Haematological and Biochemical Values of Immunosuppressed BALB/c NUDE and C57BL/6 SCID Mice

Authors

  • Érika Almeida Praxedes Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Muriel Magda Lustosa Pimentel Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Fernanda Araujo dos Santos Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Denilsa Pires Fernandes Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Brenda de Sousa Barbosa Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Parmênedes Dias de Brito Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Ivana Cristina Nunes Gadelha Lelis Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Michelly Fernandes de Macedo Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.
  • Marcelo Barbosa Bezerra Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil.

DOI:

https://doi.org/10.22456/1679-9216.88859

Abstract

Background: The emergence of the NUDE and SCID immunosuppressed mice lineages generated knowledge on various mechanisms of lymphocyte maturation and human autoimmune diseases. Information on haematological and biochemical parameters of these lineages is still scarce, making it impossible to infer homeostasis by comparing data, or to detect genetic influences on the parameters for these species. Haematological and biochemical tests were carried out on Balb/c NUDE and C57BL/6 SCID mice of both sexes, aiming to analyse the presence of genetic influence on possible variations of such parameters and to verify reference values for both lineages.

Materials, Methods & Results: One hundred and forty mice (Mus musculus) of the Balb/C NUDE and C57BL/6 SCID lineages were used in the present study. The animals were previously anesthetized, the blood collection procedure was performed by cardiac puncture and the samples were collected in the presence of heparin and intended for haematological and biochemical evaluation, under standardized conditions. The haematological evaluation consisted of red blood cell count, leukocyte counts, platelet counts, haematocrit, haemoglobin concentration, mean corpuscular volume (MCV), and mean corpuscular haemoglobin concentration (MCHC). The quantified biochemical parameters were: urea, creatinine, alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP). While analysing the obtained data, it was possible to observe that only females presented divergences (P < 0.05) in the red blood cell series, in haemoglobin and in mean haemoglobin concentration (MCH). Regarding the analysis of the white blood cell series, females only presented differences (P < 0.05) in the leukocyte count. For males, there were variations (P < 0.05) in the counts of leukocytes, eosinophils, lymphocytes and neutrophils. Biochemical tests revealed significant variations (P < 0.05) in ALP and creatinine in females, and ALT, AST and ALP in males.

Discussion: As a result of variations due to factors such as genetics, age, diet, sex and environmental conditions, it is of great importance that each research group establishes its own hematological and biochemical reference values for the mice strain used. In this way, possible variations and their causes can be determined, aiding in evaluations of homeostatic and pathological conditions for these animals, as well as their choice and analysis of results obtained in experimental procedures. Thus, the differences found only in females for parameters of the red blood cell series may be due to gene mutations responsible for haematopoiesis or the genetic background. Furthermore, in case of divergences found in the leukocyte parameters, females and males can present different immune responses due to their sex hormones, and females apparently have better performance in these responses. Regarding the other differences found in the leukogram parameters only in males, higher values in the NUDE lineage was attributed to possible stress situations increased by the genetic hormonal factors of the lineage. In addition, a correlation with anaesthetic administration is suggested regarding the variations found in the biochemical parameters, added to the stress generated at the muscular level. In conclusion, this study has presented pioneer values which enable expanding the still scarce knowledge database on immunosuppressed animals, aiding in future studies conducted with the Balb/c NUDE and C57BL/6 SCID lineages.

Downloads

Download data is not yet available.

References

Ahmed S.A., Penhale W.J. & Tala N. 1985. Sex Hormones, Immune Responses, and Autoimmune Diseases. AmericanJournal of Pathology. 121: 531-550.

Adebayo J.O., Yakubu M.T., Egwim E.C., Owoyele V.B. & Enaibe B.U. 2003. Effect of ethanolic extract of Khaya senegalensis on some biochemical parameters of rat kidney. Journal of Ethnopharmacology. 88: 69-72.

Almeida A.S., Faleiros A.C.G., Teixeira D.N.S., Cota U.A. & Chica J.E.L. 2008. Valores de referência de parâmetros bioquímicos no sangue de duas linhagens de camundongos. Jornal Brasileiro de Patologia e Medicina Laboratorial. 44: 429-432.

Araújo F.T.M., Teixeira A.C.P., Araújo M.S.S., Silva C.H., Negrão-Corrêa D.A., Martins-Filho O.A., PeruhypeMagalhães V. & Teixeira-Carvalho A. 2015. Establishment of reference values for hematological and biochemical parameters of mice strains produced in the animal facility at Centro de Pesquisas René Rachou/Fiocruz-Minas

Gerais. Revista da Sociedade Brasileira de Ciência em Animais de Laboratório. 3(2): 95-102.

Barbosa B.S., Praxedes É. A., Lima M.A., Pimentel M.M.L., Santos F.A., Brito P.D., Gadelha-Lelis I.C.N., Macedo M.F. & Bezerra M.B. 2017. Perfil hematológico e bioquímico de camundongos da linhagem Balb-c. Acta Scientiae Veterinariae. 45: 1477.

Branco A.C.S.C., Diniz M.F.F.M., Almeida R.N., Santos H.B., Oliveira K.M., Ramalho J.A. & Dantas J.G. 2011. Parâmetros Bioquímicos e Hematológicos de Ratos Wistar e Camundongos Swiss do Biotério Professor Thomas George. Revista Brasileira de Ciências da Saúde. 15: 209-214.

Bosma G.C., Davisson M.T., Ruetseh N.R., Sweet H.O., Shultz L.D. & Bosma M.J. 1989. The mouse mutation severe combined immune deficiency (scid) is on chromosome 16. Immunogenetics. 29: 54-57.

Bosma M.J. & Carroll A.M. 1991. The SCID mouse mutant: Definition, Characterization, and Potential Uses. Annual Review Immunology. 9: 323-350.

Costa J.P., Lourenço N.V., Santos C.C.M.P., Tomé A.R., Sousa G.F., Sousa D.P, Almeida R.N. & de Freitas R.M. 2012. Avaliação da toxicidade aguda e das alterações histopatológicas em camundongos tratados com fitol. Revista de Ciências Farmacêuticas Básica e Aplicada. 33: 421-428.

Cova L., García D.E., Briceño S., Scorza J.V., Montilla F., Medina M.G., Moratinos P., Perea F. & González D. 2011. Parámetros hematológicos y bioquímicos en el hámster dorado (Mesocricetus auratus L.) alimentado con base en harina de lombriz roja (Eisenia spp.) y fuentes convencionales. Avances en Investigación Agropecuaria. 15: 9-29.

Dantas J.A., Ambiel C.R., Cuman R.K.N., Baroni S. & Bersani-Amado C.A. 2006. Valores de referência de alguns parâmetros fisiológicos de ratos do biotério central da Universidade Estadual de Maringá, Estado do Paraná. Acta Scientiarum. Health Sciences. 28: 165-170.

Green E.L., Coleman D, L., Kaliss N., Dagg C.P., Russel E.S., Fuller J.L., Staats J. & Green M. C. 1966. Biology of the Laboratory Mouse. 2nd edn. New York: Dover, pp.1-50.

Hoff J. 2000. Methods of Blood Collection in the Mouse. Laboratory Animals. 29: 47-53.

Ishikawa F., Yasukawa M., Lyons B., Yoshida S., Miyamoto T., Yoshimoto G., Watanabe T., Akashi K., Shultz L.D. & Harada M. 2005. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. The American Society of Hematology. 106: 1565-1573.

Kelland L.R. 2004. “Of mice and men”: Values and liabilities of the athymic nude mice model in anticancer drug development. European Journal of Cancer. 40: 827-836.

Leal T.L., Valadares R.F.F., Valadares Filho S.C., Campos J.M.S., Detmann E., Barbosa A.M., Teixeira R.M.A. & Marcondes M.I. 2007. Variações diárias nas excreções de creatinina e derivados de purinas em novilhas. Revista Brasileira de Zootecnia. 36: 905-911.

Liston A., Enders A. & Owen M. 2008. Siggs Unravelling the association of partial T-cell immunodeficiency and immune dysregulation. Nature reviews. 8: 545-557.

Martin D.W., Mayes P.A. & Rodwell Y.W. 1981. HARPER’S Review of Biochemistry. 18th edn. Los altos: Lange Medical, 688 p.

Melo M.G.D., Dória A.A., Serafini M.R. & Araújo A.A.S. 2012. Valores de referência Hematológicos e Bioquímicos de Ratos (Rattus novergicus linhagem Wistar) provenientes do biotério central da Universidade Federal de Sergipe. Scientia Plena. 8: 049903.

Mincis M. & Mincis R. 2006. Enzimas hepáticas: aspectos de interesse prático. Revista Brasileira de Medicina. 56-60.

Petit N.Y., Lambert-Niclot S., Marcelin A-G., Garcia S. & Marodon G. 2015. HIV Replication is not controlled by CD8+ T cells during the acute phase of the infection in humanized mice. Plos One. 0138420. 10: e0138420.

Rivera E.A.B. 2002. Anestesia em animais de experimentação. In: Andrade A., Pinto S.C. & Oliveira R.S. (Orgs). Animais de Laboratório: criação e experimentação [online]. Rio de Janeiro: Editora FIOCRUZ, pp.255-262.

Roth D.M., Swaney J.M., Dalton N.D., Gilpin E.A. & Ross Jr. J. 2002. Impact of anesthesia on cardiac function during echocardiography in mice. American Journal of Physiology. 282: 2134-2140.

Santos E.W., Oliveira D.C.D., Hastreiter A., Silva G.B.D., Beltran J.S.D.O., Tsujita M., Crisma A.M., Neves S.M.P., Fock R.A. & Borelli P. 2016. Hematological and biochemical reference values for C57BL/6, Swiss Webster and BALB/c mice. Brazilian Journal of Veterinary Research and Animal Science. 53(2): 138-145.

Spinelli M.O., Motta M.C., Cruz R.J. & Godoy C.M.S.C. 2014. Reference intervals for hematological parameters of animals bred and kept at the vivarium of the Faculty of Medicine of the State University of São Paulo. Acta Scientiarum. Health Sciences. 36: 1-4.

Skaznik-Wikiel M.E., Sharma R.K., Selesniemi K., Lee H-J., Tilly J.L. & Falcone T. 2011. Granulocyte colonystimulating factor in conjunction with vascular endothelial growth factor maintains primordial follicle numbers in transplanted mouse ovaries. Fertility and Sterility. 95: 1405-1409.

Wirth-Dzięciołowska E., Karaszewska J., Pyśniak K., Smolińska M. & Gajewsk M. 2009. Selected peripheral blood cell parameters in twelve inbred strains of laboratory mice. Animal Science Papers and Reports. 27: 69-77.

Zeira E., Abramovitch R., Meir K., Ram S.E., Gil1 Y., Bulvik B., Bromberg Z., Levkovitch O., Nahmansson N., Adar R., Reubinoff1 B., Galun E. & Gropp M. 2015. The knockdown of H19lncRNA reveals its regulatory role in pluripotency and tumorigenesis of human embryonic carcinoma cells. Oncotarget. 6: 34691.

Zeller W., Meier G., Burki K. & Panoussis B. 1997. Adverse effects of tribromoethanol as used the production of transgenic mice. Laboratory Animals. 32: 407-413.

Zhang L., Liu Y., Wang X., Tang Z., Li1 S., Hu1 Y., Zong X., Wu X., Bu Z., Wu A., Li Z., Li Z., Huang X., Jia L., Kang Q., Liu Y., Sutton D., Wang L., Luo L. & Ji J. 2015. The extent of inflammatory infiltration in primary cancer tissues is associated with lymphomagenesis in immunodeficient mice. Scientific reports. 5: 1-6.

Published

2018-01-01

How to Cite

Praxedes, Érika A., Pimentel, M. M. L., dos Santos, F. A., Fernandes, D. P., Barbosa, B. de S., de Brito, P. D., Gadelha Lelis, I. C. N., de Macedo, M. F., & Bezerra, M. B. (2018). Haematological and Biochemical Values of Immunosuppressed BALB/c NUDE and C57BL/6 SCID Mice. Acta Scientiae Veterinariae, 46(1), 7. https://doi.org/10.22456/1679-9216.88859

Issue

Section

Articles