
INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

43

Adding TQ-BOT into a Third-party Learning

Management System

Añadiendo TQ-BOT en un Learning Management

System proporcionado de Terceros

Abstract: Intelligent Tutoring Systems are computer
programs that aim at providing personalized instruction to
students. In recent years, artificial intelligence conversational
robots, usually known as chatterbots, have become very
popular in the Internet. In this paper we show how
chatterbots can be integrated in e-Learning Systems. To
perform such an integration the Service Oriented Architecture
paradigm is adopted and e-learning standardization initiatives
are considered. A middleware is provided to enable the
integration and reuse of chatterbots by e-Learning systems
enabling a tight control of their operation. Such middleware
takes to account several issues such as authorising users,
creating instances, transferring data to and from the
chatterbot, assigning permissions to users, and subscribing to
events. Our approach is applied to the specific case of TQ-
Bot, which is use to track and supervise the student progress
and to provide answers orienting the student to the more
appropriate course contents.
Keywords: Chatterbot. Agent Models. E-learning.
Middleware. Service Oriented Architecture.

Resumen: Los Sistemas de Tutorización Inteligentes son
programas informáticos que tienen como objetivo
proporcionar enseñanza personalizada a los estudiantes. En
los últimos años, los robots de inteligencia artificial de
conversación, por lo general conocidos como chatterbots, se
han vuelto muy populares en el Internet. En este trabajo se
muestra cómo se puede integrar chatterbots en sistemas de
e-Learning. Para llevar a cabo esta integración se adopta el
paradigma de arquitectura orientada a servicios y algunas
iniciativas de estandarización. En el artículo se describe un
middleware para permitir la integración y la reutilización de
chatterbots por los sistemas de e-learning que permite una
un estricto control de su funcionamiento. El middleware es
necesario para desarrollar varios aspectos, tales como
autorizar a los usuarios, la creación de instancias, la
transferencia de datos hacia y desde el chatterbot, la
asignación de permisos a los usuarios, y suscribirse a los
eventos. Nuestro enfoque se aplica al caso concreto de TQ-
Bot, que es utilizado para el seguimiento y supervisión del
progreso de los estudiantes y para proporcionar respuestas
que orienten al alumno en el curso.
Palabras-chave: Chatterbots. Modelos de Agentes. E-
learning. Middleware. Arquitectura Orientada a Servicios.

CAEIRO-RODRIGUEZ, Manuel; MIKIC-FONTE, Fernando
Ariel; FONTENLA-GONZALEZ, Jorge, PEREZ-RODRIGUEZ,
Roberto; BURGUILLO-RIAL, Juan Carlos; LLAMAS-
NISTAL, Martín. Adding TQ-BOT into a Third-party
Learning Management System. Informática na Educação:
teoria & prática, Porto Alegre, v. 14, n. 1, p. 43-59,
jan./jun. 2011.

Manuel Caeiro-Rodríguez
Universidade de Vigo

Fernando Ariel Mikic-Fonte
Universidade de Vigo

Jorge Fontenla-González
Universidade de Vigo

Roberto Pérez-Rodríguez
Universidade de Vigo

Juan Carlos Burguillo-Rial
Universidade de Vigo

Martín Llamas-Nistal
Universidade de Vigo

1 Introduction

he adoption of new technologies in

education is continually increasing.

The Internet's functionality and

capability is being applied to support an

increasing number of courses at different

levels (from K-12, to higher education, to

lifelong learning), in a broad range of

disciplines, and in different contexts (e.g.

distance learning, blended learning or

traditional in-class education). In some

cases, e-Learning systems are used to

supplement existing learning activities, such

as lecturing, fact-finding and

experimentation. In other cases, the

T

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

44

systems support brand new activities, such

as organizing personalized learning

materials and providing instant assessment

through online tests. In any case,

technology is becoming a main tool to

support educational processes at all levels.

Artificial Intelligence (AI) is usually

considered as a key technology domain in

the development and adoption of e-learning

systems. Since the 1980’s many research

projects have been devoted to the

development of Intelligent Tutoring Systems

(ITSs) (CORBETT et al., 1997), intelligent

agents, and more specifically the use of

conversational agents, usually called

chatterbots, which allow the communication

with users in natural language.

A.L.I.C.E. (Artificial Linguistic Internet

Computer Entity) (ALICE A. I. Foundation,

1995) has been one of the most ground-

breaking projects in the field of AI during

the last years. A.L.I.C.E. is the project that

produced the AIML (Artificial Intelligence

Markup Language) through which is posible

to develop software chatterbots (NEVES et

al., 2002). A.L.I.C.E. has won the “Loebner

Prize in Artificial Intelligence Contest”

(based on the Turing test) several times. An

A.L.I.C.E.-like chatterbot can be used as a

tutor in an e-learning system to provide

tutoring and evaluating support. In this

paper we use an A.L.I.C.E. based chatterbot

named TQ-Bot, which is used to track and

supervise the progress of the students, and

to provide answers orienting them to the

more appropriate course contents.

A main issue in the use of chatterbots is

their integration in e-learning systems.

Chatterbots are usually developed ad-hoc

and with no interoperability support. Today

we can find many bots in the literature

(BURGUILLO, 2008; ALICE A. I. Foundation,

1995; PIETRO; FRONTERA, 2004;

LEONHARDT et al., 2003), but it is very

difficult to use them in contexts different

from the one they were conceived for. This

can be seen as a reusability problem that

should be solved.

In this paper we show a solution based

on the Service Oriented Architecture (SOA)

programming paradigm that enables the

integration of chatterbots into e-learning

systems. This work extends some

standardization initiatives in the e-learning

domain for the integration of third-party

tools (ALCOM et al., 2006). Our solution

comprises a middleware, interfaces and

protocols to achieve a hard integration of

third-party tools and e-learning systems

involving transparency and privacy

requirements key for final users. As a result,

it is provided an infrastructure that can be

used to support the integration of

chatterbots in e-learning systems. In this

paper we show how a specific chatterbot

(TQ-Bot) is integrated into a SOA-based

LMS using this infrastructure.

The rest of the paper is organized as

follows. Next section introduces the context

of the paper in the e-learning domain.

Section 3 provides a general view of a

common e-learning system, identifying key

parts and components. Following this

introduction the integration middleware is

described in Section 4, and Section 5

includes the adoption of this infrastructure

to support the integration of a chatterbot in

an e-learning system. The paper ends up

with some conclusions.

2 Background

Nowadays, the most common e-learning

systems are Learning Management Systems

(LMSs) (WEAVER, 2002; ZEMSKY et al.,

2009). LMSs are deployed as holistic

platforms intended to manage all the issues

involved in distance learning. These issues

comprise authoring, assessing and

delivering tools to provide specific

functionalities (e.g. profile management

tools, productivity tools, communication

tools). In their first attempts, LMSs were

essentially repositories with lots of

documents but very basic functionality.

However, these platforms evolved into rich

environments where students can

communicate, collaborate, access to

multimedia files, participate in virtual

worlds, subscribe to podcasts, writing wikis,

playing games, etc. The Edu-Tools (WCET,

2009) review analyses 39 different LMSs.

In spite of the advantages of LMSs, there

exist some important drawbacks that should

not be overlooked. The lack of a tutor figure

to pay specific attention to a individual

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

45

students is one of these drawbacks. Here is

where a chatterbot can play an important

role. A chatterbot can be dedicated to

tutoring students, taking advantage of AI

techniques, and to offer a kindly interface to

the users. This bot can help students at any

time of the day, any day of the week. It

does not get bored or loses its patience due

to the students’ attitude, and it can attract

and keep students’ attention because it

supposes a technological innovation. Even to

some degree, a chatterbot can make the

student feel more comfortable than just

surfing through the learning resources and

tasks.

Attending to the development model,

current LMSs can be grouped into two main

categories (DAGGER et al., 2007). The first

category is about open source initiatives

(such as Moodle, .LRN, Sakai, dotLRN,

ATutor, Whiteboard), which are built over

extensible frameworks that let implementers

adjust and modify the systems to match

their specific needs. The other category

involves proprietary solutions (such as

WebCT/Blackboard, Gradepoint,

Desire2Learn, Learn.com). These systems

support extensions by providing software

developers with “hooks” to tie third-party

software into the LMS. Nevertheless, there

is not any solution that can be applied in a

general way.

The need for extensibility solutions in e-

learning systems has led many

organizations to develop and publish several

standards and recommendations. Some

standards regard the definition of layered

and decoupled architectures (DAGGER et al.,

2007). Examples of these are the E-Learning

Framework (ELF) (JISC and DEST, 2004),

the IMS Abstract Framework (IMS-AF)

(Smythe, 2003) and the Open Knowledge

Initiative (OKI) (OKI, 2001). Among the

targets of these specifications we can find

the modularization of functionality in e-

learning systems by the identification of

well-defined core components, interfaces

and APIs. These elements are defined to

support the interoperability with the other

elements via Web Services, and grouped

according to their functionality (DAGGER et

al., 2007). However, the practical adoption

of these works is very limited, and therefore

they are regarded just as theoretical

frameworks. Other kind of specifications

(IMS General Web Services (SCHROEDER et

al., 2005), IMS Tool Interoperability (ALCOM

et al., 2006) and IMS Common Cartridge

(UNJHEM et al., 2008)) are related to the

extension of the functionalities of current e-

learning systems by means of their

interconnection with third-party components

during runtime, using broadly-accepted Web

technologies and paradigms such as

SOAP,WSDL, UDDI (WALSH, 2002), Ajax

and Comet (CRANE;MCCARTHY, 2008), Saas

(TRUMBA CORPORATION, 2004), IaaS

(HAMAMO, 2009), and Cloud Computing

(JONES, 2009). Despite their heterogeneity,

these solutions present well-known

advantages in terms of interactivity and

scalability.

3 Architecture of an e-Learning
system

In this section we describe the software

architecture used to integrate e-learning

systems and third-party tools. We use a

general description of an e-learning system,

since the scope of the presented solution

does not restrict to any particular platform.

Our exposition begins with the educational

scenario concept, which agglutinates

pedagogical and computational

requirements into a computer-

understandable building block for online

courses.

3.1 The Educational Scenario
concept

The educational scenario is the

fundamental unit for constructing complex

courses. The most relevant elements for

defining an educational scenario are

participants, which are enrolled into

scenarios; goals, which declare learning

objectives; environments, which aggregate

learning resources and tools (in which bots

are included); and temporal deadlines,

which indicate the temporal limit for fulfilling

goals. Therefore, an educational scenario

encapsulates a fully functional unit of

learning.

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

46

Arthur�

Bob�

Carol�

Dan�
Ernst�

Frank�

Designer�

designs�

MODEL�

INSTANCE 1�

INSTANCE 2�

Bob_�Chatterbot�

Carol_�Chatterbot�

Ernst�_�Chatterbot�

Frank_�Chatterbot�

Figure 1 – Design time and runtime of an educational
scenario

The life-cycle of educational scenarios

can be divided into the following stages:

design time, instantiation time and runtime.

The concept of scenario is, therefore,

twofold: it can be whether the model

created during design time, or a concrete

instance, with concrete participants enrolled

into, and with certain temporal constraints

as well. These concepts are illustrated in

Figure 1. In design time, the author creates

the model of the scenario using an authoring

tool. In the example, a scenario with human

participants and chatterbots is depicted, as

well as a lab environment with some tools: a

microscope and some books on inorganic

chemistry. In instantiation time, a new

instance of the educational scenario is

created from the model in order to handle a

particular case. In the example of the figure,

three participants are grouped and enrolled

into the first educational scenario instance:

Arthur, having a teacher’s role; Bob and

Carol, having a learner’s role; and Bob

Chatterbot and Carol Chatterbot, having a

consultant role. In the same way, Dan,

Ernst, Frank, Dan Chatterbot and Ernst

Chatterbot are grouped and enrolled into the

second educational scenario instance. The

creation of a new scenario instance entails

creating instances of its containing

elements: a new environment instance as

well as instances for tools and chatterbots

into the environment. Finally, in runtime,

participants access to environment instances

and make use of tools and chatterbot

instances. Notice that every group of

participants use its own scenario instance.

In the following subsection we detail a

general architecture to support the life-cycle

of educational scenarios, from design time

to runtime.

3.2 General architecture

We present the structure of a general e-

learning system as composed of three

layers: Presentation Layer, Business Logic

Layer, and Database Layer. In Figure 2 this

structure is depicted.

• The Presentation Layer displays

educational scenarios, making use of

the functionality provided by the

Business Logic Layer. Presentation

components are designed following a

decomposition according to its three

main functionalities:

� The Authoring component is

employed to design educational

scenarios.

� The Monitoring component is

employed to monitor educational

scenarios. An authorized user can

check the state of an educational

scenario, as well as the progression

of participants in an educational

scenario.

� The Delivering component displays

participants’ working space.

• The Business Logic Layer is the core

component of the e-learning system. It

manages information related to

educational scenarios, participants,

tools, chatterbots, and the rest of

elements, by using the persistence

capabilities of the Database Layer. The

Business Logic Layer is integrated into

the e-learning system through a well-

defined interface, therefore

guaranteeing connectivity

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

47

requirements. The two main

functionalities provided by the Business

Logic Layer are models management

and instances management.

� The Models Manager is in charge of

managing educational scenario

models. It provides an authoring

interface for creating the models.

� The Instances Manager deals with

managing educational scenario

instances.

An event such as finishing a learning

activity may trigger several events

inside the Business Logic Layer, such as

the assignment of the assessment of

that learning activity to a qualified

teacher. Communication between the

Presentation Layer and the Instances

Manager may be passive information

retrieval as well as the communication

of events generated by participants.

• Finally, the Database Layer maintains

two separate schemas: one for

educational scenario models, and

another one for educational scenario

instances.

Figure 2 – General architecture of an e-learning System

3.3 Our LMS

Following the guidelines presented in the

latter subsection, we have developed an

LMS. The presentation layer of our LMS is

inspired in Moodle (MOODLE, 2002),

programmed in PHP. The presentation layer

counts with views for authoring, monitoring,

and delivering.

The Business Logic Layer is based on the

PoEML (CAEIRO, 2007), which is an

Educational Modelling Language and, as

such, it allows to describe scenarios, groups

of participants, tools, resources, and the

rest of elements in educational scenarios.

This layer enables the definition and

execution of learnflows (PEREZ et al., 2009)

involving participants, learning goals,

temporal constraints, etc. This layer is

implemented as a Java Web Application

running on Tomcat (APACHE, 2000).

The Business Logic Layer is integrated in

the overall system through a well-defined

interface that is based on Web Services.

This approach provides the maximum level

of interoperability in web-based scenarios.

In order to make Web Services accessible to

presentation modules, we use the

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

48

functionalities provided by a SOAP engine,

Axis (APACHE, 2004). The functionalities

that the Business Logic Layer provides are

published in a WSDL file. The service

methods serve for passive information

retrieval, communication of events, and ad-

hoc changes in instances. The JavaToWSDL

tool provides for automatic WSDL generation

from Java code. The WSDL file is

automatically generated from the Java class

containing the declaration of Web Service

methods as a Java interface definition.

In the Presentation Layer we use the

NuSOAP (AYALA; NICHOL, 2009) library,

which facilitates the consumption of Web

Service methods. After retrieving the WSDL

file containing the definition of Web Service

methods, the Presentation Layer is able to

declare a client and request service methods

from the Business Logic Layer.

The Database Layer is implemented on

Oracle (ORACLE, 2009). We have chosen

Oracle because of its good out-of-the-box

scalability support, which is an important

concern in big e-learning deployments, as

those of universities supporting distance

learning courses.

4 Seamless integration of
chatterbots in e-Learning
Systems

Given the previous architecture of a

generic e-learning system, our objective in

this section is to describe an extension

mechanism in order to complement the

basic features of the system with the aid of

third-party tools, in this case chatterbots.

We consider that the integration of new

functionalities must be as tight as possible,

and must be carried out with minimum

changes in the legacy systems. In the

following sections we give some definitions

concerning the level of integration of a third-

party tool in an e-learning system, and then

we provide a close look to the architecture

we have developed for integrating of

chatterbots.

4.1 Soft and hard integration

At this point we consider two opposite

alternatives for integrating thirdparty tools

in e-learning systems, which are also

considered in (KYNG, 1997):

• Soft integration of third-party tools. The

e-learning system functionality can be

extended through a hyperlink to an

(external) third-party component.

When the user clicks on it, the graphical

user interface of the tool is displayed.

From this point, users are operating a

tool that the e-learning system cannot

control by any means. Therefore, a new

functionality is included but it does not

work in coordination with the core

system, resulting in a very “soft”

integration.

• Hard integration of third-party tools. It

includes soft integration, but providing

the e-learning system with a more

comprehensible control over the

integrated tools. We describe in the

next paragraphs our proposal for such a

comprehensible control.

Hard integration allows the e-learning

system not only to link the application, but

also to supervise and alter the workflow of

the tool as required, in order to adapt it to

the concrete requirements and limitations of

the course and its users.

As discussed in (CAEIRO, 2007), the

control of the operation of a learning tool (a

chatterbot in this paper) to achieve hard

integration in e-learning systems involves

the following issues:

1. Creating a chatterbot instance for each

user. For example, in an “Chemical”

subject a chatterbot instance can be

created for helping a learner in the

course.

2. Transferring from the e-learning

system to the chatterbot all those data

that the user may need in order to

carry out his/her tasks. In the previous

example the student can obtain

additional content asking the

chatterbot. Previously, the chatterbot

received such content from the e-

learning system.

3. Establishing some access permissions

over these data and the chatterbot

functionality. In our example, the

student may be assigned a

configuration permission to change

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

49

certain features of the bot, for example

its name or background image.

4. Subscribing to events result of the work

with the chatterbot. For example, the

e-learning system may be interested in

knowing when the student access to

some specific contents provided by the

bot.

5. Authorising the user to access the

chatterbot instance. In our example,

the student may not have access

credentials at the chatterbot, in whose

case the e-learning system has to grant

him/her access as guest user.

6. Activating an action in the chatterbot

according to the information provided

by the events triggered. For example,

the LMS activate a message in the

chatterbot to inform the learner that 5

minutes remain to finish the task.

Figure 3 summarizes the differences

between hard and soft integration in terms

of the six aspects mentioned above.

Nonetheless, it should be kept clear that soft

and hard integration represent extreme

alternatives, and it is possible to conceive

intermediate solutions.

Figure 3 – Comparison between hard integration and soft integration in e-learning systems

4.2 The generic tool adapter

The Generic Tool Adapter has been posed

as a software component to extend the

functionalities of an e-learning system by

enabling the integration of third-party tools

in a hard way. In the context of this

research work a chatterbot is considered as

a special kind of third-party tool. This

adapter has been developed at our research

group to allow e-learning systems to import,

control and manage external tools that

complement the functionalities of the LMS.

The aspects covered by this adapter involve:

1. Authorization granting. A single sign-on

mechanism, named Reverse OAuth

(FONTENLA et al., 2009), included as

part of the Generic Tool Adapter, has

been developed in order to authorize

users (e.g. learners and teachers) to

access the tool without requiring

additional sing-ins. This is especially

interesting when users have already

authenticated after the e-learning

systems and, from their point of view,

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

50

additional authentications after the tool

should not be necessary.

2. Instances management. The Generic

Tool Adapter includes resources

devoted to control the instances of the

tool. We understand by instance of a

tool a working environment along with

a graphical user interface, associated to

several files to manipulate, and a set of

users allowed to access it. Several

methods are included to control the

creation and deletion of concrete tool

instances, and to add and remove

users to tool instances.

3. Data transfer. A mechanism to

exchange data between the LMS and

the tool, either single data values or full

backups of user data. This functionality

allows the e-learning system, for

example, to submit configuration files

to a chatterbot and to get a log of

conversations in the chatterbot.

4. Permissions assignment. A functionality

is included in order to set Access

permissions to specific users over

concrete parts of the tool. This

functionality provides an

straightforward mechanism to

differentiate the different roles of

teachers and students (e.g. students

may be allowed to communicate with a

chatterbot and teachers, additionally,

may have permissions to change its

configuration).

5. Event subscription. This feature allows

the e-learning system to subscribe to

particular events triggered by the tool

in response to specific actions carried

out by its users. This feature is

specially useful in elearning

environments, where the external

system must be “in touch” with what

happens inside the tool in order to

track, evaluate and help students.

6. Specific methods management. Finally,

the Generic Tool Adapter provides

mechanisms to alter the workflow of

the tool. This category includes all

those methods that do not fit in the

previous five categories for providing

functionalities that are very specific and

dependent of the type of tool.

Figure 4 depicts the relationship among

the e-learning system, the Generic Tool

Adapter, and the third-party tool (e.g., a

chatterbot). It is important to mention that

the methods provided by the Generic Tool

Adapter (as well as their syntax) are the

same ones independently on the tool of

choice.

Figure 4 – Generic Tool Adapter UML component diagram

The Generic Tool Adapter features a

standardized syntax to invoke its methods,

i.e. it implements the Generic Tool

Interface. This interface is further

decomposed into six sub-interfaces,

according to the six aspects of hard

integration enumerated above. Table 1

summarizes some of the methods of the

Generic Tool Interface, and classifies them

according to the sub-interface they belong

to.

Table 1 – Generic tool interface methods

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

51

Sub.
Int.

Method Input
parameters

Output
parameters

Description

1 grant resourceURI,
expirationTime,
userName

auhtID Grants access to a resource given its URI,
the expiration time and the username of the
beneficiary of the authorization. Returns an
identifier for future references to the
authorization.

1 revoke authID result Revokes a previous authorization given its
authID. Returns an error code, if any.

2 createInstance Name instanceURI Creates a new instance given its name.
Returns its URI.

2 deleteInstance instanceURI result Deletes an instance given its URI. Returns an
error code, if any.

3 getDataElement dataURI data Requests a data element by its URI. Returns
its value.

3 setDataElement dataURI, data result Overwrites the current value of the data
element given by the parameter dataUR with
the value contained in the parameter data.
Returns an error code, if any.

3 getBackup instanceURI,
incremental

data Requests a backup copy of the data of a
instance given its URI. It can be a complete
or an incremental copy. Returns the backup
copy.

4 grantPermission permission,
username,
dataURI,

expirationTime,
instanceURI

result Grants the given permission to a user over a
particular resource. If the parameter
dataURI is not present, it applies to all the
resources of the instance given by the
parameter instanceURI. Returns an error
code, if any.

4 resetToDefaults userName,
dataURI,
instanceURI

result Resets the permission of the given user of
the given instance over the given data
element to their default values.

5 subscribe event,
instanceURI,
compact

result Subscribe to the given event. If the
parameter instanceURI is present, the
subscription only affects to the events that
take place within the given instance. If the
parameter compact is present, similar events
are grouped and sent in a single message.
Returns an error code, if any.

5 notify event,
instanceURI,
username

result Given a username and an instance URI he
belongs to, notifies an event to the user.
Returns an error code, if any.

6 invoke methodName,
parameterList

data Invokes the given remote method with the
given parameters list. Returns the result in a
serialized format.

4.3 The generic tool adapter
protocol stack

The internal architecture of the Generic

Tool Adapter is based on the well-accepted

approach to software design of protocol

stacks. Figure 5 depicts a representation of

the Generic Tool Adapter as a refinement of

the TCP/IP protocol stack where the

Application layer has been further divided

into three sublayers, and the Generic Tool

Adapter corresponds to the “Integration

Manager” and “Integration Protocol”

sublayers. As in the standard TCP/IP

protocol stack there is a (virtual) direct

communication between analogous

(sub)layers, so that Integration Managers

communicate with Integration Managers and

Integration Protocols with Integration

Protocols.

Apart from the classical Physical, Link,

Network and Transport layers, three more

elements require our attention:

• High-Level Entities. The LMS and the

third-party tool. They represent the

core of the e-learning system. They use

the Integration Managers to

communicate and complement each

other.

• Integration Managers. A set of software

components used by both High-Level

Entities to allow the supervision and

control of the workflow of the tool by

the e-learning system. In other words,

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

52

each Integration Manager carries out a

different task to achieve hard

integration.

• Integration Protocols. A set of protocols

to allow the actual communication

between Integration Managers.

Figure 5 – Representation of the Generic Tool Adapter as a protocol stack

The Integration Managers implement the

methods of the Generic Tool Interface (see

Table 1) and, together with the Integration

Protocols, form the Generic Tool Adapter

(see Section 4.2). There are six Integration

Managers and six Integration Protocols

altogether. These Managers and Protocols

are grouped in pairs, dealing with a specific

issue of hard integration (see Section 4.1).

When a method of the Integration Manager

is invoked it serializes the call and forwards

it to the corresponding Integration Protocol,

which in turn submits it to the remote

Integration Protocol. At this point, the

remote Integration Protocol passes the call

to the remote Integration Manager, which

executes the action requested.

5 Integrating TQ-BOT

In order to prove the usefulness of the

Generic Tool Adapter in extending the

functionality of an e-learning system we

decided to apply it to integrate TQ-Bot

(MIKIC et al., 2009). TQ-Bot is a chatterbot

based on AIML and dedicated to tutoring

students, taking advantage of AI techniques

and offering an appealing interface to users.

This section introduces the functionalities

and underlying architecture of TQ-Bot, and

provides a thorough description (both static

and dynamic) of the different elements of

the system resulting from the combination

of TQ-Bot and a generic e-learning system.

5.1 TQ-Bot

TQ-Bot is a virtual assistant designed for

tutoring tasks, helping students in the e-

learning process within an e-learning

system. More specifically, using TQ-Bot

students are able to auto-evaluate their

knowledge and skills and to ask for specific

course contents. It can attract and keep

students’ attention because it supposes a

technological innovation. Even to some

degree, TQ-Bot can make the student feel

more comfortable than just surfing through

the learning resources and activities.

TQ-Bot is an AIML-based chatterbot, a

type of conversational agent (a computer

program) designed to simulate an intelligent

and natural-language conversation. It

processes the users’ inputs and consults its

knowledge base to make a response that

imitates the human’s one.

AIML is an XML based programming

language and it is widely used in the

development of software agents that

communicate with their users in natural

language (the programming language AIML

was developed by Dr. Richard Wallace and

the A.L.I.C.E.bot open source community

among 1995 and 2000). AIML is a text file

with a specific structure, which constitutes

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

53

the knowledge base of the chatterbot. The

“categories” are the fundamental knowledge

basis, and they consist of at least two

elements: the “pattern” and the “template”.

In general, the performance of AIML is

based on a stimulusresponse model, in

which the stimulus (the user’s input)

corresponds with the “pattern”, and the

response (which the chatterbot will show to

the user) will be its associated “template”.

All these actions, about looking for the

adequate pattern and showing the related

template, will be carried out by a data

treatment engine, of which there are many

versions (Program D, Program E, etc.).

TQ-Bot has been developed as a PHP

application based on Program E (KOOTSTRA,

2002), which is the PHP implementation of

the AIML interpreter. TQ-Bot also uses AJAX

(Asynchronous JavaScript And XML)

technology, that enables to make interactive

applications or RIA (Rich Internet

Applications). This technique enables our

bot to maintain an asynchronous

communication with its server in the

background, and so, it is possible to make

changes on the chatterbot interface. This

means a significant improvement of the

interactivity.

Students interact with the bot through

the BUI (Bot User Interface), which consists

in a pop-up window with a text area

reflecting the conversation and a text box to

introduce new requests. The bot obtains

input data from this BUI and searches into

its knowledge source appropriate content to

reply. This content is provided during the

configuration of the chatterbot instance.

If the bot does not detect any input

related to the content of a course, it replies

to the student with an expression taken

from its general knowledge base. Once the

bot detects a reply from the student, where

he/she has used a special keyword (related

to a learning resource of the course), the

bot retrieves the previously established

association and processes the learning path.

All needed information is found at the

database tables, and TQ-Bot shows an

answer consisting of:

• The resource’s abstract.

• Extra information about the resource: a

link to all the content of the course

related to the concept that the student

was asking for.

• Related information: a set of links to

any type of information related to the

resource that the bot has found.

• Scoring the answer: the bot offers to

the student the possibility of ranking

the given answer.

Figure 6 – Answer of the TQ-Bot

TQ-Bot also enables to auto-evaluate and

monitor student progress. While a student is

talking to the bot, he/she can request

several activities (see Figure 6):

• To ask for a test: the bot chooses the

first from all available tests that the

student has not done yet.

• To ask for a personalized test: the

student must choose the number of

questions to be included in the test and

the bot composes it.

• To ask for questions that do not belong

to any test (free questions): the bot

starts to ask questions and keeps on

doing it until the student wants to stop.

Finally, we would like to point out that

the student can ask for a clue to answer a

question, and that this fact penalizes his/her

final score.

5.2 Global architecture

In this section we describe the final

architecture that allows the integration of

TQ-Bot in an e-learning system. The

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

54

architecture of TQ-Bot, the Engine, and the

Generic Tool Adapter are glued together by

means of the Chatterbot Binding Adapter

and the Creational API. Therefore, this

section is devoted to describe these two

elements. The result is depicted in the UML

component diagram of Figure 7.

Figure 7 – UML deployment of the integration architecture

The Creational API has been posed to

allow a programmatic management of the

bot. Originally, the logic of TQ-Bot had been

designed together with a graphical user

interface that allows its configuration and

management by users (namely, a teacher).

This approach proved to be tiresome when

the teacher has to configure a large number

of instances of TQ-Bot for its students.

Therefore, we defined the Creational API to

enable an automated configuration of the

bot by the e-learning system.

The Creational API provides the following

features, in accordance with the six aspects

of hard integration described in Section 4.1:

1. Authorization granting: transparent

access for users to the TQ-Bot server.

2. Instances management: automated

creation and deletion of instances of

TQ-Bot, and addition and removal of

participants to specific instances.

3. Data transfer: methods to allow the e-

learning system to read and post

messages in a TQ-Bot instance. An

excerpt of the vocabulary used to

exchange data between the e-learning

system and TQ-Bot is summarized in

Table 2. This vocabulary also includes

terms to inform the bot about the

course structure and organization.

4. Permissions assignment: methods to

assign permissions to the participants

of a TQ-bot instance.

5. Event subscription: methods that allow

an e-learning system to subscribe to

events that take place in a TQ-Bot

instance. This is especially useful in

educational scenarios where the e-

learning system must be “in touch” with

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

55

the interaction between the user and a

TQ-Bot instance.

6. Other methods: this category includes

all those methods that do not fit in the

previous five categories for providing

functionalities that are very specific of

the TQ-Bot system. We consider, for

example, configuring TQ-Bot to display

a message to the users of an instance

(e.g. “By the way, I remind you that

only 10 minutes remain to finish the

test”). In addition, there are methos to

inform the bot about the course

structure and organization.

Table 2 – Voabulary used to configue TQ-Bot

Property Value

Name TQ-BOT
Gender Male
Master Fernando Mikic

Birthday January 1, 2007
Birthplace University of Vigo

Favouritebook I, Robot
Favouriteband Smashing Punkins
Favouritesong Stairway to Heaven
Favouritemovie Matrix

Forfun Surfing the WWW
Language English
Image Angel.jpg

The Chatterbot Binding Adapter is an

intermediate layer between the Creational

API and the Generic Tool Interface. The

reason of its existence is that, while the

Generic Tool Interface has been designed for

general-purpose tools (featuring generic

methods such as createInstance()), the

Creational API features a TQ-Bot-oriented

syntax (e.g. newTQInstance()). Therefore,

the purpose of the Chatterbot Binging

Adapter is to perform a conversión between

both syntaxes. This is in agreement with the

Adapter design pattern (GAMMA et al.,

1995).

The conversions between the Generic

Tool Interface and the Creational API carried

out by the Chatterbot Binding Adapter are

actually one to one, because the latter has

been designed to cover a set of common

needs in learning tools. The output of the

Chatterbot Binding Adapter is a request that

can be appropriately processed by the

Creational API. Table 3 shows the

conversions that are carried out by the

Chatterbot Binding Adapter.

Table 3 – Conversions carried out by the Chatterbot
Binding Adapter in response to methods of Table 1

Incoming request Converted request

grant addParticipant

revoke removeParticipant
createInstance nwTQInstance
deleteInstance deleteTQInstance
getDataElement getTQVariable
setDataElement setTQVariable
getBackup getConversation
Subscribe Subscribe
Notify notifyToParticipant

grantPermission setPermission
resetToDefaults requestPermission

Invoke (postMessage) postMessage

5.3 Dynamic behaviour

In order to complement the static

description of the system detailed in the

previous section, here we briefly give a

dynamic description of its main components.

Figure 8 depicts a simplified UML sequence

diagram summarizing the calls among the

main entities of the architecture.

Firstly, a student using a Web browser

joins the e-learning system to continue a

lesson. When the user chooses a subject the

browser makes a background invocation of

the importCourse() JavaScript method at

the LMS core. This invocation results on

another method invocation by the LMS Core

to the Engine API, the getES() method,

requesting the current user activities.

When the LMS Core receives the reply

from the Engine it checks whether or not the

activities of the user involve an instance of

TQ-Bot. If they do, the LMS Core makes an

invocation of the method getEnvironment()

of the Engine API to request the AIML files

to be loaded at the chatterbot. Besides, it is

possible to request additional parameters to

customize the bot giving it a name, hobbies,

hometown, birthday, a background image

for the conversation window, structure and

organization of the course (see Table 2).

At this point of the process the LMS Core

knows that the course involves the use of an

instance of TQ-Bot, and the configuration

parameters of the instance for the current

user. The next step is the creation of an

instance of TQ-Bot. To that end, the LMS

Core invokes the createInstance() at the

Generic Tool Interface. Next, the

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

56

configuration parameters are sent with a call

to the method setDataElement() of the

Generic Tool Interface. These and

subsequent invocations are accordingly

translated by the Chatterbot Binding

Adapter in terms that can be understood by

the Creational API (see Figure 8).

Figure 8 – UML sequence diagram of the integration architecture

The next step is subscribing to events

resulting from the interaction between the

user and the instance of TQ-Bot. When the

subscription is accomplished, the user is

finally given access to the TQ-Bot instance,

which is displayed in his/her browser as a

popup window.

Up to this point we have only considered

invocations of generic methods (for creating

an instance, for transferring data and so

on). However, the need for invoking

chatterbot-specific methods may arise.

Figure 8 shows the actions triggered by an

invocation of the postMessage() method of

TQ-Bot to display a message to the user.

6 Conclusions

During the last years LMSs have become

very popular e-learning systems. They are

used by academic institutions and

companies to support learning programs and

educational activities. Nevertheless, there

are many problems and limitations that

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

57

remain to be solved in LMSs. A main issue is

related with the isolation of learners and the

lack of a tutor figure that provides

companion and guidance orienting the

student to the more appropriate course

contents. The use of an artificial intelligence

entity (an AIML-based chatterbot) can

provide this functionality.

The key contribution of this piece of

research is a middleware to integrate

chatterbots in e-learning systems. This

middleware has been developed in a generic

way, not just focused on chatterbots but

also on other tools that can be used in e-

learning: simulators, games, production

tools, etc. Eventually, all these tools share

some basic integration needs (managing

instances, assigning permissions, etc.). Our

middleware provides support to these needs

following a modular approach as well as it

supports specific issues on particular tools.

In this paper it is shown how this

middleware can be used to integrate a

chatterbot in a LMS. The final integration of

the TQ-Bot was achieved through the

programming on a single software

component: the Chatterbot Binding Adapter.

Similarly, following the same approach a

broad variety of tools can be integrated in

the LMS. The difficulties are on the

availability of a component implementing an

interface with methods as the ones of the

Creational API. If this component does not

exist it needs to be provided.

This piece of research is in the context of

recent standardization initiatives to solve

the integration of third-party tools in e-

learning systems. These initiatives have

focused in very basic problems, specifically

single sing-on authentication and some

degree of data-transfer. In any case, they

are in an early development stage. Current

e-learning systems have began to support

this kind of standards very recently. The

work described in this paper goes a step

further involving integration issues that

currently are not in the focus by the

standardization community, but we are sure

they will be considered in the future.

Acknowledgement

This work was partially supported by the Xunta de Galicia under INCITE (Project Number 10

PXIB 322 039 PR) and by the Spanish Ministerio de Ciencia e Innovación under grant

“Methodologies, Architectures and Standards for Adaptive and Accessible E-learning

(Adapt2Learn)” (TIM2010-21735-C02-01)

References

ALCOM, B., VENTO, C., et al. IMS Tools Interoperability specification, IMS Specifications, 2006. Web site:

[Last accessed: July 2011]. URL http://www.imsglobal.org/ti/index.html

ALICE A. I. Foundation. A.L.I.C.E. Artificial Intelligence Foundation, 1995. Web site: [Last accessed: July

2011]. URL http://alicebot.blogspot.com/

APACHE. Tomcat, 2000. Web site: [Last accessed: July 2011]. URL http://tomcat.apache.org/

APACHE. Axis, 2004. Web site: [Last accessed: July 2011]. URL http://ws.apache.org/axis/

AYALA, D., NICHOL, S. Nusoap, December 2009. Web site: [Last accessed: July 2011]. URL

http://sourceforge.net/projects/nusoap

BURGUILLO, J. C., 2008. Project Galaia. Web site: [Last accessed: July 2011]. URL

http://papa.det.uvigo.es/~galaia/EN/

CAEIRO, M. PoEML: A separation-of-concerns proposal to instructional design. In BOTTURI, L.; STUBBS, T.

(Eds.) Handbook of Visual Languages for Instructional Design: Theories and Practices , IGI Global, 2007.

CORBETT, A. T., KOEDINGER, K. R., ANDERSON, J. R. Intelligent Tutoring Systems. Elsevier Science, p.

849–874, 1997.

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

58

CRANE, D., MCCARTHY, P.. Comet and Reverse Ajax: The Next-Generation Ajax 2.0. Apress, Berkely, CA,

USA, 2008.

DAGGER, D., O’CONNOR, A., LAWLESS, S., WALSH, E., WADE, V. P. Service-oriented e-learning platforms:

From monolithic systems to flexible services. IEEE Internet Computing, v. 11, n. 3, p. 28–35, 2007.

FONTENLA, J., CAEIRO, M, LLAMAS, M., ANIDO, L.. Reverse OAuth - A solution to achieve delegated

authorizations in single sign-on environments. Computers & Security, v. 28, n. 8, p. 843-856, 2009.

GAMMA, E., HELM, R., JOHNSON, R., VLISSIDES, J. Design patterns: elements of reusable object-oriented

software. Addison-Wesley Professional, 1995

HAMAMO, M. Overview of IBM Information Server - Information Integration Solutions to realize Information

as a Service (IaaS), 2009. Web site: [Last accessed: July 2011]. URL http://www-

06.ibm.com/jp/provision/english/no52/article3-e.html

JISC and DEST. E-Learning Framework Web site, 2004. Web site: [Last accessed: July 2011]. URL

http://www.elframework.org/

JONES, M. T. Cloud Computing with Linux, 2009. Web site: [Last accessed: July 2011]. URL

http://www.ibm.com/developerworks/linux/library/l-cloud-computing/

KOOTSTRA, A. Program E, 2002. Web site: [Last accessed: July 2011]. URL

http://sourceforge.net/projects/programe/

Kyng, M. Computers and Design in Context, The MIT Press, 1997.

LEONHARDT, M. D., CASTRO, D. D., DUTRA, R. L., TAROUCO, L. M. R.. Elektra: Um chatterbot para uso em

ambiente educacional. Renote - Revista Novas Tecnologias na Educacao, v.1, 2003.

MIKIC, F., BURGUILLO, J., LLAMAS, M. TQ-Bot: An AIML-based tutor and evaluator bot. Journal of

Universal Computer Science, vol. 15, n. 7, p. 1486–1495, 2009.

MOODLE. Moodle Web site, 2002. Web site: [Last accessed: July 2011]. URL http://moodle.org/

NEVES, A. M. M., DINIZ, I., BARROS, F. A. Natural language communication via AIML plus chatterbots. In:

V Symposium on Human Factors in Computer Systems, 2002.

OKI. Open Knowledge Initiative Web site, 2001. Web site: [Last accessed: July 2011]. URL

http://www.okiproject.org/

ORACLE, December 2009. Oracle. Web site: [Last accessed: July 2011]. URL http://www.oracle.com

PEREZ, R., CAEIRO, M, ANIDO, L.. Enabling Process-Based Collaboration in Moodle by Using Aspectual

Services. In: Proceedings of the 2009 Ninth IEEE International Conference on Advanced Learning

Technologies-Volume 00. IEEE Computer Society, p. 301–302, 2009.

PIETRO, O. D., FRONTERA, G. Tutorbot: An application aiml based for web-learning. In: USKOV, V. (Ed.).

CATE. ACTA Press, p. 284–290, 2004.

SCHROEDER, C., SIMON, J., et al. IMS General Web Services specification, 2005. Web site: [Last accessed:

July 2011]. URL http://www.imsglobal.org/gws/

SMYTHE, C. IMS Abstract Framework specification, 2003. Web site: [Last accessed: July 2011]. URL

http://www.imsglobal.org/af/index.html

TRUMBA CORPORATION. Five benefits of software as a service, 2004. Web site: [Last accessed: July 2011].

URL http://www.trumba.com/connect/knowledgecenter/software_as_a_service.aspx

UNJHEM, E., MILLS, D., et al. IMS Common Cartridge specification, 2008. Web site: [Last accessed: July

2011]. URL http://www.imsglobal.org/cc/

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.14, n.1, jan./jun. 2011. ISSN digital 1982-1654
ISSN impresso 1516-084X

59

WALSH, A. E. (Ed.). UDDI, SOAP, and WSDL: The Web Services Specification Reference Book. Prentice Hall

Professional Technical Reference, 2002

WCET. EduTools portal, 2009. Web site: [Last accessed: July 2011]. URL http://www.edutools.info

WEAVER, P. Preventing e-learning failure. Training and Development, v. 56, n. 8, p. 45–50, 2002.

ZEMSKY, R., et al. Thwarted innovation: what happened to e-learning and why. A report for the

Weatherstation Project of the Learning Alliance at the University of Pennsylvania, 2009. Web site: [Last

accessed: July 2011]. URL http://www.irhe.upenn.edu/Docs/Jun2004/ThwartedInnovation.pdf

Recebido em maio de 2011
Aprovado para publicação em junho de 2011

Manuel Caeiro-Rodríguez
Universidade de Vigo – UVigo, Vigo – España. E-mail: manuel.caeiro@det.uvigo.es
Fernando Ariel Mikic-Fonte
Universidade de Vigo – UVigo, Vigo – España. E-mail: mikic@det.uvigo.es
Jorge Fontenla-González
Universidade de Vigo – UVigo, Vigo – España. E-mail: jfontenla@det.uvigo.es
Roberto Pérez-Rodríguez
Universidade de Vigo – UVigo, Vigo – España. E-mail: rperez@det.uvigo.es
Juan Carlos Burguillo-Rial
Universidade de Vigo – UVigo, Vigo – España. E-mail: jrial@det.uvigo.es
Martín Llamas Nistal
Universidade de Vigo – UVigo, Vigo – España. E-mail: martin.llamas@det.uvigo.es

