
77

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.12, n.1, jan./jun. 2009. ISSN digital 1982-1654
ISSN impresso 1516-084X

GASPAR, Nuno; SOUSA, Simão Melo de. A Web-based Host
Platform for Pedagogical Virtual Machines. Informática na
Educação: teoria & prática, Porto Alegre, v. 12, n. 1, p. 77-
84, jan./jun. 2009.

A Web-based Host Platform for Pedagogical Virtual Machines

Uma plataforma de hospedagem baseada na Web para

máquinas pedagógicas

Nuno Gaspar
University of Beira Interior

Simão Melo de Sousa
University of Beira Interior

Abstract: Difficulties in the multi platform deployment and
use of pedagogical Virtual Machines can have an annoying
impact in the success of a compilers construction course.
This paper introduces a compilers construction course sup-
port platform that tackles this issue. The proposed platform
is web-based, where the virtual machines are remotely
accessed through a browser and by the adequate use of
web services. Moreover, both command line and graphical
user interface versions are supported. Aside portability and
maintenance issues, an interesting feature of the archi-
tecture design is its ability to easily integrate new virtual
machines. As proof of concept we will show some prelimi-
nary results on the integration of two very different virtual
machines that are used in compiler construction courses in
Portuguese universities.
Keywords: Virtual machines.Pedagogical web platform.
Compilers. Education. Computer assisted instruction. Tea-
ching methods.

Resumo: Dificuldades na implantação multi-plataforma
e utilização pedagógica das máquinas virtuais podem ter
um impacto prejudicial no sucesso de um curso de cons-
trução de compiladores. Este artigo apresenta um curso de
construção de compiladores de suporte de plataforma, que
aborda essa questão. A plataforma proposta é baseada na
web, onde máquinas virtuais são acessadas remotamente
através de um navegador e pela utilização adequada dos
serviços na web. Além disso, ambas as versões de linha
de comando e interface gráfica de usuário são suportadas.
Além de portabilidade e problemas de manutenção, uma
característica interessante do projeto de arquitetura é a sua
capacidade de integrar facilmente novas máquinas virtuais.
Como prova conceitual, vamos mostrar alguns resultados
preliminares sobre a integração de duas máquinas virtuais
muito diferentes, que são utilizadas em cursos de constru-
ção de compiladores, em universidades portuguesas.
Palavras-chave: Máquinas virtuais, Plataforma pedagógi-
ca web, Compiladores, Educação, Instrução assistida por
computador, Métodos de ensino.

1 Introduction

T
he paper introduces a compilers construc-
tion course support platform. Our focus is
the easy installation, multi platform de-

ployment and use of virtual machines (VMs)
that are the target architecture in a compilers
construction course.

The Need for Such Tools

As argued in1, the standard computer
science curriculum only leaves a small room
for compiler construction courses. This is the
case, in particular, in Europe with the university
reform arising from the Bologna process.
Usually only a one-semester long course (two
at the best) is dedicated to the teaching of
the classical compilation concepts and tools.
Therefore, the teacher must defi ne and adopt

1 WAITE, William M. The compiler course in today’s
curriculum: three strategies. ACM SIGCSE Bull.,
New York, v. 38, n. 1, p. 87-91, 2006.

78

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.12, n.1, jan./jun. 2009. ISSN digital 1982-1654
ISSN impresso 1516-084X

pedagogical alternative strategies to the
teaching of detailed compilation techniques.
Adequately covering all the classical aspects
of compilers design in such a short time
slot is simply inappropriate. In this context,
the choice of a VM as target architecture
for code generation plays an important role
in the success of the course. With its use,
the intricacies of a real architecture are
omitted, letting the undergraduate compilers
construction courses focus on the most
important aspects.

In a fi rst contact with such concepts, a
carefully designed GUI for the VM or other
auxiliary tools are of paramount importance
for a deep understanding of the involved
mechanisms. However the VM multi-platform
deployment is not easy and becomes usually
problematic for students. It is very common
to see in the same classroom the use of three
different operating systems. Appropriately
distribute VM (with graphical interface) source
code, letting students handle the compilation
process and provide them an effective support
can be hard. Our experience shows that most
of the VMs used in compilers construction
courses are developed in a Linux environment
and used in a Windows environment. This
is the case for the two VMs that we address
here.

1.1 Our Approach

In order to tackle this issue, we propose
a web-based VM host platform. By providing
a web-based platform, we ease the virtual
machine’s use, distribution and maintenance.
Enabling its access through a browser and web
service calls, we provide a setup independent
from the client’s operating system.

Furthermore, the distribution of updates is
not required anymore, since eventual changes
will refl ect on any client.

Another interesting feature is the ability
to gather and share tools, extensions and
contributions from the users’ community. For
instance, bytecode optimization tools, online
tutorials, hints or new VMs can easily be added
to the platform.

1.2 Related Work

To the best of our knowledge, there is no
similar approach to provide a pedagogical web

environment for the use of VMs. Indeed, a
quick look at the compilers tools catalogue2
shows that there are tools for almost all the
phases of the design of a compiler except for
the VMs.

Nevertheless, we may refer that broadly
used VMs in the context of compiler
construction courses are LLVM3, Parrot4, Java5
and CLR6. For the two last VMs, the designed
compilers usually target a carefully chosen
subset of the java bytecode and .NET IL. Let
us mention that the MIPS assembly (executed
via emulators like SPIM7 and which success is
due, for instance, to the existence of compilers
design books like8 or the Intel x86 assembly are
also widely chosen as the target of compiler
construction courses homework. Finally, VM9
and Apoo10 are two virtual machines that are
used in several Portuguese universities.

All of these execution environments are,
obviously, easily distributed over several
platforms in their command line form, but
except for java/swing implementations,

2 GERMAN NATIONAL RESEARCH CENTER FOR INFOR-
MATION TECHNOLOGY. The catalog of compiler construc-
tion tools: 2006. Available at: <http://catalog.compilertools.
net/> Accessed on: 20 apr. 2009.

3 LATTNER, Chris; ADVE, Vikram. LLVM: A compi-
lation Frameword for Lifelong Program Analysis &
Transformation. In: INTERNATIONAL SYMPOSIUM ON
CODE GENERATION AND OPTIMIZATION (CGO’04),
Pablo Alto, California, 2004. Proceedings… Pablo
Alto, California, 2004.

4 PERL FOUNDATION. Parrot virtual machine parrot
homepage: 2008. Available at: <http://www.parrot-
code.org/> Accessed on: 22 apr./2009.

5 LINDHOLM, Tim; YELLIN, Frank. Java Virtual Ma-
chine Specifi cation. Boston, MA: Addison-Wesley
Longman Publ., 1999.

6 MEIJER, Erik; WA, Redmond; GOUGH, John. Tech-
nical overview of the common language runtime:
2000. Available at: <http://research.microsoft.
com/~emeijer/Papers/CLR> Accessed on: 10 apr.
2009.

7 LARUS, James R. Spim: A mips32 simulator, 2006.
Available at: <http://www.cs.wisc.edu/~larus/spim.
html> Accessed on: 18, apr. 2009.

8 APPEL, Andrew W. Modern compiler implementa-
tion in ML: basic techniques. New York, NY: Cam-
bridge University Press, 1997.

9 PAULIN, C.; FILLIÂTRE, J.C.; CONCHON, S. Virtual
Machine for the LRI compiler course: 2008. Avail-
able at: <http://www.lri.fr/~conchon/m1/> Ac-
cessed on: 10 apr.2009.

10 REIS, Rogério; MOREIRA, Nelma. Apoo: an
environment for a fi rst course in assembly language
programming. ACM SIGCSE Bull., New York, v. 33,
n. 4, p. 43-47, 2001.

79

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.12, n.1, jan./jun. 2009. ISSN digital 1982-1654
ISSN impresso 1516-084X

VM graphical interfaces deployment is in
fact problematic11. Opting for a java based
implementation is a possible solution for the
issue addressed here. But we must refer
that a web-based architecture also provides
mechanisms and benefi ts (e.g. upgrades,
sharing and integrating extensions from the
users’ community) that are not easily covered
by this approach. Another tool that we may refer
is the CGI interface to SPIM12. It is very simple
and closer to command line interface than to
a pedagogical and full featured graphical one.
The lack of an internal state visualizer and of
step by step interaction makes it unappealing
for pedagogical purposes.

1.3 Organization of the Paper

Section 2 introduces the main ingredients of
the proposed architecture. Some preliminary
results are introduced in section 3. Concluding
remarks and future work are presented in
section 4.

2 Architecture of the Platform

The overall architecture of the proposed
platform can be found in the fi gure 1. The
VMs, WebApoo and WebVM, are both available
in graphical and command line interfaces.

11 To the best of our knowledge, none of the re-
ferred VMs have such java implementation.

12 LARUS, James R. Ee380 cgi spim: 2001. Available
at: <http://cgi.aggregate.org/cgibin/cgispim.cgi>
Accessed on: 22 apr. 2009.

The user can execute his machine code
fi les in either version. For the last one, the
submitted program is executed at once and
only the virtual machine’s fi nal state (registers,
memory cells values, etc) is presented to the
user.

On the other hand, the graphical version
allows the user to analyze the program
behavior by executing each instruction step
by step. This permits a better understanding
of the VM state changes induced by the
execution. Alternatively, the user can just run
the program, where the use of breakpoints
may be of great benefi t when debugging.

In the case of WebVM, since it has the ability
to interpret and perform graphical operations
(like drawing geometrical fi gures), those will
be displayed in a draggable window.

Concerning the interaction with the VMs,
the communications between the clients and
the platform (the server) are done via web
services. The reply of each request made will
affect the virtual machine’s interface displayed
in the browser. One defi nite advantage of
this kind of architecture is its capacity to be
internally restructured without refl ecting any
change to the client side.

Moreover, besides WebApoo and WebVM,
the platform also includes a mechanism
for dynamic integration of new VMs in their
executable form. The details regarding this
process will be described in section 3.

2.1 Client Side

The web interfaces are implemented in
Silverlight 13. In order to play with it, the
user must install the plug-in in its favorite
browser.

Despite being relatively recent, Silverlight
already offers a nice compatibility between
browsers and operating systems. This fact is
illustrated by table 1, taken from the offi cial
Microsoft Silverlight web site, and completed
with information available from the Mono
project web site.

2.2 Server Side

On the server side, the web services are
the means by which all the computation

13 WENZ, Christian. Essential Silverlight. [S.l.]:
O’Reilly Media, 2008.

Figure 1 – Platform Architecture

80

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.12, n.1, jan./jun. 2009. ISSN digital 1982-1654
ISSN impresso 1516-084X

requests are done. The following web services
are available for each VM:

UploadFile1. : This operation accepts a
machine code fi le, and returns a unique
session key to the client.

ExtInstructions2. : This operation
accepts a session key, and returns the
initial confi guration of the VM.

Step3. : This operation executes the
instruction pointed by the program counter.
It requires the user session key and returns
the virtual machine’s confi guration after
the execution.

Run4. : As expected, this operation is a
sequence of steps. It accepts a session key
and performs the steps operations until the
end of the program.

The server stores the virtual machine’s
state for each active client connection. The
purpose of the session key is to relate the
stored states with the clients’ requests.

3 Preliminary Results

In order to get familiarized with the
diversity of target VMs, we fi rst implemented

Table 1 – Silverlight compability

Figure 2 – WebApoo graphical interface

81

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.12, n.1, jan./jun. 2009. ISSN digital 1982-1654
ISSN impresso 1516-084X

from scratch two very distinct specimens. A
stack based virtual machine with graphical
primitives, VM from laboratoire de Recherche
en Informatique of the Université Paris Sud,
and a register based virtual machine, Apoo,
from Faculdade de Ciências of the Universidade
do Porto.

At this stage, our focuses were to prototype
the system and obtain a proof of concept.
Thus, the integration in the platform was done
manually, without the use of the integration
mechanism whose implementation, use and
result are described below.

These fi rst experiments let us understand
all the necessary details and considerations to
take care of for the systematic integration and
use of a VM within a generic platform.

3.1 Apoo Integration

Essentially developed by Rogério Reis
and Nelma Moreira, from Universidade do
Porto, Apoo is a register based VM. It has
a very simple instructions set that mimics
almost all the essential features of a modern
microprocessor.

The web version of Apoo has the same
characteristics and allows to do the same
operations as in the original one (as illustrated

by fi gure 2). It has a set of general purposes
registers, a memory area, a system stack and
a program counter register. It allows to check
the virtual machine’s state, step by step or
running it without pauses. Using the command
line interface, the user only sees the result of
the complete execution.

3.2 LRI’s VM Integration

Initially developed by Christine Paulin-
Mohring, Jean-Christophe Filliâtre and Sylvain
Conchon, from Laboratoire de Recherche en
Informatique, VM is a stack based virtual
machine. It has an execution stack, a call
stack, two heaps and four registers. It is used
in Universidade da Beira Interior, Universidade
do Minho and several French universities as a
support for compilers construction courses.

The web version of VM works the same
way as the original one. The specifi city lies
in its ability to process graphical primitives.
As shown in fi gure 3, the graphical client is
able, thanks to Silverlight, to directly interpret
these primitives and displays their result in a
draggable window.

Alternatively, WebVM can also be accessed
via a command line interface.

Figure 3 – WebVM graphical interface

82

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.12, n.1, jan./jun. 2009. ISSN digital 1982-1654
ISSN impresso 1516-084X

3.3 Integrating New Virtual
Machines

As result of these fi rst experiments, we
were able to understand how to generalize
the platform in order to allow the systematic
integration of new VMs. By specifying what
data areas (registers, stacks, etc.) are needed,
and linking them to a third party VM output, it
is possible to achieve this genericity.

Most of the VMs used in a pedagogical
environment are provided with source code.
The required changes for their integration
were planned in order to be accomplished as
easy as possible. The fi rst step is to defi ne
a valid VM specifi cation according to the XML
schema illustrated by fi gure 4.

Basically, the name, author and areas
of the VM need to be provided. Each area is
composed by its name, sections, type and
hide attributes.

The value of the name attribute will be used
as title for the window where the current area
will be displayed. The type attribute can only
have the values “Primitive” or “List”, meaning
that the data to be stored for that area requires
a single text fi eld or a list of them, respectively.
Since there may be situations where it is
required to store data that is not relevant to
the user, the hide attribute determines whether
the area is meant to be displayed or not. Only
the values “YES” or “NO” are allowed. Finally,
the sections attribute enumerates the sections
that compose the area.

As for the virtual machine’s executable fi le
itself, the following changes are required:

The VM must have two execution 1.
modes:

a. Load mode – Receives the machine code
fi le to execute as parameter. It must produce
an XML fi le with the virtual machine’s initial
state (the contents of each area defi ned
in its XML specifi cation fi le). The produced
XML fi le must have the same name as the
one passed as argument. For instance, if
invoked by the command virtualmachine.
exe –l asm_fi le.vm, the VM must output
the fi le asm_fi le.vm.xml, containing the
expected result.
b. Step mode – Receives an XML fi le and a
possible user input. The XML fi le holds the
virtual machine’s internal state, from which
all the necessary information required to
perform the step operation will be loaded
from. As result, the VM must overwrite
the XML fi le passed as parameter, with its
updated internal state. For instance, the
following invocation virtualmachine.exe
–s asm_fi le.vm.xml [input] produces an
updated asm_fi le.vm.xml fi le.

2) Any instruction requiring an input must
get the expected value from the second
command line parameter.
3) If the VM can interpret graphical
primitives, it must produce a XAML or SVG
fi le with the drawing to represent.
4) When reached the end of the program,
the VM must produce an empty fi le.
5) If any error occurs during the execution,
it must be described in the produced
XML fi le as follows: <errorMessage>Error
Description</errorMessage>.
6) The VM must run in a Windows
environment.

Once the XML specifi cation fi le and the
modifi cations are done, by uploading them to
the platform, the VM is stored in the server
database and automatically available to the all
community.

In order to demonstrate this functionality,
we integrated an executable version of Apoo.
Despite its different and generic layout, it
works the same way as the two previously
described VMs. After loading the intended
machine code fi le to be executed, the user can
either step or run the program. As illustrated
by fi gure 5, the contents of each area are Figure 4 – XML schema

83

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.12, n.1, jan./jun. 2009. ISSN digital 1982-1654
ISSN impresso 1516-084X

represented in specifi c windows.
Since the integrated VMs can have many

areas, each window can be moved, resized
and minimized. This way, the user can adjust
the interface layout according to his will and
needs.

4 Conclusion

We described a web-based platform for
VMs that provides both command line and
graphical interfaces. The use of Silverlight for
the client produces the same advantages of a
local GUI, without the issues of muti platform
deployment. By simply installing the plug-in,
students can interactively see and enjoy the
involved mechanisms. Moreover, the ability
to automatically add new VMs allows a high
degree of reusability and can provide a wide
range of code generation targets.

At this time, the platform has been tested

in a small environment and not in a real class
situation yet. Although preliminary tests points
to a good student’s receptivity, a deeper
analysis is required. In order to get feedback
from the community, compilers construction
courses teachers have been contacted to
let their students to alternatively use the
platform. Furthermore, an online form where
users can leave their suggestions and point
out their usage experience is available14.

As future work, we plan the integration
of new features to provide more support to
students. For instance, provide interactive
examples on loops translation to machine code,
optimization techniques or even new VMs.

We conclude by proposing this platform to
the compiler construction courses teaching.
The benefi ts of easy multi platform deployment
and the possibility to gather and share tools
from the community can make an interesting
impact on the compilers construction courses
success.

14 See the RELEASE web site http://www.di.ubi.
pt/~release

Figure 5 – Integrated virtual machine generic layout

84

INFORMÁTICA NA EDUCAÇÃO: teoria & prática Porto Alegre, v.12, n.1, jan./jun. 2009. ISSN digital 1982-1654
ISSN impresso 1516-084X

References

APPEL, Andrew W. Modern compiler implementation in ML: basic techniques. New York, NY: Cambridge

University Press, 1997.

GERMAN NATIONAL RESEARCH CENTER FOR INFORMATION TECHNOLOGY. The catalog of compiler

construction tools: 2006. Available at: <http://catalog.compilertools.net/> Accessed on: 20 mar. 2009.

LARUS, James R. Ee380 cgi spim: 2001. Available at: <http://cgi.aggregate.org/cgibin/cgispim.cgi> Accessed

on: 18 mar. 2009

______. Spim: A mips32 simulator, 2006. Available at: <http://www.cs.wisc.edu/~larus/spim.html> Accessed

on: 18 mar. 2009

LATTNER, Chris; ADVE, Vikram. LLVM: A compilation Frameword for Lifelong Program Analysis & Transformation.

In: INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION (CGO’04), Pablo Alto, California,

2004. Proceedings of… Pablo Alto, California, 2004.

LINDHOLM, Tim; YELLIN, Frank. Java Virtual Machine Specifi cation. Boston, MA: Addison-Wesley Longman

Publ., 1999.

MEIJER, Erik; WA, Redmond; GOUGH, John. Technical overview of the common language runtime: 2000.

Available at: <http://research.microsoft.com/~emeijer/Papers/CLR> Accessed on: 18 mar. 2009.

PAULIN, C.; FILLIÂTRE, J.C.; CONCHON, S. Virtual Machine for the LRI compiler course: 2008. Available at:

<http://www.lri.fr/~conchon/m1/> Accessed on: 10 fev. 2009

PERL FOUNDATION. Parrot virtual machine parrot homepage: 2008. Available at: <http://www.parrotcode.

org/> Accessed on: 22 fev. 2009.

REIS, Rogério; MOREIRA, Nelma. Apoo: an environment for a fi rst course in assembly language programming.

ACM SIGCSE Bull., New York, v. 33, n. 4, p. 43-47, 2001.

WAITE, William M. The compiler course in today’s curriculum: three strategies. ACM SIGCSE Bull., New York,

v. 38, n. 1, p. 87-91, 2006.

WENZ, Christian. Essential Silverlight. [S.l.]: O’Reilly Media, 2008.

Recebido em janeiro de 2009
Aprovado para publicação em abril de 2009

Nuno Gaspar

Computer Science Department, University of Beira Interior, Portugal, nmpgaspar@gmail.com

Simão Melo de Sousa

Computer Science Department, University of Beira Interior, Portugal, desousa@di.ubi.pt

