato potássico. As proporções entre quartzo e feldspato potássico / plagioclásio variam entre 40-50%, porém em algumas amostras a proporção de quartzo é maior (em torno de 65%). Embora muscovita e clorita sejam predominantes nas amostras (~20%), ocorrem ainda sericita e biotita.

Os minerais acessórios são predominantemente zircão, apatita, monazita, rutilo e esfeno. O zircão ocorre associado ao quartzo, plagioclásio e micas (Fig. 2A).

A amostra RIP 06 apresenta textura geral lepidoblástica, com fábrica de crenulação em filossilicatos. Apresenta quartzo granoblástico poligonal, em aglomerados, e uma segunda fase de quartzo, com textura granoblástica serrilhada. Os minerais acessórios restringem-se a titanita, rutilo e zircão.

3.1.2 Xistos Cerro Cambará

A sequência Xistos Cerro Cambará possui rochas com tonalidades geralmente mais escuras que a unidade Arroio Areião. Esta sequência ocorre principalmente nos flancos mais afastados das antiformes de Santana e Serra dos Pedrosas. Estão presentes principalmente rochas metapelíticas e grafitosas intercaladas com rochas metavulcânicas andesíticas.

As rochas metassedimentares apresentam xistosidade marcada por clorita e muscovita muito finas, com veios de quartzo, por vezes boudinados, cortando a foliação. A coloração é cinza-clara nas amostras do sul da antiforme, e marrom-clara nos afloramentos mais ao norte (pontos de coleta na Fig. 3). Na porção centro-meridional da Antiforme de Santana da Boa Vista foram encontrados afloramentos de rochas de composição grafitosa, com cor cinza-escura e veios de quartzo boudinados. As amostras metavulcânicas apresentam clastos de quartzo milimétricos a centimétricos (em média, ± 1 cm), estirados e envoltos por matriz micácea fina.

As amostras de clorita-muscovita xisto apresentam composição principal de clorita, muscovita e, por vezes, biotita (Fig. 2B e 2C) intercalada com quartzo granoblástico e plagioclásio com indícios de recristalização (Fig. 2A e 2B). O zircão encontra-se associado a muscovita (Fig. 2C), em cristais anédricos e arredondados, de cor rosada a marrom. Além disso, pode ser encontrado junto ao quartzo na forma de cristais pequenos (~50 - micra - em média), subédricos a euédricos (Fig. 2E).

3.1.3 Quartzo milonitos

Lentes de quartzo milonito ocorrem intercaladas nas sequências metassedimentares e metavulcânicas Arroio Areião e Cerro Cambará, principalmente nas regiões de Alto Bonito, Aberto dos Cerros, Godinho, Coxilha do Raio, Figueiras e Jaíba. Estas lentes possuem composição principal de quartzo polideformado, com presença de muscovita em bandas ocasionais. Ao sul da Antiforme de Santana, foram coletados quartzo milonitos com deformação indicada por bandas micáceas escuras de mica xistos. A granulação destes quartzo milonitos é fina (grãos entre 0,15 e 0,05 mm), com bandas de muscovita marcando a foliação. Ocorrem também carbonatos formados em zonas de sombra de pressão.

As amostras de quartzo milonitos RIP 8 e RIP 11 apresentam composição quartzo-feldspática,

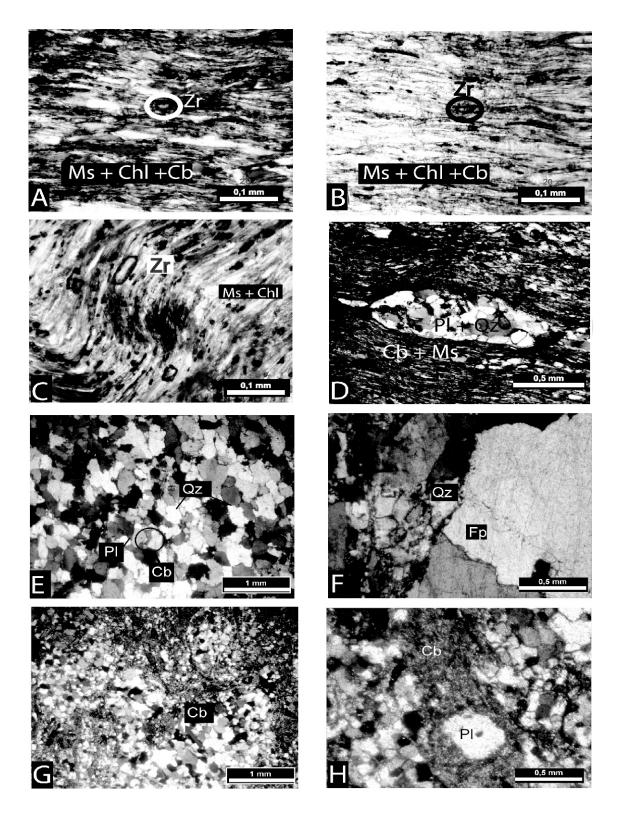


Figura 2. Petrografia (LN - Luz Natural; LP - Luz Polarizada): A - Cristal de zircão subédrico em textura lepidoblástica pervasiva dobrada - LP (Clorita-Muscovita Xisto; POR 04 A); B - Clivagem de crenulação em muscovita-clorita. Zircão indicado na figura - LN (Clorita-Muscovita Xisto; POR 04 A); C - Textura decussada em clorita e quartzo. Cristal de zircão indicado - LP (Clorita-Muscovita Xisto; POR 04 A); D - Litoclasto com Quartzo, K-feldspato / Plagioclásico, com contato serrilhado entre os grãos de quartzo - LP (Clorita-Muscovita Xisto; POR 04 A); E - Textura proto-milonítica com Quartzo deformado, K-feldspato e Plagioclásio com contato serrilhado - LP (Quartzo-milonito; RIP 11); F - Veio de quartzo e plagioclásio policristalino em textura marcada por porfiroclastos de quartzo e mica - LP (Quartzo milonito; RIP 11) - G - Textura granoblástica de quartzo e plagioclásio, com carbonatos ocupando fraturas e limites de grão - LP (Clorita-Muscovita Xisto; RIP-06); H - Cristaloclasto de plagioclásio com sombra de pressão de carbonatos - LP (Clorita-Muscovita Xisto RIP-06). Qz - Quartzo; Cb - Carbonato; Pl - Plagioclásio; Fp - Feldspato; Chl - Clorita; Zr - Zircão.

Tabela 1. Resumo petrográfico das amostras analisadas.

		Seqüencia / Unidade	<u>Amostra</u>	Classificação Petrográfica	Mineralogia Principal	
Complexo Metamórfico Porongos	sta	Xistos Arroio Areião	POR-06 A	Clorita-muscovita xisto	Clorita, Muscovita, Quartzo, Plagioclásio	
	Leste da Antiforme de Santana da Boa Vista		POR-13 A	Clorita-muscovita xisto	Clorita, Muscovita, Quartzo, Plagioclásio	
	tiforme de Sa	Xistos Cerro Cambará	POR-04 A	Clorita-muscovita xisto	Clorita, Quartzo, Muscovita, Plagioclásio	
	Leste da An		POR-12 A	Quartzo-muscovita xisto	Quartzo, Plagioclásio, Muscovita	
		Quartzo milonito (Santana da Boa Vista)	RIP-08	Quartzo milonito	Quartzo, Muscovita, K- feldspato, Plagioclásio ± Carbonato	
Con	la Antiforme tana da Boa Vista	Xistos Arroio Areião	RIP-03	Clorita-muscovita xisto	Clorita, Muscovita, Quartzo, Plagioclásio ±	
	Oeste da de Santai Vi		RIP-06		Carbonato	
	Leste da Antiforme de Godinho	Quartzo milonito (Serra do Godinho)	RIP-11	Quartzo milonito com bandas micáceas.	Quartzo, Plagioclásio, Clorita, Muscovita,	

com porfiroclasto de quartzo em matriz quartzofeldspáticas, com biotita e muscovita cloritizada (Fig. 2 E). Por vezes, lentes micáceas com textura lepidoblástica intercalam-se com bandas de quartzo granoblástico poligonal (Fig. 2 F).

3.2 Análise de zircão em LA-ICP-MS

Para análise de zircão em LA-ICP-MS (*Laser Ablation Inductively Coupled Plasm Mass Spectrometer*), foi coletada a fração entre 60 e 170 *mesh*.

Para obter esta fração, as amostras foram britadas, moídas e separadas por métodos gra-vimétricos. Na fase seguinte as amostras foram processadas em separador magnético FRANTZ com amperagem variável e tiveram suas frações pesadas e leves separadas por líquidos densos (LST, com densidade de 2,9 g/cm³ e diiodo metano, com 3,1 g/cm³), onde foi obtido o concentrado final de zircão.

Os concentrados de zircão foram montados em pastilhas buehler epoxy, polidos com lixa e pasta de diamante de 1 microns e de 0,25 microns. As pastilhas foram analisadas em microscópio eletrônico de varredura (MEV-EDS, modelo JEOL-JSM 5800 Scanning Microscope do Centro de Microscopia Eletrônica da Universidade Federal do Rio Grande do Sul), e datadas em espectrômetro de massa MC-ICP-MS modelo Finnigan-Neptune com Laser Ablation acoplado (modelo New Wave UP213) do Laboratório de Geologia Isotópica da UFRGS. Foi utilizado o padrão internacional GJ-1, medido em sessões de quatro análises - na ordem 1 padrão, 1 branco, 4 amostras, 1 branco e 1 padrão. Os dados obtidos foram reduzidos em planilha confeccionada no próprio laboratório e as idades calculadas com o uso do programa ISOPLOT 3 (Ludwig, 2003) para 1σ de incerteza. Para a análise U-Pb de zircão detrítico, foram analisados preferencialmente os núcleos dos grãos e regiões sem fraturas, utilizando *spots* de 20 a 40, com, com laser ajustado para uma freqüência de $10\,\mathrm{Hz}$ e intensidade $46.0\,\mathrm{J/cm^2}$.

Considerando o número de grãos analisados para cada sequência, foi obedecida estimativa de freqüência otimizada de Andersen (2005), com 35-70 grãos escolhidos randomicamente para as análises.

4. Resultados

Os resultados obtidos na datação de zircão pelo método U-Pb são descritos a seguir. Os resultados podem ser conferidos no Apêndice (Resultados U-Pb). Os dados concordantes e com baixo conteúdo de Pb comum (limite de 10% de discordância) foram dispostos em histogramas de freqüência, onde o N significa o número de grãos analisados em dada faixa de idades relativas ao desvio padrão de 1 σ . As localizações das amostras encontram-se na figura 3.

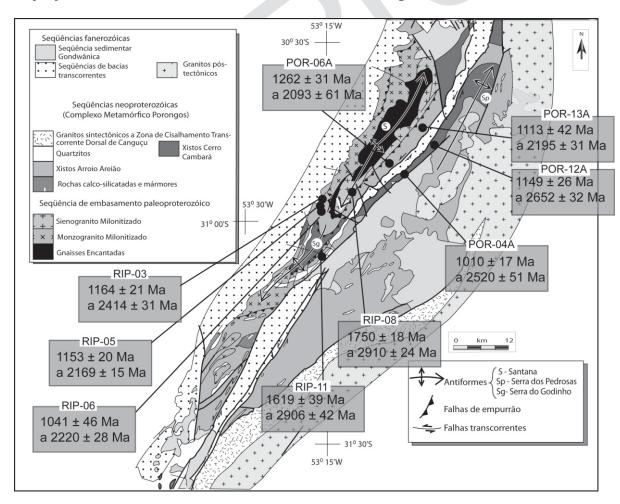


Figura 3. Esquema geológico do CMP, junto da Antiforme de Santana, mostrando a localização das amostras analisadas e resumo geocronológico (modificado de Porcher, 1992).

4.1 Xistos Arroio Areião

Das rochas da sequência Xistos Arroio Areião foram analisados 50 grãos de cinco amostras: RIP 03, RIP 05, RIP 06, POR 06 A e POR 13 A. Os grãos são em geral pequenos (0,5-1,0 µm), incolores a amarelados. Imagens backscattering revelam zonação concêntrica bem desenvolvida. As superfícies dos grãos apresentam características de rolagem, tais como faces quebradas e/ou arredondadas, indicativas de transporte considerável ou distância entre a área-fonte e a bacia.

A amostra *RIP 03* apresentou idades 207 Pb/ 206 Pb com valores variando entre 1164 ± 21 Ma e 2414 ± 31 Ma em 13 grãos datados. Entre as morfologias observadas para os cristais de zircão, nota-se uma variedade entre grãos prismáticos zonados (Fig. 5 A, C e D), e alguns com tendência acicular, típicos de rochas vulcânicas (Fig. 5 B). Das idades obtidas, cerca de 25% são mesoproterozóicas, entre 1164 ± 21 e 1360 ± 17 Ma. O restante das idades é paleoproterozóica, entre 1707 ± 32 e 2414 ± 31 Ma. As razões de Th/U encontradas variaram entre 0,00 e 1,30.

A amostra *RIP 05* teve 11 grãos datados, com idades 207 Pb/ 206 Pb variando entre 588 ± 22 Ma (razão Th/U de 0,01) e 2169 ± 15 Ma, sendo as idades detríticas entre 1153 ± 20 e 2169 ± 15 Ma. Os grãos analisados apresentam zonação concêntrica (Fig. 5 I e M), e em alguns casos zonação apenas nas bordas (Fig. 5– J). Cerca de 40% das idades são mais novas que 1799 Ma, sendo predominante idades paleoproterozóicas entre 2169 ± 15 Ma e 1698 ± 21 Ma. As razões Th/U ficaram entre 0,01 e 0,06.

A amostra *RIP 06* teve 15 grãos datados, fornecendo idades 207 Pb/ 206 Pb entre 1041 ± 46 Ma e 2220 \pm 28 Ma. Os grãos em geral apresentam zonação concêntrica (Fig. 5 E, G e H) e em alguns casos difusa (Fig. 5F). Cerca de 30% das análises indicaram idades mesoproterozóicas, sendo a maioria de idades entre 1486 ± 28 e 2024 ± 42 Ma. As razões Th/U analisadas variaram entre 0,05 e 0,48, com apenas uma análise com razão abaixo de 0,10.

As amostras RIP 03, 05 e 06 foram reunidas em um único gráfico de distribuição por densidade das idades ²⁰⁷Pb/²⁰⁶Pb (Fig. 4A), tendo as três sido coletadas ao longo de afloramentos na mesma localidade, e com características petrológicas similares, indicando serem do mesmo litotipo. As idades obtidas mostram uma ampla distribuição, com picos de idades concordantes em 1152, 1282, 11363, 1541, 2175, e 2359 Ma.

Foram datados apenas dois zircões da amostra *POR 06 A*. Um grão com razão Th/U 0,27 e idade ²⁰⁷Pb/²⁰⁶Pb de 1262 ± 31 Ma. O outro grão, de razão Th/U mais alta (0,43) tem idade ²⁰⁷Pb/²⁰⁶Pb de 2093± 61 Ma. Como esta amostra pertence ao mesmo litotipo da amostra seguinte (POR 13 A), estas duas análises obtidas foram colocadas no mesmo diagrama de distribuição de idades por frequência, para fins de estatística.

A amostra <u>POR 13 A</u> teve 11 cristais datados. Um zircão com razão Th/U de 0,34 apresentou idade de 2195 ± 31 Ma. Grãos de zircão com razões Th/U entre 0,57 e 0,83 apresentaram idades variando de 1113 ± 42 Ma e 2073 ± 45 Ma. Dos 11 grãos datados, cerca de 20% são de idades mais antigas que 1902 Ma. A idade mais jovem nesta amostra é de 1113 ± 42 Ma. O diagrama de distribuição das idades (Fig. 4B) indica 8 picos principais para os 23 grãos, de idades ²⁰⁷Pb/²⁰⁶Pb de 1123, 1250, 1488, 1649, 1799, 1912, 2087 e 2198 Ma.

4.2 Xistos Cerro Cambará

Na sequência Xistos Cerro Cambará, foram analisados 61 grãos de duas amostras: *POR 04 A* e *POR 12 A*. Os grãos de zircão analisados são em geral pequenos (0,5-1,0 µm), variando entre grãos incolores a avermelhados. Os grãos possuem zonação concêntrica desenvolvida, com características de rolagem, como faces quebradas e/ou arredondadas.

A amostra POR O4 A teve 48 grãos analisados, com idades 207 Pb/ 206 Pb entre 1010 ± 17 Ma e 2520 \pm 51 Ma. Cerca de 20% das análises indicaram idades mesoproterozóicas, e mais de 80% da frequência de idades é de grãos paleoproterozóicos. Apenas um grão tem razão Th/U próxima de 0,01, sendo o restante com razões entre 0,20 e 1,31. O diagrama de frequências de idades 207 Pb/ 206 Pb relativas indica picos de idades predominantes em 2254 e 2533 Ma, com picos secundários em 1018, 1236, 1343,1712, e 1931 Ma (Fig. 4C).

A amostra *POR 12 A* possuiu 22 grãos datados, sendo aproximadamente 50% de idades mesoproterozóicas, com valores entre 1149 ± 26 Ma e 1507 ± 46 Ma. A idade ²⁰⁷Pb/²⁰⁶Pb mais antiga obtida para esta amostra foi de 2652 ± 32 Ma. As razões Th/U ficaram entre 0,05 e 1,80. A distribuição de frequência das idades ²⁰⁷Pb/²⁰⁶Pb relativas apresenta cinco picos com razões ²⁰⁶Pb/²³⁸U concordantes, de 1217, 1333, 1516, 1783, 2021 e 2662 Ma (Fig. 4D).

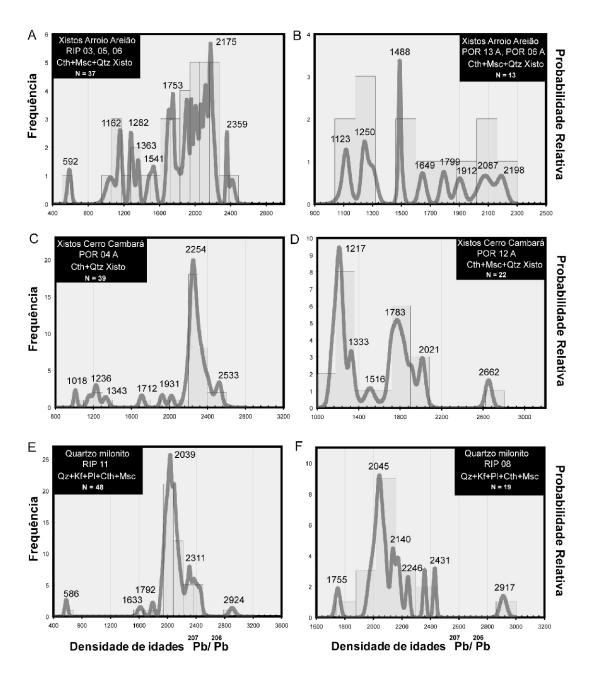


Figura 4. Diagrama de freqüência das idades 207Pb/206Pb em zircão. A - Amostra POR-04 A; B - Amostra POR-12 A; C - Amostra POR-13 A e 06 A; D - Amostra RIP-08; E - Amostra RIP-03, 05, 06.; F - Amostra RIP-11. As sequências metapelíticas Arroio Areião e Cerro Cambará apresentam idades de zircão detrítico similares entre si; os quartzo milonitos analisados apresentam quase os mesmos picos de freqüência de idade e concordância entre si, mas diferente das sequências anteriores não possuem idades detríticas mais jovens que 1633 Ma.

4.3 Quartzo milonito

Os grãos de zircão desta amostra apresentam variados tamanhos, entretanto predominam cristais pequenos (0,3-1,0 μ), com grãos opacos, tendendo a castanho-escuros. Possuem zonação concêntrica desenvolvida em alguns casos, e em maioria apresentam textura difusa, com características de rolagem, como faces geralmente arredondadas.

Os 48 grãos analisados do quartzo milonito <u>RIP-11</u> revelaram idades 206 Pb/ 238 U entre 597 ± 05

Ma (razão Th/U de 0,02) e idade ²⁰⁷Pb/²⁰⁶Pb de 2906 ± 42 Ma (razão Th/U de 0,63). Nesta amostra o zircão apresenta textura interna difusa (Fig. 5 M, N e 0). As idades detríticas variaram entre 1619 ± 39 Ma e 2906 ± 42 Ma, com importantes contribuições de fontes com idades entre 1800 e 2600 Ma (Fig. 4E). As razões Th/U variaram entre 0,02 e 1,73. O diagrama de distribuição de idades ²⁰⁷Pb/²⁰⁶Pb apresenta picos principais concordantes, de 586 Ma, 1633, 1792, 2039, 2311 e 2924 Ma. (Fig. 4E). A idade de 597 ± 5 Ma é considerada aqui como relativa à fase de deformação e meta-

morfismo tardio do CMP, não sendo incluída, portanto, no conjunto de idades detríticas.

A amostra *RIP-08*, coletada de quartzo milonitos do norte da antiforme Serra do Godinho, teve 19 análises realizadas e apresentou idades entre 1750 ± 18 Ma e 2910 ± 24 Ma. A maior parte

das idades obtidas para esta amostra é mais antiga que 2,0 Ga. As razões de Th/U variaram entre 0,21 e 0,94. A frequência de idades indica 6 picos concordantes principais, de 1755, 2054, 2140, 2246,2431 e 2917 Ma (Fig. 4F).

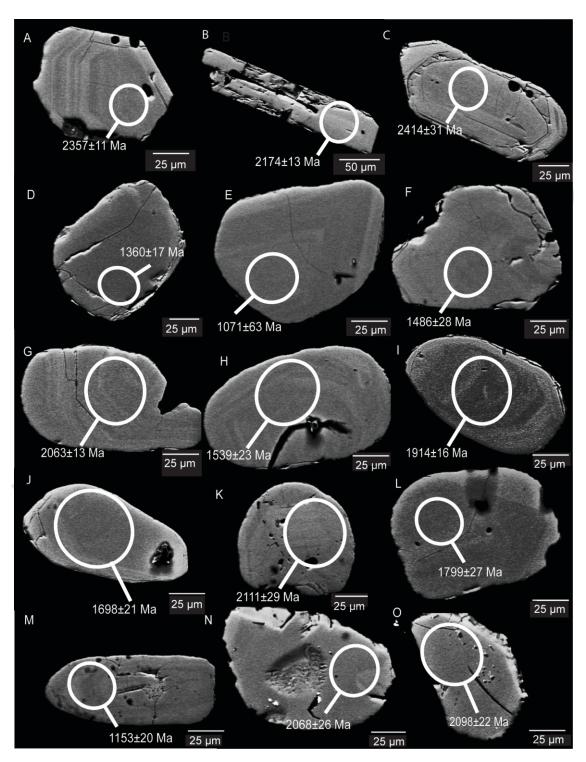


Figura 5. Imageamento MEV (elétrons retro-espalhados) dos grãos de zircão analisados. A-D: RIP 03 B (Xistos Arroio Areião); E-H: RIP 06 (Xistos Arroio Areião); I-M: RIP 05 B (Xistos Arroio Areião); N-O: RIP 11 (Quartzo milonito). A, C, D, G, K - Textura concêntrica regular; B - Grão acicular, morfologia típica de crescimento rápido, geralmente em ambientes vulcânicos; J, L, M, N e O – zonação concêntrica a difusa, com textura irregular no grão N e difusa no grão O.

5. Discussão

5.1 Idades de deposição

Considerando a geologia regional do CMP, a deposição das sequências metassedimentares deve ter sido anterior ou concomitante ao vulcanismo de cerca de 780 Ma (Porcher et al., 1999; Chemale Jr. 2000; Saalmann et al., 2011). As idades detríticas até então obtidas indicam que as sequências Cerro Cambará e Arroio Areião e quartzo milonitos das antiformes Santana e Godinho foram depositadas antes do vulcanismo neoproterozóico, sendo a idade mínima de deposição de cerca de 800 Ma. Para a sequência Xistos Cerro Cambará, a idade ²⁰⁶Pb/²³⁸U concordante de zircão detrítico mais jovem encontrada em rochas da sequência de xistos Cerro Cambará é de 991 ± 11 Ma e é interpretada como a idade máxima de deposição da unidade, ou idade mínima de fechamento da bacia, ao menos para esta sequência. A frequência de idades é maior nos intervalos entre 1,2 e 2,2 Ga, indicando, portanto, que terrenos meso e paleoproterozóicos constituem as principais fontes de sedimentos deste pacote. A idade ²⁰⁷Pb/²⁰⁶Pb mais antiga obtida em zircão detrítico é de 2652 ± 32 Ma. Na sequência Xistos Arroio Areião, foram obtidas populações de idades ficaram distribuídas entre 1,2 e 2,2, Ga. A idade ²⁰⁷Pb/²⁰⁶Pb mais antiga obtida em zircão detrítico é de 2414 ± 31 Ma. A idade 206Pb/238U concordante mais jovem de zircão detrítico é de 1098 ± 27 Ma, que estabelece a idade máxima da sedimentação. Para a amostra da unidade de quartzo milonitos, as idades 207Pb/206Pb ficaram com valores entre 1619 ± 39 Ma e 2910 ± 24 Ma, com grande frequência de idades paleoproterozóicas.

5.2 Ambientes deposicionais e fechamento de bacia

As idades das sequências de mica xistos apresentam componentes mesoproterozóicos do período Ectasiano e do neoproterozóico (período Toniano), diferente dos quartzitos do CMP, os quais apresentam quase exclusivamente grãos paleoproterozóicos. A participação de áreas-fonte com estas idades já haviam sido previstas em trabalhos de geologia isotópica (Lenz, 2006; Saalmann *et al.*, 2006; Gruber, 2007; Gruber *et al.*, 2008), pois as idades T_{DM} obtidas para os metassedimentos do CMP não indicavam apenas contribuição de fontes paleoproterozóicas. A diferença na composição sedimentar dos protólitos pode indicar diferentes ambientes para estas sequencias, já que a sequência quartzo-feldspática (associada na bi-

bliografia a uma margem passiva ou ambiente de rift) é mais antiga que a sequência micácea. A diferença na composição e idade destes sedimentos pode estar indicando uma evolução da margem passiva ou rift para um sistema distal de arco.

As diferenças de padrões de idades entre mica xistos e quartzo milonitos para todo CMP é mostrado na figura 6, e parecem indicar diferentes períodos de deposição. Os quartzo milonitos pertencem a uma fase da bacia com fechamento mesoproterozóico, por não possuírem idades detríticas mais jovens que 1,6 Ga, com deposição predominantemente clástica, típica de ambientes de margem passiva ou rift. Os mica xistos das duas sequências possuem idades máxima de deposição neoproterozóicas, além de que seu conjunto litológico e química isotópica sugerem participação de material juvenil em relação aos quartzo milonitos (Gruber, 2007).

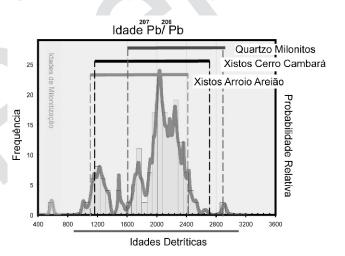


Figura 6. Distribuição de todas as idades detríticas 207Pb/206Pb em zircão para o CMP obtidas neste trabalho.

A variação de Th/U contra a idade obtida (Fig. 7) apresenta um indício de baixa ocorrência de zircões metamórficos. Entre as idades metamórficas, é possível observar dois tipos de idades com razões Th/U típicas de zircão afetado por metamorfismo ou hidrotermalismo: a primeira, mais antiga, em torno de 2400 a 2200 Ma, e a segunda, mais nova, com idade em torno de 590 Ma. Foram obtidas duas idades de razão tipicamente metamórfica/hidrotermal mesoproterozóica: uma de cerca de 1400 Ma, e outra de cerca de 1200 Ma. O metamorfismo de 2200 Ma tem registro no Complexo Encantadas, sendo, portanto, o metamorfismo de 1400 e de 1200 relativos a outros eventos orogênicos. A idade de 590 Ma coincide com a idade obtida para a milonitização dos

metassedimentos no CMP (Chemale Jr., 2000). Ainda, um estudo detalhado da textura do grão analisado em catodoluminescência poderá indicar com precisão se estes zircões realmente possuem evidências de recristalização metamórfica, ou se de fato são zircões detríticos. Como as duas idades de cerca de 590 Ma possuem razão Th/U muito baixa

(em torno de 0,01), é razoável admitir que estas representem cristais hidrotermalizados durante a milonitização. As razões consideradas por Nutman (2001) para zircões provenientes de rochas máficas (razão Th/U >0,8) mostra uma maior contribuição de idades paleoproterozóicas para esta razão (Fig. 7).

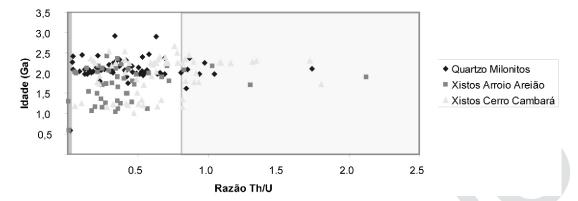


Figura 7. Diagrama de idade contra razão Th/U das amostras analisadas. As razões típicas de metamorfismo / hidrotermalismo (<0,05) estão representadas por idades de 0,5 Ga, 1,2 e 1,4 Ga, além de razões metamórficas típicas do gnaisse Encantadas, de 2,2 Ga. As razões Th/U acima de 0,8 são geradas em ambientes magmáticos ultramáficos, nas amostras estudadas estas razões são observadas em grãos com idades entre 1,5 e 2,5 Ga.

5.3 Áreas fontes

As idades obtidas até então para os quartzo milonitos e xistos permitem caracterizar um panorama de possíveis áreas-fonte dos metassedimentos do CMP. A série de idades entre 1,9 Ga e 1,6 Ga pode ser proveniente das orogenias Mazatzal (1,71 – 1,62 Ga), Yavapaí (1,79 – 1,69 Ga) e Trans-Huddsoniana (1,92 - 1,79 Ga), do leste Laurenciano (hoje centro-oeste norte-americano). A baixa fregüência de idades de cerca de 1,7 Ga encontradas no quartzo milonito da Antiforme de Santana pode estar indicando uma distribuição distinta das fontes paleo/mesoproterozóicas desta unidade. Os crátons Africanos (Kalahari e Congo) possuem baixa frequência de idades ígneas neste período (Condie et al., 2009), podendo então haver uma diferença significativa na área-fonte dos metassedimentos quartzo miloníticos.

A Orogenia Sunsás no Cráton Amazônico associada ao Greenvilliano de idade aproximada de 1450 Ma, possui eventos orogenéticos do mesoproterozóico, entre 1760 – 1740 Ma (Orogenia Jamari) e 1670 – 1630 Ma (Orogenia Quatro Cachoeiras), além das orogenias associadas ao Greenville: 1465 – 1427 Ma (Orogenia Santa Helena) e 1371 – 1319 Ma (Orogenia Candeias) (Santos *et al.*, 2008).

Os metapelitos das sequências Arroio Areião e Cerro Cambará possuem componentes de idade paleoproterozóica semelhantes aos quartzo milonitos, além de idades meso-neoproterozóicas. As idades detríticas mais jovens para estas sequências, entretanto, restringem-se ao período Toniano (entre 1,0 e 0,85 Ga), no limite entre o mesoproterozóico e o neoproterozóico.

Entre asidades do final do Paleoproterozóico, 2,0 -1,6 Ga, parte das razões Th/U coincide com aquelas do Complexo Encantadas, e a maior freqüência de idades paleoproterozóicas é de 2,0 - 2,2 Ga, respectivamente idade magmática e metamórfica do embasamento do CMP (Porcher et al., 1999; Chemale Jr., 2000). As razões dos quartzitos, quartzo milonitos e mica xistos do CMP coincidem em parte com os das rochas ultramáficas Belizário (Hartmann et al., 2003), e muito embora a dispersão de Th/U seja muito maior para idades entre 2,0 e 1,6, sugere uma contribuição do embasamento do CMP para sua sedimentação.

Rochas com idades entre 1,0 - 1,7 Ga são raras ou desconhecidas para o Cinturão Dom Feliciano. A intensa ocorrência de picos de idade entre 1,0 e 1,2 Ga remete a áreas fontes de típicos cinturões Greenvillianos, como os associados aos crátons Congo, Kalahari, Amazonas e Laurencia. Idades entre 1,29 e 1,18 Ga são geralmente relacionadas com a orogênese Elzeveriana, uma aglutinação de terrenos pouco anterior à formação do supercontinente Rodínia (Rivers, 1997).

Segundos os modelos de reconstrução do Rodínia (e.g. Hoffmann, 1991; Cordani et al., 2003;

Torsvik, 2003; Li *et al.*, 2008 entre outros) há diferentes localizações paleogeográficas para o Cráton Rio de La Plata nessa época. Entretanto ele geralmente é colocado próximo dos crátons Congo, Amazonas e Kalahari e ambos possuem cinturões Greenvilianos e Elzeverianos com idades entre 1,0 e 1,2 Ga.

6. Conclusões

As idades de deposição máximas das unidades estudadas são indicadas pelas idades dos grãos de zircão detríticos mais jovens de suas rochas. Os Xistos Arroio Areião e Cerro Cambará apresentaram dados similares são mais jovens que cerca de 0,9 Ga. Por outro lado os quartzo milonitos têm idade máxima de deposição de cerca de 1,6 Ga.

Os resultados de U-Pb dos zircões detríticos indicam que o Complexo Encantadas é, de fato, um dos prováveis contribuintes dos zircões detríticos (idades paleoproterozóicas), mas junto a essa área-fonte, soma-se uma importante contribuição mesoproterozóica. A disponibilidade de zircão magmático deste intervalo de idade (entre 1,5 a 0,9 Ga) e a reconstrução paleogeográfica do Rodínia neste período sugerem fontes de idade tipicamente relacionadas às orogenias Elzeverianas (Cinturão Namaqua) - Greenvillianas, e a morfologia dos grãos estudados indicam uma área-fonte distal para as idades entre 0,9 Ga e 1,6 Ga.

O registro de idades em zircão mostra um controle litológico nos sedimentos depositados nas diferentes fácies da paleobacia Porongos; os quartzo milonitos apresentam idades predominantemente paleoproterozóicas (1,6-2,5 Ga), enquanto os mica xistos apresentam idades mais jovens, além do mesmo registro de idades paleoproterozóicas, variando entre 0,9 e 2,5 Ga. Não existe diferença significativa de idade dos grãos de zircão detríticos (U-Pb) dos metassedimentos que afloram nos dois flancos da Antiforme de Santana, incluídos nas sequências Xistos Arroio Areião e Xistos Cerro Cambará e quartzo milonitos associados.

Agradecimentos- Os autores agradecem a CAPES pela concessão de bolsa de mestrado do primeiro autor, ao Laboratório de Geologia Isotópica pelas análises fornecidas; a Edinei Koester da comissão editorial da revista e Márcio M. Pimentel pela ajuda com as análises, além dos revisores Miguel S. Basei e Joseneusa B. Rodrigues pelas sugestões e críticas construtivas ao manuscrito original.

Referências

- Andersen, T. 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. *Geochemical Geology*, 216:249-270.
- Basei, M.A.S., Frimmel, H.E., Nutman, A. P. & Preciozzi, F. 2008. West Gonduana amalgamation based on detrital zircon ages from Neoproterozoic Ribeira and Dom Feliciano belts of South America and comparison with coeval sequences from SW Africa. *Geological Society*, 294:239-256, Special Publications 2008.
- Basei, M.A.S., Siga, O. Jr., Masquelin, H., Harara, O.M., Reis Neto, J.M. & Preciozzi, F. 2000. The Dom Feliciano Belt of Brazil and Uruguay and its foreland domain, the Rio de la Plata Craton framework, tectonic evolution and correlation with similar provinces of Southwestern Africa. In: Cordani, U.G., Milani, E.J., Tomaz Filho, A., Campos, D.A. (eds.). *Tectonic Evolution of South America*, INTERNATIONAL GEOLOGICAL CONGRESS, 31st, Sociedade Brasileira de Geologia, Rio de Janeiro, p. 311–34.
- Carvalho, P.F., 1932. Reconhecimento Geológico no Estado do Rio Grande do Sul. *Boletim do Instituto Geológico e Mineralógico do Brasil*, 66:1-72.
- Condie, K., Belousova, E., Griffin, W.L. & Sircombe, K.N. 2009. Granitoids events in space and time: Cosntraints from igneous and detrital zircon. *Gondwana Research*, 15:228-242.
- Cordani, U.G., D'Agrella-Filho, M.S., Brito-Neves, B. B. & Trindade, R.I.F. 2003. Tearing up Rodinia: the Neoproterozoic palaeogeography of South American cratonic fragments. *Terra Nova*, 15:350–359.
- Chemale Jr., F. 2000. Evolução Geológica do Escudo Sulrio-grandense. In: Holz, M.; De Ros, L. F. (eds.). *Geologia do Rio Grande do Sul.* Porto Alegre, CIGO/UFRGS, p. 13-52.
- Fernandes, L.A.D. & Porcher, C.C. 1998. Geologia Estrutural e Tectônica. In: Ramgrab, G.E. & Wildner, W. (Ed.). Mapa Geológico da Folha Pedro Osório (1:250.000). Serviço Geológico Brasileiro / Companhia de Pesquisa e Recursos Minerais: CPRM/PLGB (Programa Levantamentos Geológicos Básicos do Brasil), SUREG/PA.
- Fernandes, L.A.D. & Porcher, C.C. 1998. *Geologia Estrutural e Tectônica*. In: Porcher, C. (Ed.). Mapa Geológico da Folha Cachoeira do Sul (1:250.000). Serviço Geológico Brasileiro / Companhia de Pesquisa e Recursos Minerais: CPRM/PLGB (Programa Levantamentos Geológicos Básicos do Brasil), SUREG/PA.
- Fernandes, L.A.D., Menegat, R., Costa, A.F.U., Koester, E., Kramer, G., Tommasi, A., Porcher, C.C., Ramgrab, G.E. & Camozzato, E. 1995a. Evolução tectônica do Cinturão Dom Feliciano no Escudo Sul-rio-grandense: Parte Iuma contribuição a partir do registro geológico. *Revista Brasileira de Geociências*, 25:351-374.
- Fernandes, L.A.D., Menegat, R., Costa, A.F.U., Koester, E., Kramer, G., Tommasi, A., Porcher, C.C., Ramgrab, G.E. & Camozzato, E. 1995b. Evolução tectônica do Cinturão Dom Feliciano no Escudo Sul-rio-grandense: Parte II uma contribuição a partir das assinaturas geofísicas.

- Revista Brasileira de Geociências, 25:375-384.
- Fernandes, L.A.D., Tommasi, A., Vauchez, A., Porcher, C.C., Menegat, R. & Koester, E. 1993. Zona de cisalhamento transcorrente Dorsal de Canguçu: caracterização e importância na compartimentação tectônica do Cinturão Dom Feliciano. *Revista Brasileira de Geociências*, 23(3):224-233.
- Frantz, J. C. & Botelho, N. F. 2000. Neoproterozoic granitic magmatism and evolution of the Eastern Dom Feliciano Belt in southernmost Brazil: A Tectonic Model. *Gonduana Research*, 3:7–19.
- Frantz J.C., Botelho, N.F., Pimentel, M.M., Potrel, A., Koester, E. & Teixeira, R.S. 1999. Relações isotópicas Rb-Sr e Sm-Nd e idades do magmatismo granítico brasiliano da região leste do Cinturão Dom Feliciano no Rio Grande do Sul: evidências de retrabalhamento de crosta continental paleoproterozóica. *Revista Brasileira de Geociências*, 29(2):227-232.
- Fragoso-César, A.R.S. 1991. *Tectônica de placas no Ciclo Brasiliano: as orogenias dos Cinturões Dom Feliciano e Ribeira no Rio Grande do Sul.* São Paulo, 367 p. Tese de Doutorado, Instituto de Geociências, Universidade de São Paulo.
- Fragoso-César, A.R.S, Lavina, E., Paim, P.S.G. & Faccini, U. 1984. A antefossa molássica do Cinturão Dom Feliciano no escudo do Rio Grande do Sul. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 33, 1984. Rio de Janeiro, *Anais...* Rio de Janeiro, SBG, vol.7, p. 3272-3283.
- Gollmann, K. 2007. Litoquímica e geoquímica isotópica das rochas metavulcânicas da Antiforme Capané, Complexo Metamórfico Porongos, RS. Porto Alegre, 70 p. Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Gollmann, K., Marques, J.C., Frantz, J.C. & Chemale Jr., F. 2008. Geoquímica e Isotópos de Nd de Rochas Metavulcânicas da Antiforme Capané, Complexo Metamórfico Porongos, RS. *Pesquisas em Geociências*, 35(2):83-95.
- Gõni, J.C. 1962. Origine des roches ultrabasiques et serpentineuses du Précambrien de Rio Grande do Sul (Brésil). Mode de gisement et mineralizations. *Boletim* 12, p.1-33. Escola de Geologia, UFRGS.
- Gruber, L. 2007. Estudo de proveniência do Complexo Metamórfico Porongos, porção SE da Antiforme de Santana, RS. Porto Alegre, 77 p. Monografia de conclusão de curso, Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Gruber. L., Porcher, C.C., Lenz, C., Fernandes, L.A.D., Chemale Jr., F. & Dussin, I. 2008. Mesoproterozoic detrital zircon in the Dom Feliciano Belt: Zircon ages for the Porongos Metamorphic Complex. *South American Symposium on Isotope Geology* San Carlos de Bariloche, VI. *Proceedings...*, Argentina, 2008.
- Hartmann, L.A., Philipp, R.P., Liu, D., Wan, Y., Wang, Y.,
 Santos, J.O. & Vasconcellos, M.A.Z. 2004.
 Paleoproterozoic magmatic provenance of detrital zircon, Porongos Complex quartzites, southern
 Brazilian Shield. *International Geology Review*,

- 46:127-157.
- Hartmann, L.A., Santos, J.O., Leite, J.A.D., Porcher, C.C. & Mcnaugthon, N.J., 2003. Metamorphic evolution and U-Pb zircon SHRIMP geochronology of the Belizário ultramafic amphibolite, Encantadas Complex, southernmost Brazil. *Anais da Academia Brasileira de Ciências*, 75(3):393-403.
- Hartmann, L.A, Porcher, C.C & Remus, M.V.D. 2000. As rochas metamórficas do Rio Grande do Sul. In: Holz, M. & De Ros, L.F. (*eds.*) *Geologia do Rio Grande do Sul,* Editora da UFRGS. Porto Alegre.
- Hoffman, P.F., 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? *Science*, 252: 1409–1412.
- Isler, R.S. 1983. Evolução crustal da faixa arco-fossa Tijucas e faixa magmática Pedras Grandes: Cráton Dom Feliciano. In: SIMPÓSIO SUL-BRASILEIRO DE GEOLOGIA. Porto Alegre, 1. *Atas...* Porto Alegre, SBG, p; 19-36.
- Jost, H. 1981. *Geology and metallogeny of the Santana da Boa Vista region, Southern Brazil*. Georgia, 208 p. Tese de Doutorado, University of Athens, EUA.
- Jost, H. 1982. Condições do metamorfismo regional de uma parte da faixa de dobramentos Tijucas no Rio Grande do Sul - RS. Acta Geologica Leopoldensia, 12:3-32.
- Jost, H. & Bitencourt, M.F. 1980. Estratigrafia e tectônica de uma fração da faixa de Dobramentos de Tijucas no Rio Grande do Sul. *Acta Geologica Leopoldensia*, 4(7):27-60.
- Lenz, C. 2006. Evolução metamórfica dos metapelitos da antiforme Serra dos Pedrosas: condições e idades do metamorfismo. 111 p. Dissertação de Mestrado, Programa de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul.
- Lenz, C., Porcher, C.C., Fernandes, L.A.D. & Koester, E. 2005. Idades Rb-Sr da trama metamórfica dos sienogranitos milonitizados de Santana da Boa Vista, RS, Brasil. In: SIMPÓSIO NACIONAL DE ESTUDOS TECTÔNICOS, Curitiba, 10. *Resumos*, 2005.
- Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., de Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. *Precambrian Research*, 160 (1-2):179-210.
- Ludwig, K.R. 2003. Isoplot 3.0 A geochronological toolkit for Microsoft Excel. Berkley Geochronology Center, *Special Publications* N°.4.
- Machado, R. Fragoso-César, A.R.S., Faccini, U. 1987. O domo de Santana (RS): domo gnáissico manteado ou figura de intereferência tipo domo e bacia? In: SIMPÓSIO SUL-BRASILEIRO DE GEOLOGIA, 3., 1987, Curitiba. *Anais...* Curitiba, SBG, v.1, p.167-182.
- Marques, J.C. 1996. Petrologia e Metalogênese da Sequência Metaultramáfica da Antiforme Capané, Suíte Metamórfica Porongos, Cachoeira do Sul RS. Porto Alegre, 196 p. Dissertação de Mestrado, Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.

- Marques, J.C, Roisenberg, A., Jost, H. & Frantz, J.C. 1998. Rochas Metassedimentares, Geologia Estrutural e Metamorfismo da Suíte Metamórfica Porongos na Área da Antiforme Capané, Cachoeira do Sul, RS. *Revista Brasileira de Geociências*, 28: 467 472.
- Marques, J.C., Roisenberg, A. & Jost, H. 1996. Cromoespinélio como indicador petrogenético, Suíte Ultramáfica Cerro da Mineração (SUCM) - Antiforme Capané, Cachoeira do Sul-RS. In: CONGRESSO BRASILEIRO DE GEOLOGIA 39, Salvador, *Anais...*, 6: 221-223.
- Morales, L.F.G. 2002. Tramas cristalográficas em uma zona de cisalhamento tangencial com transporte paralelo ao alongamento do Cinturão Dom Feliciano, RS. Porto Alegre, 100 p. Dissertação de Mestrado, Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Nutman, A.P., 2001. On the scarcity of >3900 Ma detrital zircons in \geq 3500 Ma metasediments *Precambrian Research*, 105:93-114.
- Porcher, C.C. 1992. Caracterização das condições de fluxo em uma zona de cisalhamento tangencial na Região de Santana da Boa Vista (RS). Porto Alegre, 192p. Programa de Pós-Graduação em Geociências, Dissertação de Mestrado, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Porcher, C.C. & Fernandes, L.A.D. 1990. Relações embasamento/"cobertura" na porção ocidental do cinturão Dom Feliciano: um esboço estrutural. *Pesquisas*, 17 (1/2):72-96.
- Porcher, C.C., Macnaughton, N.J., Leite, J. A. D., Hartmann, L.A. & Fernandes, L.A.D. 1999. Idade SHRIMP do vulcanismo ácido do Complexo Metamórfico Porongos, RS. In: SIMPÓSIO SOBRE VULCANISMOS E AMBIENTES ASSOCIADOS, 1, Gramado. *Resumos...*, 1999. Sociedade Brasileira de Geologia.
- Porcher, C.C., Fernandes, L.A.D. & Silva, A.O.M. Zoneamento metamórfico das granadas e dados de geotermometria dos metamorfitos Cerro do Facão-Suíte Metamórfica Porongos (RS). In: SIMPÓSIO NACIONAL DE ESTUDOS TECTÔNICOS, 5, Gramado. *Resumos...*, 1995. v. 1. p. 69-70.
- Philipp, R.P., Lusa, M., Nardi, L.V.S. 2008. Petrology of dioritic, tonalitic and trondhjemitic gneisses from Encantadas Complex, Santana da Boa Vista, southernmost Brazil: Paleoproterozoic continental-

- arc magmatism. *Anais da Academia Brasileira de Ciências*, 80(4), 735-748.
- Remus, M.V.D., Phillip, R. P., Tedesco, M. A. & Faccini, U. F. 1990. Contribuição ao Estudo Geológico-Estrutural dos Gnaisses Encantadas e das Relações com as Supracrustais Porongos na Região de Santana da Boa Vista/RS. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 36, 1990. *Anais...* Natal -RN: SBG Nucleo RN, 1990. v. 5. p. 2358-2370.
- Rivers, T. 1997. Lithotectonic elements of the Greenville Province: review a tectonic implication. *Precambrian Research*, 86:117-154.
- Rubatto, D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. *Chemical Geology*, 184:123–138.
- Saalmann, K., Gerdes, A., Lahaye, Y., Hartmann, L.A., Remus, M.V.D. & Läufer, A. 2011. Multiple accretion at the eastern margin of the Rio de la Plata craton: the prolonged Brasiliano orogeny in southernmost Brazil. *International Journal of Earth Sciences*, 100:355-378.
- Saalmann, K., Remus, M. V. D. & Hartmann, L.A, 2006. Structural evolution and tectonic setting of the Porongos belt, southern Brazil. *Geological Magazine*, 143(1):59–88.
- Santos, J.O.S., Rizzotto, G.J., Potter, P.E., McNaughton, N.J., Matos, R.S., Hartmann L.A., Chemale Jr. F. & Quadros, M.E.S. 2008. Age and autochthonous evolution of the Sunsás Orogen in West Amazon Craton based on mapping and U-Pb geochronology. *Precambrian Research*, 165:120-152.
- Tessari, R.I. & Picada, R.S. 1966. Geologia da Quadrícula de Encruzilhada do Sul, Rio Grande do Sul, Brasil. Boletim da Divisão de Fomento e Produção Mineral, DNPM. Rio de Janeiro, 124: 1-147.
- Torsvik, T. H. 2003. The Rodinia Jigsaw Puzzle. *Science*, 300: 1379-1381.
- Williams, I.S. 2001. Response of Detital Zircon and Monazite, and Their U-Pb Isotopic Systems, to Regional Metamorphism and Host-Rock Partial Melting, Cooma Complex, Southeastern Australia. *Australian Journal of Earth Sciences*, 48: 557-580.
- Williams, I & Claesson, S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonies. *Contributions to Mineralogy and Petrology*, 97:205-217.

 $Apêndice \ 1. \ As \ análises \ cujas \ razões \ Th/U \ encontradas \ ficaram \ pr\'oximas \ de \ 0,01 \ (razões \ estimadas \ como \ t\'ipicas \ de \ zircões \ de \ gênese \ metam\'orfica \ ou \ hidrotermal), com \ n\'umero \ do \ spot \ discriminado \ em \ \it it\'alico.$

Apêndice – F	Resultados (I	U-Pb)															
Spot /Amostra	f(206)%	Th/U	6/4 ratio	Razões 7/6 ratio	1s(%)	7/5 ratio	1s(%)	6/8 ratio	1s(%)	Rho	7/6 age	±	Idades 7/5 age	±	6/8 age	±	Conc (%)
RIP 8 -1	0.021	0.26	71638	0.12898	0.8	6.8481	1.4	0.38509	1.2	0.82	2084	14	2092	13	2100	22	101
RIP 8 -2	0.010	0.41	162728	0.12579	0.9	6.3022	1.6	0.36338	1.3	0.80	2040	16	2019	14	1998	22	98
RIP 8 -3	0.021	0.32	72036	0.12343	1.2	6.1055	2.2	0.35875 0.34194	1.8	0.83	2006 2003	21 29	1991 1948	19 19	1976	31 25	98 95
RIP 8 -4 RIP 8 -7	0.033 0.063	0.80	46075 19626	0.12323 0.10706	1.6 1.0	5.8097 4.2207	2.2 1.5	0.34194	1.5 1.1	0.70 0.75	1750	18	1678	12	1896 1621	16	93 93
RIP 8 -8	0.070	0.32	21885	0.12666	1.2	5.8723	1.8	0.33625	1.3	0.72	2052	22	1957	16	1869	21	91
RIP 8 -9	0.058	0.45	26382	0.13537	1.7	6.6436	2.4	0.35594	1.7	0.74	2169	30	2065	21	1963	28	91
RIP 8 -10 RIP 8 -11	0.013 0.049	0.69 0.23	116803 31489	0.15116 0.12681	0.6 1.2	8.6454 6.1232	1.2 1.8	0.41482 0.35020	1.0 1.3	0.85 0.75	2359 2054	11 20	2301 1994	11 15	2237 1936	20 22	95 94
RIP 8 -11	0.049	0.23	64805	0.12546	1.5	7.0031	2.3	0.33020	1.7	0.75	2034	27	2112	20	2191	31	108
RIP 8 -13	0.030	0.21	48578	0.15762	0.6	8.9046	1.2	0.40973	1.0	0.84	2430	10	2328	11	2214	19	91
RIP 8 -17	0.021	0.18	74015	0.12558	1.5	5.9825	2.7	0.34550	2.3	0.86	2037	26	1973	24	1913	38	94
RIP 8 -18 RIP 8 -19	0.097 0.063	0.32 0.44	15422 28161	0.14127 0.13582	0.7 0.8	7.4967 7.4028	1.4 1.6	0.38488 0.39532	1.2 1.4	0.85 0.85	2243 2175	13 14	2173 2161	13 14	2099 2147	22 25	94 99
RIP 8 -23	0.025	0.94	62242	0.12100	1.1	5.4214	1.9	0.32495	1.5	0.79	1971	20	1888	16	1814	23	92
RIP 8 -24	0.019	0.34	71939	0.21064	1.5	14.8547	2.2	0.51146	1.7	0.76	2910	24	2806	21	2663	37	91
RIP 8 -25	0.030	0.34	49465	0.13277	0.7	7.2446	1.2	0.39575	1.0	0.81	2135	12	2142	11	2149	19	101
RIP 8 -26 RIP 8 -27	0.021 0.055	0.21 0.50	91067 26805	0.12661 0.13266	1.6 1.7	6.5331 7.3968	5.1 2.5	0.37425 0.40440	4.9 1.7	0.95 0.76	2051 2133	28 30	2050 2161	45 22	2049 2189	86 32	100 103
RIP 11 -1	0.065	0.42	24034	0.11730	1.2	5.2769	1.4	0.32628	0.8	0.53	1915	21	1865	12	1820	13	95
RIP 11 -2	0.060	0.87	7852	0.15182	1.1	9.1445	1.4	0.43685	0.9	0.61	2367	19	2353	13	2337	18	99
RIP 11 -3	0.047	0.37	31007	0.14875	1.2	8.7794	1.7	0.42808	1.2	0.67	2332	21	2315	16	2297	22	99
RIP 11 -4 RIP 11 -5	0.055 0.096	0.51 0.02	27634 18433	0.12194 0.05933	1.7 1.0	5.9221 0.7938	2.3 1.4	0.35222 0.09704	1.6 0.9	0.71 0.64	1985 579	30 22	1964 593	20 6	1945 597	26 5	98 103
RIP 11 -6	0.024	0.53	84546	0.12601	0.9	6.5865	1.3	0.37909	1.0	0.72	2043	16	2058	12	2072	17	101
RIP 11 -8	0.138	1.04	11227	0.12089	1.8	5.5291	2.4	0.33170	1.6	0.72	1969	33	1905	21	1847	26	94
RIP 11 -9 RIP 11 -10	0.066 0.159	0.35 0.53	22012 5947	0.14661 0.12590	0.9 1.1	8.5344 5.7707	1.3 1.7	0.42219 0.33244	0.9 1.3	0.70 0.76	2307 2041	15 19	2290 1942	11 15	2270 1850	17 21	98 91
RIP 11 -10	0.139	0.55	58544	0.12390	1.1	6.3467	1.7	0.36896	1.2	0.70	2025	20	2025	15	2024	21	100
RIP 11 -12	0.044	0.49	34908	0.12213	1.5	6.0034	2.2	0.35651	1.5	0.72	1988	27	1976	19	1966	26	99
RIP 11 -13	0.179	0.85	8503	0.12955	1.0	6.4325	1.3	0.36012	0.9	0.66	2092	17	2037	12	1983	15	95
RIP 11 -14 RIP 11 -15	0.052 0.101	0.46 0.58	40468 14427	0.12463 0.16070	1.0 1.2	6.3686 9.5450	1.4 1.8	0.37060 0.43080	1.0 1.3	0.68 0.71	2024 2463	18 21	2028 2392	12 16	2032 2309	17 25	100 94
RIP 11 -16	0.077	0.54	20121	0.11966	1.9	5.2903	2.5	0.32065	1.6	0.70	1951	34	1867	21	1793	25	92
RIP 11 -17	0.446	0.66	3399	0.12155	1.8	6.0995	2.6	0.36395	1.8	0.70	1979	33	1990	23	2001	32	101
RIP 11 -18	0.356	0.41	3049	0.12876	1.8	6.9177	2.4	0.38964	1.7	0.67	2081	32	2101	22	2121	30	102
RIP 11 -19 RIP 11 -20	0.464 0.042	0.69 0.21	3213 34675	0.12140 0.12746	2.0 2.0	6.5436 7.4117	2.8 2.7	0.39091 0.42175	1.9 1.8	0.70 0.69	1977 2063	35 35	2052 2162	24 24	2127 2268	35 34	108 110
RIP 11 -21	0.493	0.84	3198	0.09970	2.1	4.1272	2.7	0.30022	1.7	0.62	1619	39	1660	22	1692	25	105
RIP 11 -22	0.403	0.56	5108	0.12861	1.8	6.5336	2.7	0.36845	2.0	0.74	2079	31	2050	24	2022	35	97
RIP 11 -23 RIP 11 -25	0.377 0.790	0.65 1.73	4023 1876	0.12403 0.13006	1.7 2.2	6.2167 7.1339	2.5 3.7	0.36351 0.39782	1.8 2.9	0.71 0.80	2015 2099	31 38	2007 2128	22 33	1999 2159	31 54	99 103
RIP 11 -26	0.653	0.97	2092	0.13000	2.0	7.7755	3.0	0.39762	2.2	0.74	2250	34	2205	27	2158	41	96
RIP 11 -27	0.164	0.64	9219	0.12189	1.8	6.1092	2.2	0.36351	1.3	0.58	1984	31	1992	19	1999	22	101
RIP 11 -28	0.164	0.42	8957	0.14709	2.2	8.3771	2.8	0.41305	1.7	0.65	2312	39	2273	26	2229	32	96
RIP 11 -29 RIP 11 -31	0.118 0.023	0.22 0.24	12576 66228	0.13141 0.12847	1.9 1.6	7.1040 6.6723	2.6 2.2	0.39207 0.37669	1.9 1.5	0.69 0.67	2117 2077	33 29	2125 2069	24 20	2132 2061	34 27	101 99
RIP 11 -32	0.169	0.12	8854	0.12106	2.5	6.3943	3.4	0.38307	2.3	0.75	1972	44	2031	30	2001	41	106
RIP 11 -33	0.074	0.15	20002	0.12777	1.5	6.8986	2.2	0.39159	1.7	0.75	2068	26	2098	20	2130	30	103
RIP 11 -34	0.087	0.08	17230	0.12636 0.12998	1.5	6.6501	2.4	0.38169	1.9	0.78	2048	26	2066	21	2084	33	102
RIP 11 -36 RIP 11 -37	0.144 0.079	0.12	10290 18635	0.12998	1.3 1.5	7.1177 7.7356	2.1 2.4	0.39715 0.40687	1.7 1.9	0.79 0.78	2098 2201	22 25	2126 2201	19 21	2156 2201	31 35	103 100
RIP 11 -38	0.046	0.04	32126	0.12985	1.9	6.9566	2.6	0.38855	1.7	0.70	2096	34	2106	23	2116	31	101
RIP 11 -39	0.142	0.53	10115	0.15485	1.7	9.5957	2.3	0.44943	1.5	0.65	2400	29	2397	21	2393	30	100
RIP 11 -40 RIP 11 -41	0.084 0.037	0.20 0.04	21470 39007	0.13251 0.15627	1.5 1.6	7.1512 9.5232	2.0 2.1	0.39141 0.44199	1.3 1.5	0.66 0.68	2131 2416	26 26	2130 2390	18 20	2129 2360	24 29	100 98
RIP 11 -41	0.101	0.04	13479	0.13627	1.5	7.5684	2.1	0.40646	1.7	0.74	2165	26	2181	20	2199	31	102
RIP 11 -45	0.129	0.14	11822	0.12094	1.8	5.9333	2.3	0.35581	1.6	0.66	1970	31	1966	20	1962	26	100
RIP 11 -46	0.337	0.37	4297	0.13553	3.1	8.1056	4.7	0.43375	3.6	0.85	2171	54	2243	43	2323	70	107
RIP 11 -47 RIP 11 -48	0.245 0.168	0.33	5956 9115	0.13382 0.12547	1.7 1.5	7.8045 6.7346	2.8 2.2	0.42299 0.38929	2.2 1.6	0.78 0.73	2149 2035	30 27	2209 2077	25 20	2274 2120	43 30	106 104
RIP 11 -49	0.141	0.17	10520	0.12323	1.6	6.6992	2.3	0.39428	1.6	0.70	2004	29	2073	20	2143	29	107
RIP 11 -50	0.347	0.10	4068	0.15853	3.1	10.2694	3.9	0.46983	2.4	0.75	2440	52	2459	36	2483	50	102
RIP 11 -51 RIP 11 -52	0.046	0.03	31988	0.14388	1.3	8.3321	1.6	0.42000	1.0	0.58	2274 1791	22	2268	15 16	2260 1880	19	99 105
RIP 11 -52 RIP 11 -53	0.082 0.225	0.23	13863 6555	0.10951 0.13246	1.4 1.9	5.1112 7.4613	1.9 2.8	0.33852 0.40854	1.2 2.1	0.64 0.75	2131	26 33	1838 2168	16 25	1880 2208	20 40	105
RIP 11 -54	0.193	0.63	6458	0.21007	2.6	18.5098	5.3	0.63907	4.7	0.92	2906	42	3017	51	3185	117	110
RIP 06 -1	0.373	0.34	4529	0.07398	2.3	1.8936	3.5	0.18565	2.7	0.76	1041	46	1079	23	1098	27	105
RIP 06 -2	0.115	0.28	39392	0.10603	1.6	4.7291	3.2	0.32349	2.7	0.87	1732	29	1772	26 18	1807	43 24	104 102
RIP 06 -3 RIP 06 -4	0.069 0.269	0.21 0.17	23277 6233	0.09290 0.07510	1.5 3.1	3.4017 2.0915	2.3 4.0	0.26558 0.20198	1.8 2.4	0.76 0.75	1486 1071	28 63	1505 1146	18 27	1518 1186	24 26	102
RIP 06 -5	0.053	0.15	30587	0.09556	1.2	3.5152	2.2	0.26680	1.8	0.82	1539	23	1531	17	1525	24	99
RIP 06 -6	0.229	0.48	4116	0.10510	1.8	4.9065	3.0	0.33859	2.5	0.81	1716	32	1803	25	1880	40	110
RIP 06 -7 RIP 06 -8	0.081	0.38	17759 4786	0.13939 0.12470	1.6 2.3	8.5573 7.1687	4.4 4.2	0.44526 0.41695	4.1 3.5	0.93 0.83	2220 2024	28 42	2292 2133	40 37	2374 2247	82 66	107 111
RIP 06 -9	0.300	0.03	4154	0.12470	1.6	6.8537	3.1	0.41693	2.7	0.86	1992	28	2093	28	2196	50	110
RIP 06 -10	0.122	0.34	12236	0.13021	1.5	6.9625	2.7	0.38781	2.2	0.83	2101	26	2107	24	2113	40	101
RIP 06 -13	0.000	0.13	3352897	0.13149	1.3	6.6102	2.0	0.36461	1.6	0.77	2118	22	2061	18	2004	27	95

RIP 06 -14	0.183	0.40	8509	0.11411	2.4	5.0448	3.3	0.32064	2.3	0.80	1866	43	1827	28	1793	37	96
RIP 06 -15	0.020	0.29	75905	0.12742	0.7	6.5360	1.5	0.37202	1.3	0.88	2063	13	2051	13	2039	24	99
RIP 05 -1	0.061	0.25	19188	0.07825	1.0	2.2610	1.7	0.20957	1.3	0.78	1153	20	1200	12	1227	15	106
RIP 05 -2	0.055	0.25	27167	0.13191	1.2	7.0087	2.0	0.38535	1.6	0.80	2124	20	2113	17	2101	28	99
RIP 05 -3	0.055	0.25	27167	0.13100	1.7	6.9198	2.4	0.38309	1.8	0.77	2111	29	2101	22	2091	32	99
RIP 05 -4	0.025	0.01	71005	0.05956	1.0	0.7956	1.5	0.09687	1.1	0.73	588	22	594	7	596	6	101
RIP 05 -5	0.012	0.35	48642	0.11723	0.9	5.5942	1.4	0.34609	1.1	0.78	1914	16	1915	12	1916	19	100
RIP 05 -6	0.012	0.35	127554	0.11613	1.1	5.4975	1.7	0.34334	1.3	0.75	1897	20	1900	15	1903	22	100
RIP 05 -7	0.019	0.46	83292	0.10995	1.5	5.0810	2.2	0.33517	1.7	0.76	1799	27	1833	19	1863	27	104
RIP 05 -8	0.025	0.46	65079	0.08320	0.8	2.6675	1.8	0.23252	1.6	0.90	1274	15	1319	13	1348	19	106
RIP 05 -9	0.017	0.22	46490	0.13539	0.8	7.4595	1.4	0.39959	1.1	0.79	2169	15	2168	12	2167	20	100
RIP 05 -10	0.023	0.25	68748	0.10408	1.1	4.3650	1.9	0.30417	1.5	0.79	1698	21	1706	16	1712	23	101
RIP 05 -11	0.011	0.21	134547	0.12482	1.5	6.3620	2.3	0.36967	1.7	0.77	2026	26	2027	20	2028	30	100
RIP 03 -1	0.009	0.71	161268	0.13773	1.2	7.5268	2.0	0.39634	1.6	0.80	2199	20	2176	18	2152	29	98
RIP 03 -2	0.009	0.71	161268	0.13618	1.6	7.4198	2.5	0.39517	1.9	0.77	2179	28	2163	22	2147	34	99
RIP 03 -3	0.030	0.35	46646	0.15098	0.6	9.6475	1.4	0.46344	1.3	0.89	2357	11	2402	13	2455	27	104
RIP 03 -4	0.019	0.00	86123	0.08417	1.1	2.8133	2.2	0.24241	1.9	0.86	1297	21	1359	16	1399	24	108
RIP 03 -5	0.004	0.28	327912	0.15612	1.8	9.4962	3.1	0.44114	2.5	0.86	2414	31	2387	28	2356	50	98
RIP 03 -6	0.077	1.03	19025	0.13579	0.7	7.7288	2.0	0.41279	1.9	0.93	2174	13	2200	18	2228	35	102
RIP 03 -10	0.025	0.49	62260	0.11996	0.5	5.7471	1.9	0.34748	1.8	0.96	1956	9	1938	16	1923	30	98
RIP 03 -11	0.128	0.24	19596	0.08696	0.9	2.7130	1.6	0.22626	1.3	0.82	1360	17	1332	12	1315	15	97
RIP 03 -12	0.017	0.06	90800	0.12303	1.0	5.9776	1.7	0.35238	1.4	0.78	2001	19	1973	15	1946	23	97
RIP 03 -13	0.071	1.30	22167	0.10459	1.7	4.3923	2.5	0.30458	1.8	0.78	1707	32	1711	21	1714	28	100
RIP 03 -14	0.038	0.32	41099	0.10724	0.7	4.5185	1.6	0.30558	1.5	0.91	1753	12	1734	14	1719	23	98
RIP 03 -15	0.034	0.20	48803	0.07869	1.1	2.1698	1.9	0.19999	1.6	0.83	1164	21	1171	13	1175	17	101
RIP 03 -16	0.066	0.67	23305	0.11557	1.9	5.4580	2.9	0.34252	2.2	0.82	1889	33	1894	24	1899	36	101

Spot			_	Razões									Idades				
/Amostra	f(206) c %	Th/U	6/4 ratio	7/6 ratio	1s(%)	7/5 ratio	1s(%)	6/8 ratio	1s(%)	Rho	7/6 age	±	7/5 age	±	6/8 age	±	DISC (%)
POR 06 -1	0.000	0.43	- 1 au	0.13560	1.23	6.85224	2.93	0.36645	2.66	0.91	2093	61	2172	27	2013	54	7
POR 06 -2	0.000	0.27	-	0.08230	2.26	2.46569	2.48	0.21730	1.02	0.41	1262	31	1253	28	1268	13	-1
POR 13 -1	0.001	0.34	-	0.1415	2.36	7.91361	2.74	0.40558	1.40	0.51	2195	31	2221	61	2246	53	2
POR 13 -2	0.001	0.83	-	0.1427	1.29	7.46260	2.53	0.37920	2.18	0.86	2073	45	2169	55	2261	29	8
POR 13 -3	0.001	0.36	-	0.1095	1.95	4.38821	2.45	0.29075	1.48	0.60	1645	24	1710	42	1790	35	8 1
POR 13 -4 POR 13 -7	0.001 0.006	0.35 0.42	-	0.0851 0.1363	2.16 1.80	2.63845 3.48766	3.03 1.88	0.22476 0.25958	2.12 0.49	0.70 0.26	1307 1488	28 7	1311 1524	40 29	1319 1576	29 29	6
POR 13 -10	0.000	2.12	-	0.1303	1.36	5.70661	2.92	0.23938	1.53	0.52	1902	29	1932	56	1965	49	3
POR 13 -11	0.001	0.38	-	0.0974	1.81	2.50054	3.67	0.21220	1.48	0.40	1241	18	1272	47	1326	44	6
POR 13 -12	0.002	0.57	-	0.0917	2.45	2.07210	4.83	0.18838	3.77	0.78	1113	42	1140	55	1192	36	7
POR 13 -14	0.002	0.42	-	0.0838	2.49	3.55322	2.77	0.26058	1.15	0.42	1493	17	1539	43	1603	40	7
POR 13 -15	0.006	0.36	-	0.1206	2.17	2.13384	2.83	0.18926	1.82	0.64	1117	20	1160	33	1240	27	10
POR 13 -16	0.001	0.72	25012	0.0855	1.62	5.10477 8.16752	2.08	0.32062	0.93	0.62	1793 2254	23 34	1837	38 40	1887 2245	21	5
POR 04 -1 POR 04 -3	0.000	0.70 0.64	25813 50555	0.1422 0.1488	1.50 1.20	8.00491	1.77 1.56	0.41659 0.39025	1.00	0.53 0.64	2332	28	2250 2232	35	2124	21	9
POR 04 -5	0.005	1.72	2134	0.1467	1.34	7.85724	2.12	0.38850	1.64	0.77	2308	31	2215	47	2116	35	8
POR 04 -6	0.005	0.34	2433	0.1412	1.05	7.18005	2.13	0.36893	1.85	0.87	2241	24	2134	45	2024	37	10
POR 04 -8	0.000	0.41	38157	0.1662	2.03	12.37417	2.13	0.53985	0.66	0.31	2520	51	2633	56	2783	18	-10
POR 04 -9	0.000	0.44	-	0.1411	0.92	7.90427	1.71	0.40622	1.44	0.84	2241	21	2220	38	2198	32	2
POR 04 -10	0.000	1.09	30403	0.1421	1.34	8.06709	1.93	0.41184	1.39	0.72	2253	30	2239	43	2223	31	1
POR 04 -11 POR 04 -12	0.000 0.001	0.65 0.63	25813 22114	0.1546 0.1244	1.17 1.26	9.12738 6.19399	1.67 2.86	0.42811 0.36109	1.19 2.56	0.71 0.90	2398 2020	28	2351 2004	39 57	2297 1987	27 51	4 2
POR 04 -12 POR 04 -13	0.001	0.89	25813	0.1244	0.93	8.47030	1.85	0.36109	1.60	0.90	2020	26 21	2283	42	2299	37	-1
POR 04 -14	0.000	0.78	133395	0.1434	1.16	10.26296	1.63	0.45374	1.14	0.70	2498	29	2459	40	2412	28	3
POR 04 -15	0.001	0.61	25813	0.1413	1.63	6.84624	2.27	0.35958	1.94	0.85	2203	26	2092	48	1980	38	10
POR 04 -17	0.000	0.82	25814	0.1467	1.74	7.88816	1.81	0.40480	0.79	0.44	2244	37	2218	40	2191	17	2
POR 04 -18	0.001	0.18	7501	0.1418	1.48	8.33417	2.03	0.41214	1.04	0.51	2307	40	2268	46	2225	23	4
POR 04 -19 POR 04 -21	0.000	0.61	25813	0.1416	1.62	8.54477	1.85	0.43695	1.11	0.60	2250	33	2291	42	2337	26	-4
POR 04 -21 POR 04 -22	0.001 0.001	0.78 1.16	25814 25813	0.1410 0.1409	2.72 1.89	8.10268 7.71098	1.88 3.19	0.41498 0.39671	0.95 1.66	0.50 0.52	2247 2239	36 61	2243 2198	42 70	2238 2154	21 36	0 4
POR 04 -23	0.000	0.63	24083	0.1409	1.28	8.28750	2.24	0.42659	1.19	0.52	2238	42	2263	51	2290	27	-2
POR 04 -24	0.001	0.20	25814	0.1358	1.54	7.83756	1.64	0.40330	1.03	0.63	2239	29	2213	36	2184	23	2
POR 04 -26	0.001	0.31	25813	0.1457	0.87	6.87294	1.66	0.36709	0.61	0.37	2174	34	2095	35	2016	12	7
POR 04 -27	0.001	1.34	4420	0.1412	2.94	8.29817	0.92	0.41311	0.30	0.32	2296	20	2264	21	2229	7	3
POR 04 -28	0.002	0.59	25813	0.1572	1.20	7.38635	3.64	0.37942	2.15	0.59	2242	66	2159	79	2074	45	8
POR 04 -29 POR 04 -31	0.001	0.86 0.83	12332 21341	0.1487	1.59 2.18	9.77281	1.94 1.87	0.45081	1.53 0.98	0.79 0.53	2426 2331	29 37	2414 2320	47 43	2399 2306	37 23	1
POR 04 -31	0.001 0.000	0.83	25813	0.1473 0.1499	0.96	8.82073 8.49149	2.82	0.43015 0.41822	1.79	0.53	2314	50	2320	65	2252	40	3
POR 04 -33	0.002	0.16	5159	0.1412	2.07	8.66721	1.27	0.41927	0.82	0.65	2345	23	2304	29	2257	19	4
POR 04 -34	0.002	0.59	25813	0.0818	1.99	7.73438	2.71	0.39714	1.75	0.65	2243	47	2201	60	2156	38	4
POR 04 -35	0.000	0.41	54008	0.1178	1.23	2.40400	2.49	0.21326	1.49	0.60	1240	25	1244	31	1246	19	-1
POR 04 -36	0.000	0.23	25813	0.0856	2.15	5.31881	1.57	0.32740	0.98	0.63	1923	24	1872	29	1826	18	5
POR 04 -38	0.001	0.53	25813	0.07286	1.69	2.71791	2.40	0.23022	1.06	0.44	1330	29	1333	32	1336	14	0
POR 04 -39 POR 04 -40	0.002 0.000	0.47 0.69	5223 25813	0.15350 0.16731	1.11 0.86	1.67034 8.88398	2.04 1.68	0.16626 0.41977	1.13 1.26	0.56 0.75	1010 2385	17 26	997 2326	20 39	991 2259	11 28	2 5
POR 04 -40	0.000	0.09	9158	0.16731	2.21	10.59946	1.20	0.41977	0.83	0.73	2531	22	2489	39	2437	20	4
POR 04 -43	0.001	0.28	7995	0.14213	1.13	2.01149	2.55	0.18620	1.26	0.49	1156	26	1119	28	1101	14	5
POR 04 -44	0.000	1.08	25813	0.14393	1.92	7.83814	1.33	0.39996	0.69	0.52	2253	26	2213	29	2169	15	4
POR 04 -45	0.003	1.31	4420	0.08087	1.93	7.73535	2.88	0.38980	2.15	0.75	2275	44	2201	63	2122	46	7
POR 04 -46	0.001	0.33	25813	0.10463	1.46	2.35839	2.22	0.21151	1.10	0.50	1218	23	1230	27	1237	14	-2
POR 04 -47 POR 04 -48	0.000 0.001	0.54 0.71	29556 25813	0.1409 0.1422	1.02 1.50	4.20331 7.12321	2.21 2.39	0.29136 0.36674	1.66 2.17	0.75 0.91	1708 2238	25 23	1675 2127	37 51	1648 2014	27 44	3 10
POR 04 -48	0.001	0.71	5993	0.1422	1.56	4.70993	4.30	0.30674	4.01	0.91	1769	76	1786	28	1755	70	2
POR 12 -5	0.002	0.54	14378	0.1092	1.83	2.27992	2.20	0.20461	1.22	0.56	1206	27	1217	22	1200	15	1
POR 12 -6	0.000	0.49	35843	0.1149	1.26	5.14286	1.60	0.31069	0.78	0.49	1843	29	1957	27	1744	14	8
POR 12 -8	0.001	0.84	10792	0.0819	2.01	4.87359	2.39	0.30767	2.03	0.85	1798	43	1878	24	1729	35	2
POR 12 -9	0.001	0.50	21899	0.1159	1.05	2.36130	2.28	0.20906	1.08	0.47	1231	28	1244	25	1224	13	-1
POR 12 -10	0.000	0.60	45676	0.0969	1.80	5.54991	1.45	0.34727	1.00	0.69	1908	28	1894	20	1922	19	6
POR 12 -11 POR 12 -12	0.001 0.005	0.49 0.81	16193 2911	0.0811 0.0826	1.96 1.59	3.41101 2.09967	3.03 2.31	0.25522 0.18776	2.43 1.21	0.80 0.53	1507 1149	46 26	1566 1224	28 24	1465 1109	36 13	9 1
POR 12 -12 POR 12 -13	0.005	0.81	85047	0.0826	2.94	2.42194	2.31	0.18776	1.21	0.53	1149	30	1224	20	1109	13 23	1
POR 12 -14	0.000	0.10	12384	0.1097	1.25	2.20636	4.27	0.21237	3.10	0.73	1183	51	1190	35	1179	37	9
POR 12 -15	0.000	1.80	58293	0.1119	1.13	4.38843	1.54	0.29010	0.89	0.58	1710	26	1795	22	1642	15	9
POR 12 -16	0.023	0.22	622	0.0833	1.84	4.53538	4.88	0.29406	4.75	0.97	1737	85	1830	21	1662	79	8
POR 12 -17	0.001	0.32	9471	0.0869	2.87	2.29440	2.34	0.19973	1.45	0.62	1211	28	1277	23	1174	17	2
POR 12 -18	0.001	0.82	9037	0.0854	1.50	2.73111	3.50	0.22804	2.01	0.57	1337	47	1357	39	1324	27	0
POR 12 -19	0.000	0.67	29436	0.1314	1.28	2.69924	1.81	0.22911	1.02	0.56	1328	24	1326	20	1330	14	9
POR 12 -20 POR 12 -22	0.003 0.001	0.41 0.43	5425 20222	0.0809 0.1865	2.15 0.85	6.28177 2.27549	1.38 2.52	0.34661 0.20401	0.51 1.32	0.37 0.52	2016 1205	28 30	2117 1219	27 26	1918 1197	10 16	2 5
POR 12 -22 POR 12 -23	0.001	0.43	59749	0.1865	1.70	12.62848	1.21	0.20401	0.86	0.52	2652	30	2712	23	2575	22	5 7
POR 12 -24	0.001	0.91	13934	0.0802	2.26	6.16062	2.33	0.34010	1.55	0.66	1999	47	2116	37	1887	29	4
POR 12 -25	0.001	0.21	9960	0.1130	1.72	4.71309	2.37	0.30396	1.65	0.70	1770	42	1840	31	1711	28	8
POR 12 -27	0.001	0.64	21479	0.1092	1.56	2.16653	3.55	0.19594	2.74	0.77	1170	42	1202	27	1153	32	2
POR 12 -28	0.001	0.90	11403	0.0808	1.83	4.69322	1.97	0.30130	0.96	0.49	1766	35	1848	32	1698	16	1

