Collateral Arteries of the Aortic Arch in Mongolian Gerbil (Meriones unguiculatus)

Authors

  • Radan Elvis Matias de Oliveira Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Hélio Norberto de Araújo Júnior Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Herson da Silva Costa Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Gleidson Benevides de Oliveira Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Carlos Eduardo Bezerra de Moura Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Danilo José Ayres de Oliveira Departamento de Morfologia (DMOR), Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN.
  • Moacir Franco de Oliveira Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.

DOI:

https://doi.org/10.22456/1679-9216.89371

Abstract

Background: Gerbils (Meriones unguiculatus) are rodents belonging to the Muridae family. Recently, breeding of this species as pets has increased significantly. Animal models are being investigated to study diseases related to the human aortic arch. Despite the importance of the aortic arch in maintaining homeostasis, there is limited data available regarding its morphology in gerbils. This study was performed with the objective of describing the collateral branches of the aortic arch in this animal to establish a standard model and thus contribute to future research on cardiovascular diseases in humans.

Materials, Methods & Results: This study used 20 male specimens from previous studies that were frozen and stored at the Laboratory of Veterinary Anatomy of the Federal Rural University of the Semi-Arid Region. After thawing the animals, the thoracic cavity was opened for aortic cannulation. The vascular system was washed using saline solution and Neoprene latex stained with red pigment was injected. Subsequently, the animals were fixed in 10% formaldehyde and were dissected and analyzed 72 h later. The arrangement of the collateral branches of the aortic arch in gerbils was analyzed in all animals. The brachiocephalic trunk, the left common carotid, and the left subclavian artery were observed to originate as collateral branches. The brachiocephalic trunk bifurcated into the right common carotid and the right subclavian arteries. The right and the left subclavian arteries branched into the vertebral artery, the internal thoracic artery, the superficial cervical artery, the costocervical trunk, and the axillary artery.

Discussion: Several studies reported in the literature describe the collateral branches of the aortic arch in domestic and wild mammalian species. These studies examined the main arteries that originate directly from the aortic arch and their respective branches, and classified the different anatomical variants of the aortic arch in each species. Three different arrangements have been commonly described. The first type corresponds only to the brachiocephalic artery originating from the aortic arch. The right and the left common carotid arteries and the right and the left subclavian arteries originate from this brachiocephalic artery. This type has already been described in the laboratory rat, catingueiro-deer, cattle, and horses. The second type is characterized by the presence of 2 arteries - the brachiocephalic trunk and the left subclavian artery. The right and the left common carotid arteries and the right subclavian artery originate from the brachiocephalic trunk. This arrangement has been reported in most species already studied such as rodents including the paca, chinchilla, guinea pig, mocó, nutria and the preá. The third type of vascular arrangement is observed in the gerbil. In this species, 3 collateral arteries originate from the aortic arch (the brachiocephalic trunk, the left common carotid, and the left subclavian artery). The right common carotid and the right subclavian artery originate from the brachiocephalic trunk. This vascular model has been described in the manatee, in humans, mice, sauim, and the monkey-nail. Thus, we concluded that the branching pattern of the aortic arch of the gerbil was characterized by the brachiocephalic trunk, the left common carotid, and the left subclavian artery, as has been described in mice, the manatee, monkey-nail, sauim, and humans. Based on these morphological characteristics, gerbils could serve as potential experimental models to study diseases related to the human aortic arch.

Downloads

Download data is not yet available.

References

Araújo A.C.P., Oliveira J.C.D. & Campos R. 2004. Ramos colaterais do arco aórtico e suas principais ramificações em chinchila (Chinchilla lanigera). Revista Portuguesa de Ciências Veterinárias. 99(549): 53-58.

Blackwell W. 2010. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals. 8th edn. Ames: Wiley-Blackwell, 848p.

Boussel L., Rayz V., Mcculloch C., Martin A., Acevedo-Bolton G., Lawton M., Higashida R., Smith W.S., Young W.L. & Saloner D. 2008. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke. 39(11): 2997-3002.

Branco E., Aragão M.B.C., Martins D.M., Carmo D.C., Santos J.T. & Lima A.T. 2017. O arco aórtico do sauim (Saguinus niger) e sua importância no processo de urbanização. Biotemas. 30(4): 95-100.

Brudnicki W., Macherzyńska A. & Nowicki W. 2007. Variation in the arteries of the aortic arch in european brown hare (Lepus europaeus). Electronic Journal of Polish Agricultural Universities. 10(1): 1-5.

Campos R., Araújo A.C.P. & Azambuja R.C. 2010. Ramos colaterais do arco aórtico e suas principais ramificações em nutria (Myocastor coypus). Acta Scientiae Veterinariae. 38(2): 139-146.

Casteleyn C., Trachet B., Loo D.V., Devos D.G.H., Broeck W.V., Simoens P. & Cornillie P. 2010. Validation of the murine aortic arch as a model to study human vascular diseases. Journal of Anatomy. 216(1): 563-571.

Cortellini L.M.F., Machado M.R.F., Oliveira F.S., Miglino M.A. & Artoni S.M.B. 2000. Ramos do arco aórtico de bubalinos. Ciência Rural. 30(3): 445-448.

Culau P.O.V., Reckziegel S.H., Lindemann T., Araújo A.C.P. & Balzaretti F. 2007. Colaterais do arco aórtico da capivara (Hydrochoerus hydrochaeris). Acta Scientiae Veterinariae. 35(1): 89-92.

Demertzis S., Hurni S., Stalder M., Gahl B., Herrmann G. & Van den Berg J. 2010. Aortic arch morphometry in living humans. Journal of Anatomy. 217(5): 588-596.

Dyce K.M., Sack W.O. & Wensing C.J. 2010. Tratado de Anatomia Veterinária. 4th edn. Rio de Janeiro: Elsevier, 834p.

Feintuch A., Ruengsakulrach P., Lin A., Zhang J., Zhou Y., Bishop J., Davidson L., Courtman D., Foster F.S., Steinman D.A., Henkelman R.M. & Ethier C.R. 2007. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. American Journal of Physiology-Heart and Circulatory Physiology. 292(1): H884-H892.

Fernandes Filho A. & Borelli V. 1970. Contribuição ao estudo dos colaterais calibrosos do arco aórtico no gato. Revista da Faculdade de Medicina Veterinária de São Paulo. 8(2): 385-388.

Furtado D.F.S., Vasconcelos L.D.P., Branco E. & Lima A.R. 2017. Anatomia cardíaca e ramificações da aorta em macaco-prego (Sapajus apella). Biotemas. 30(4): 83-93.

Ghoshal N.G. 1986. Coração e artérias do carnívoro. In: Getty R. (Ed). Anatomia dos Animais Domésticos. 5th edn. Rio de Janeiro: Interamericana, pp.1497-1550.

Hara K., Yasuhara T., Maki M., Matsukawa N., Yu G., Xu L., Tambrallo L., Rodriguez N.A., Stern D.M., Yamashima T., Buccafusco J.J., Kawase T., Hess D.C. & Borlongan C.V. 2010. Anomaly in aortic arch alters pathological outcome of transiente global ischemia in Rhesus macaques. Brain Research. 1286(1): 185-191.

Hebel R. & Stromberg M.V. 1986. Anatomy and Embriology of the Laboratory Rat. Wörthersee: BioMed Verlag, 271p.

International Committee on Veterinary Gross Anatomical Nomenclature. 2017. Nomina Anatomica Veterinaria. 6th edn. Knoxville: World Association on Veterinary Anatomist, 160p.

Kabak M. & Haziroglu R.M. 2003. Subgross investigation of vessels originating from Arcus aortae in Guinea-pig (Cavia Porcellus). Anatomia, Histologia, Embryologia. 32(1): 362-366.

König H.E. & Liebich H.G. 2011. Anatomia dos Animais Domésticos: texto e atlas colorido. 4th edn. Porto Alegre: Artmed, 788p.

Leal L.M., Samidi S., Oliveira F.S.D., Sasahara T.H., Minto B.W. & Machado M.R. 2017. Origin and distribution of the main arteries of the thoracic limb of Cuniculus paca (Linnaeus, 1766). Pesquisa Veterinária Brasileira. 37(1): 79-82.

Magalhães M., Albuquerque J.F.G., Oliveira M.F., Papa P.C. & Moura C.E.B. 2007. Ramos do arco aórtico no mocó (Kerodon rupestris). Revista Portuguesa de Ciências Veterinárias. 102(562): 49-52.

Malek A.M., Alper S.L. & Izumo S. 1999. Hemodynamic shear stress and its role in atherosclerosis. Journal of the American Medical Association. 282(21): 2035-2042.

Martins D.M., Lima A.R., Pinheiro L.P., Brígida S.S.S., Araújo E.B., Melul R., Lacreta Júnior A.C.C., Menezes A.M.C., Souza A.C.B., Pereira L.C., Fioretto E.T. & Branco E. 2010. Descrição morfológica dos ramos colaterais do arco aórtico e suas principais ramificações em Leopardus pardalis. Acta Veterinaria Brasilica. 4(2): 74-77.

Monnereau L., Carretero A., Berges S., Navarro M., Leonard M., Lyazrhi F., Sautet J. & Ruberte J. 2005. Morphometric study of the aortic arch and its major branches in rat fetuses on the 21st day of gestation. Anatomy and

Embryology. 209(1): 357-369.

Oliveira F.S., Machado M.R.F., Miglino M.A. & Nogueira T.M. 2001. Gross anatomical study of the aortic ARC branches of the paca (Agouti paca Linnaeus, 1766). Brazilian Journal of Veterinary Research and Animal Science. 38(3): 103-105.

Oliveira R.E.M., Oliveira G.B., Barbosa P.M.L., Bezerra F.V.F., Albuquerque J.F. G., Ambrósio C.E., Miglino M.A. & Oliveira M.F. 2015. Ramos colaterais do arco aórtico do preá (Galea spixii Wagler, 1831). Pesquisa Veterinária Brasileira. 35(1): 762-766.

Pinheiro V.L.C., Lima A.R., Pereira L.C., Gomes B.D. & Branco E. 2012. Descrição anatômica dos ramos colaterais do arco aórtico do tamanduá-mirim (Tamandua tetradactyla). Biotemas. 25(2): 133-137.

Rowlatt L. & Marsh H. 1985. The heart of the dugong (Dugong dugon) and the West Indian Manatee (Trichechus manatus) (Sirenia). Journal of Morphology. 186(1): 95-105.

Santos A.L.Q., Morais F.M., Malta T.S., Carvalho S.F.M. & Alves Junior J.R.F. 2004. The topography of the think collaterais of the aortic arch in a crab-eating raccoon (Procyon cancrivorus Gray, 1865) Carnivora - Procyoniadae. Archives of Veterinary Science. 9(2): 67-72.

Santos F.C.A., Carvalho H.F., Góes R.M. & Taboga S.R. 2003. Structure, histochemistry, and ultrastructure of the epithelium and stroma in the gerbil (Meriones unguiculatus) female prostate. Tissue and Cell. 35(6): 447-457.

Schimming B.C., Matteis R., Silva J.R.C.P. & Guazzelli Filho J. 2012. Ramos do arco aórtico no veado-catingueiro. Revista Científica Eletrônica de Medicina Veterinária. 10(19): 1-9.

Silva K.F., Pereira K.F., Albuquerque K.P., Teixeira C.S. & Oda J.Y. 2012. Estudo descritivo das variações anatômicas dos ramos do arco aórtico. Arquivos de Ciências da Saúde da UNIPAR. 16(3): 101-103.

Souza F., Bavaresco A.Z. & Campos R. 2013. Ramos colaterais do arco aórtico e suas principais ramificações em coelho da raça Nova Zelândia (Oryctolagus cuniculus). Ciência Rural. 43(12): 2261-2267.

Suo J., Ferrara D.E., Sorescu D., Guldberg R.E., Taylor W.R. & Giddens D.P. 2007. Hemodynamic shear stresses in mouse aortas - Implications for atherogenesis. Arteriosclerosis, Thrombosis and Vascular Biology. 27(1): 346-351.

Trachet B., Swillens A., Loo D.V., Casteleyn C., De Paepe A., Loeys B. & Segers P. 2009. The influence of aortic dimensions and boundary conditions on calculated wall shear stress in the mouse aortic arch. Computer Methods in Biomechanics and Biomedical Engineering. 12(5): 491-499.

Wilson G.J. & Warkany J. 1949. Aortic arch and cardiac anomalies in the offspring of vitamin A deficient rats. American Journal of Anatomy. 99(1): 113-155.

Published

2018-01-01

How to Cite

Matias de Oliveira, R. E., de Araújo Júnior, H. N., Costa, H. da S., de Oliveira, G. B., de Moura, C. E. B., de Oliveira, D. J. A., & de Oliveira, M. F. (2018). Collateral Arteries of the Aortic Arch in Mongolian Gerbil (Meriones unguiculatus). Acta Scientiae Veterinariae, 46(1), 8. https://doi.org/10.22456/1679-9216.89371

Issue

Section

Articles