Clinical comparison between two stabilization methods in distal tibial angular deviation corrected by the CORA method

Authors

  • Caio Afonso dos Santos Malta 1Departamento de Clínica e Cirurgia Veterinária (FCAV/UNESP), Jaboticabal, SP.
  • Leonardo Augusto Lopes Muzzi Departamento de Medicina Veterinária (UFLA), Lavras, MG.
  • Larissa Teixeira Pacheco Departamento de Medicina Veterinária (UFLA), Lavras, MG.
  • Daniel Munhoz Garcia Perez Neto Departamento de Medicina Veterinária (UFLA), Lavras, MG.
  • Vanessa Matos Pires Pós-Graduação Ciência Animal (UNIFRAN), Franca, SP.
  • Caroline Ribeiro de Andrade Departamento de Clínica e Cirurgia Veterinária (FCAV/UNESP), Jaboticabal, SP.
  • Ruthnéia Aparecida Lázaro Muzzi Departamento de Medicina Veterinária (UFLA), Lavras, MG.

DOI:

https://doi.org/10.22456/1679-9216.99560

Abstract

Background: Angular deformity is characterized by the deviation of part of the bone that can occur in three different planes, frontal, sagittal and transverse. Trauma on physeal plates is the most common cause of angular deviations of the limbs in dogs. Currently the CORA (Center of Rotation of Angulation) methodology is the best way to evaluate and surgically correct these deformities. The objective of this study is to describe the surgical procedures performed
to treat the uniapical valgus deviation affecting both tibial bones in a dog, comparing the outcomes of hybrid external skeletal fixator used in the right pelvic limb in relation to the locking plate used in the left pelvic limb.

Case: A 10-month old Border Collie dog was attended at the University Veterinary Hospital with history of lameness and deviation of both pelvic limbs. In the orthopedic examination, it was possible to identify bilateral valgus deviation in the region of the tibio-tarsal joints and moderate lameness, with absence of pain or joint crepitation. Radiographic examination showed that the deformity was only uniapical in the frontal plane, affecting both tibial bones of the dog. Signs of osteoarthrosis were not observed and the preoperative examinations were within the normal limits for the species. The deformities were corrected in two surgical times starting with the procedure in the right tibia, which appeared to be clinically worse. Due to the fact that it was a bilateral affection and there was not a healthy pelvic limb to obtain the normal angles values of this dog, for planning according to the CORA methodology, the values of the tibial mechanical angles for dogs of similar size were taken from the literature. For surgical correction of the right tibia, a closed wedge osteotomy was performed following the second rule of Paley, with bone stabilization using type IB hybrid external skeletal fixator (ESF). The radiographic follow-up was done every 30 days postoperatively, however at 60 days the dog presented with severe lameness and the ESF had to be removed due to the breaking of one of the wires that composed the ring of the hybrid system. The limb continued to be treated by external bandages and total bone healing occurred at 210 days after surgery. Only after the complete recovery of the right limb, the left pelvic limb was operated and was also corrected by closed wedge osteotomy from the second Paley's rule. However, the bone stabilization was achieved with the use of a T-shaped locking plate. Radiographic follow-up was performed every 30 days postoperatively and at 60 days the osteotomy gap was already consolidated and the dog showed good weight bearing in the pelvic limbs without signs of lameness or pain.

Discussion: Currently, it is indicated that bone deformities in small animals should be corrected using the CORA methodology. The hybrid ESF is one of the most commonly used fixation systems for bone stabilization after corrective osteotomies due to great versatility, however, the reported complication rates are relatively high. The locking plates with special shapes, such as the "T" plate used in this study, provide the stable fixation of osteotomies with limited bone stock, as they allow the introduction of larger number of screws per area. Thus, this latter type of implant becomes advantageous for the correction of bone deformities close to the joints. It is concluded that CORA methodology is really effective in the planning of corrective surgeries of angular deviations in dogs. In this case report, the resulting tibial angles after the surgical corrections were within the normal range for healthy dogs of similar size. However, the use of locking plate provided better results with early bone healing and fewer complications than the type IB hybrid ESF.

Downloads

Download data is not yet available.

References

- Arthurs, G. 2017. Advances in internal fixation locking plates. BMJ Publishing Group limited:In Practice. 37(1): 13-22.

- Balfour R.J., Boudrieau R.J. & Gores B.R. 2000. T-plate fixation of distal radial closing wedge osteotomies for treatment of angular limb deformities in 18 dogs. Veterinary Surgery. 29(3): 207–217.

- Choate C.J., Lewis D.D., Kim S.E. & Sereda C.W. 2012. Use of hinged circular fixator constructs for the correction of crural deformities in three dogs. Australian Veterinary Journal. 90(7): 256-263.

- DeCamp C.E., Johnston S.A., Dejardin L.M. & Schaefer S.L. 2016. Handbook of Small Animal Orthopedics and Fracture Repair. 5.ed. St. Louis: Elsevier, p. 868.

- Dismukes D.I., Tomlinson J.L., Fox, D.B., Cook J.L. & Song K.J.E. 2007. Radiographic measurement of canine tibial angles in the sagittal plane. Veterinary Surgery. 37(3): 300-305.

- Dismukes D.I., Tomlinson J.L., Fox D.B., Cook J.L. & Witisberger T.H. 2008. Radiographic measurement of the proximal and distal mechanical joint angles in canine tibia. Veterinary Surgery. 36(7): 699-704.

- Fox D.B., Tomlinson J.L., Cook J.L. & Breshears L.M. 2006. Principles of uniapical and biapical radial deformity correction using dome osteotomies and the center of rotation of angulation methodology in dogs. Veterinary Surgery, 35(1):67–77.

- Fox D.B. & Tomlinson J.L. 2017. Principles of angular limb deformity correction. In: Johnston S.A; Tobias K.M Veterinary Surgery Small Animall. 2.ed. New York: Elsevier, pp. 2152-2184.

- Jaeger G.H., Marcellin-Little D.J. & Ferretti A. 2007. Morphology and correction of distal tibial valgus deformities. Journal of Small Animal Practice. 48(12): 678-682.

- Jimenez-Heras M., Rovesti G.L., Nocco G., Barilli M., Bogoni P., Salas-Herreros E., Armato M., Collivignarelli F., Vegni F. & Rodriguez-Quiros J. 2014. Evaluation of sixty-eight cases of fracture stabilisation by external hybrid fixation and a proposal for hybrid construct classification. BMC Veterinary Research. 10: 189-199.

- Kim S.E. & Lewis D.D. 2014. Corrective osteotomy for procurvatum deformity caused by distal femoral physeal fracture malunion stabilised with String-of-Pearls locking plates: results in two dogs and a review of the literature. Australian Veterinary Journal. 92(3): 75-80.

- Knapp J.L., Tomlinson J.L. & Fox D.B. 2016. Classification of Angular Limb Deformities Affecting the Canine Radius and Ulna Using the Center of Rotation of Angulation Method. Veterinary Surgery, 45(3): 295–302.

- Kroner K., Cooley K., Hoey S., Hetzel S.J. & Bleedom J.A. 2017. Assessment of radial torsion using computed tomography in dogs with and without antebrachial limb deformity. Veterinary Surgery, 46(1): 24–31.

- Kwan T.W., Marcellin-Little D.J. & Harrysson O. L. 2014. Correction of biapical radial deformities by use of bi-level hinged circular external fixation and distraction osteogenesis in 13 dogs. Veterinary Surgery, 43(3): 316–329.

- Marcellin-Little, D. J., Ferretti A., Roe S.C. & Deyoung D.J. 1998. Hinged Ilizarov external fixation for correction of antebrachial deformities. Veterinary Surgery, 27(3): 231–245.

- Meeson R. 2017. Making internal fixation work with limited bone stock. BMJ Publishing Group Limited:In Practice. 39(3): 98-106.

- Monk M.L., Preston C.A. & Mcgowan C.M. 2006. Effects of early intensive postoperative physiotherapy on limb function after tibial plateau leveling osteotomy in dogs with deficiency of the cranial cruciate ligament. American Journal of Veterinary Research. 67(3): 529-536.

- Paley D. 2015. Principles of deformity correction. In: Browner, B. D.; Jupiter, J. B.; Krettek, C.; Anderson, P. A. SKELETAL TRAUMA. 5 ed. Philadelphia: Elsevier, p. 2429-2490.

- Quinn M.K., Ehrhart N., Johnson A.L. & Schaeffer, D.J. 2000. Realignment of the radius in canine antebrachial growth deformities treated with corrective osteotomy and bilateral (type II) external fixation. Veterinary Surgery. 29(6): 558–563.

- Radasch R.M., Lewis D.F., Mcdonald D.E., Calfee E.F. & Barstad R.D. 2008. Pes varus correction in Dachshunds using a hybrid external fixator. Veterinary Surgery. 37(1): 71-81.

- Roch S.P. & Gemmill T.J. 2008. Treatment of medial patellar luxation by femoral closing wedge ostectomy using a distal femoral plate in four dogs. Journal of Small Animal Practice. 49(3): 152-158.

- Selmi A.L. & Padilha Filho J.G. 2001. Rupture of the cranial cruciate ligament associated with deformity of the proximal tibia in five dogs. Journal of Small Animal Practice. 42(8): 390-393.

- Sereda C.W. Lewis D.D., Radasch R.M., Bruce C.W. & Kirkbv K.A. 2009. Descriptive report of antebrachial growth deformity correction in 17 dogs from 1999 to 2007, using hybrid linear-circular external fixator constructs. The Canadian Veterinary Journal. 50(7): 723–732.

- Vaughan L.C. 1987. Disorders of the tarsus in the dog. II. The Bristish Veterinary Journal. 143(6): 498-505.

Figura 1. Radiografia craniocaudal dos membros pélvicos de um cão demonstrando a deformidade uniapical distal das tíbias direita (D) e esquerda (E) (Fonte: Hospital Veterinário da Universidade Federal de Lavras [HV-UFLA]).

Figura 2. Imagens radiográficas da tíbia direita em projeção craniocaudal. A- Mensuração da amplitude do desvio angular da tíbia (32,7°) a partir da determinação dos ângulos considerados normais para raças de porte similar, com mMPTA de 90,1° e mMPTA de 101,0°. B- Determinação do ângulo suplementar da tíbia (147,2°). C- Determinação da linha de bissecção transversal (tBL) com amplitude correspondente à metade do ângulo suplementar (73,5°). D- Esboço da cunha óssea com amplitude de 32,7° proximal à linha tBL, seguindo a segunda regra de Paley (Fonte: HV-UFLA).

Figura 3. A- Radiografia craniocaudal da tíbia direita imediatamente após o procedimento cirúrgico para correção do desvio ósseo e implantação do fixador esquelético externo (FEE) híbrido do tipo IB. B- Radiografia craniocaudal da tíbia direita aos 30 dias após o procedimento cirúrgico com implantação do F.E.E. Observa-se início de formação de calo ósseo. C- Radiografia craniocaudal da tíbia direita após 210 dias de recuperação pós-operatória. Observa-se consolidação total da osteotomia. D- Determinação dos ângulos mecânicos da tíbia direita após consolidação da osteotomia (mMPTA = 90,0° e mMDTA = 90,7°). Notar que os ângulos mensurados estão dentro da variação aceitável para cães porte grande (Fonte: HV-UFLA).

Figura 4. Imagens radiográficas da tíbia esquerda em projeção craniocaudal. A- Determinação da amplitude do desvio angular da tíbia (26,1°) a partir da determinação dos ângulos considerados normais para raças de porte similar, com mMPTA de 90,1° e mMPTA de 101,0°. B- Determinação do ângulo suplementar da tíbia (153,2°). C- Determinação da linha de bissecção transversal (tBL) com amplitude correspondente à metade do ângulo suplementar (76,6°). D- Esboço da cunha óssea com amplitude de 26,1° proximal à linha tBL, seguindo a segunda regra de Paley (Fonte: HV-UFLA).

Figura 5. A- Radiografia craniocaudal oblíqua da tíbia esquerda imediatamente após o procedimento cirúrgico para correção do desvio ósseo e implantação da placa bloqueada em formato de “T”. B- Radiografia craniocaudal oblíqua da tíbia esquerda aos 30 dias após o procedimento cirúrgico demonstrando integridade dos implantes e pequena atividade de reparação óssea. C- Radiografia craniocaudal da tíbia esquerda após 60 dias de recuperação pós-operatória. Observa-se consolidação da osteotomia. D- Determinação dos ângulos mecânicos da tíbia esquerda após consolidação da osteotomia (mMPTA = 90,3° e mMDTA = 101,4°). Notar que os ângulos mensurados estão dentro da variação aceitável para cães de porte grande (Fonte: HV-UFLA).

Published

2020-01-01

How to Cite

dos Santos Malta, C. A., Lopes Muzzi, L. A., Pacheco, L. T., Garcia Perez Neto, D. M., Pires, V. M., de Andrade, C. R., & Lázaro Muzzi, R. A. (2020). Clinical comparison between two stabilization methods in distal tibial angular deviation corrected by the CORA method. Acta Scientiae Veterinariae, 48. https://doi.org/10.22456/1679-9216.99560

Most read articles by the same author(s)