Periodontopathogens Detection in White-Cheeked Spider Monkey (Ateles marginatus)


  • Andresa de Cássia Martini Programa de Pós-graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
  • Lianna Ghisi Gomes Programa de Pós-graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
  • Fernanda Harumi Mruyama Programa de Pós-graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
  • Luciana Maria Curtio Soares Programa de Pós-graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
  • Sandra Helena Ramiro Corrêa Faculdade de Medicina Veterinária (FAVET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
  • Valéria Dutra Faculdade de Medicina Veterinária (FAVET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
  • Luciano Nakazato Faculdade de Medicina Veterinária (FAVET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
  • Roberto Lopes de Souza Faculdade de Medicina Veterinária (FAVET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.



Background: Control of oral lesions contributes directly to the survival, and welfare of captive animals, and studies show that the genus Ateles has a higher prevalence of widespread periodontal disease compared to other genera. Anaerobic microbial species, considered as periodontal pathogens, are part of the biofilm community that contributes to the development of periodontitis. The present study aimed to detect periodontopathogenos in the oral cavity of two captive white-cheeked spider monkeys (Ateles marginatus) submitted for assessment oral and subgingival curettage.

Case: We evaluated one pair of captive white-cheeked spider monkeys, one male (A) and one female (B), of 15 years of age with an average weight of 7 kg. Animals were fed daily with rations for primates, including fruit, vegetables, and raw eggs. The animals underwent oral evaluation, and following the charting of odontogram and photographic documentation, both were classified with periodontal disease stage III, according to the AVDC (American College of Veterinary Dentistry). They presented with moderate periodontitis, characterized by a loss of 25 to 50% of periodontal insertion and exposure of furcation degree 2, measured through clinical survey. During intraoral review, animals underwent subgingival curettage with curette of Gracey on the surface of the canine vestibular (C) and four top bilateral premolars (4PM). Antibiotics were not used at the time of collection, for dealing with routine procedures of clinical evaluation. The animals showed an increase in the volume of hemorrhagic features in the vestibular region between C and the second pre molar (2PM) on the upper right. Incisional biopsy was collected immediately at the end of the assessment, for the purpose of histopathological analyses. The samples from subgingival collection were immediately deposited in microtubes containing 500 µL of 0.9% saline solution and kept at -18°C until the time of genomic DNA extraction. The extracted DNA were subjected to polymerase chain reaction (PCR) for the detection of Fusobacterium spp., Porphyromonas gingivalis, Prevotella intermedia and Tannerella forsythia. All the samples detected in PCR were confirmed by partial sequencing of genes. Fusobacterium spp., P. gingivalis, and T. forsythia were detected in both individuals A and B. The identification of P. intermedia was exclusive to animal A and histopathological analysis of the gingival fragment showed severe and diffuse neutrophilic infiltrates, confirming the of gingivitis for this individual, with greater severity in the disease progression.

Discussion: Older animals in captivity have a higher incidence of periodontal disease and high expression of inflammatory cytokines and immune receptors involved in the induction of inflammation as compared to younger animals, as well as free-living animals. Gingivitis and periodontitis are associated with an increase in the frequency of anaerobic, gramnegative microorganisms, whereby the production of pigments and a variety of enzymes damages the periodontal tissues. Knowing that the presence of bacterial species directly affects the periodontal condition and that the participation of these microorganisms favors the installation and progression of the disease, this study describes the first molecular detection of periodontopathogens related to periodontal disease in white-cheeked spider monkeys. We concluded that these pathogens are present in the oral cavity of white-cheeked spider monkeys, highlighting the importance of routine and proper food handling in captive animals.


Download data is not yet available.


Andrade P.M.M., Morgado T.O., Mallmann P.R., Spiller P.R., Gomes L.G., Stocco M.B., Martini A.C., Schroder D.C., Correa S.H.R. & Souza R.L. 2015. Occurrence of oral diseases in neotropical wild carnivores kept in captivity at the zoo from Federal University of Mato Grosso Cuiabá. Semina: Ciências Agrárias. 36(4): 2633-2640.

Ashimoto A., Chen C., Bakker I. & Slots J. 1996. Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival Plaque of gingivitis and advanced periodontitis lesions. Oral microbiology and immunology.

: 266-273.

Costa R.C.S., Botteon R.C.C.M., Neves D.M., Valladares M.C.M. & Scherer P.O. 2012. Saúde oral de primatas da espécie Cebus apella (Linnaeus, 1758) mantidos no Centro de triagem de animais silvestres-IBAMA no estado do Rio de Janeiro. Revista Brasileira de Medicina Veterinária. 34(2): 86-90.

Eto F.S., Raslan S.A. & Cortelli J.R. 2003. Características microbianas na saúde e doença periodontal. Revista Biociências

de Taubaté. 9(2): 45-51.

Fonseca A.S., Galera P.D., Brito D.L., Perecmanis S., Silva A.S., Cardoso L.B., Marçola T.G., Drummond V.O. & Pimental C.M. 2011. Análise microbiológica da placa bacteriana da doença periodontal em cães e o efeito da antibioticoterapia sobre ela. Ciência Rural. 41(8): 1424-1429.

Gaetti-Jardim Jr. E., Monti L.M., Nicolas Ciesielski F.I., Gaetti-Jardim E.C., Okamoto A.C., Schweitzer C.M. & Avila-Campos M.J. 2012. Subgingival microbiota from Cebus apella (capuchin monkey) with different periodontal conditions. Anaerobe. 18: 263-269.

Hirai N., Shirai M., Kato Y., Murakami M., Nomura R., Yamasaki Y., Takahashi S., Kondo C., Matsumoto-Nakano M., Nakano K. & Asai F. 2013. Correlation of age with distribution of periodontitis-related bacteria in Japanese dogs. The Journal of veterinary medical. 75(7): 999-1001.

Liang S., Krauss J.L., Domon H., McIntosh M.L., Hosur K.B., Qu H., Li F., Tzekou A., Lambris J.D. & Hajishengallis G. 2011. The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. The Journal of immunology. 186(2): 869-877.

Martini A.C., Gomes L.G., Pitchenin L.C., Pizzinatto F.D., Sônego D.A., Almeida E.D.B., Spiller P.R., Costa M.S.M., Nakazato L. & Souza R.L. 2017. Porphyromonas gingivalis na cavidade oral de neonatos da raça Bulldog Inglês. Acta Scientiae Veterinariae. 45: 1454.

Munchow E.A., Albuquerque M.T., Zero B., Kamocki K., Piva E., Gregory R.L. & Bottino M.C. 2015. Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dental materials. 31(9): 1038-1051.

Rossi Jr. J.L., Gioso M.A. & Falqueiro L.M.F. 2007. Estudo comparativo sobre prevalência de doença periodontal em Panthera onca mantida em cativeiro e em indivíduos de natureza. Pesquisa Veterinária Brasileira. 27(5): 209-214.

Sambrook J. & Russel D.W. 2001. Molecular cloning: a laboratory manual. 3rd edn. New York: Cold Spring Harbor

Laboratory Press, pp.565-567.

Slots J., Ashimoto A., Flynn M.J., Li G. & Chen C. 1995. Detection of Putative Periodontal Pathogens in Subgingival

Specimens by 16S Ribosomal DNA Amplification with the Polymerase Chain Reaction. Clinical infectious diseases.

(2): 304-307.

Suzuki N., Yoshida A., Toshiyuki S., Kawada M. & Nakano Y. 2004. Quantitative Microbiological Study of Subgingival

Plaque by Real-Time PCR Shows Correlation between Levels of Tannerella forsythensis and Fusobacterium spp. Journal of Clinical Microbiology. 42(5): 2255-2257.



How to Cite

Martini, A. de C., Gomes, L. G., Mruyama, F. H., Soares, L. M. C., Corrêa, S. H. R., Dutra, V., Nakazato, L., & de Souza, R. L. (2018). Periodontopathogens Detection in White-Cheeked Spider Monkey (Ateles marginatus). Acta Scientiae Veterinariae, 46, 4.

Most read articles by the same author(s)

1 2 3 > >>