Xenogeneic Mesenchymal Stem Cells in the Formation of Hyaline Cartilage in Osteochondral Goat Failure

Laís Meireles Costa Silva, Mariá Andrade de Carvalho Rocha, Marllos Henrique Vieira Nunes, Brenda Lurian do Nascimento Medeiros, Yulla Klinger de Carvalho Leite, Huanna Waleska Soares Rodrigues, Marcelo Campos Rodrigues, Hermínio José da Rocha Neto, Maria Acelina Martins de Carvalho, Napoleão Martins Argôlo Neto

Abstract


Background: Osteochondral knee failures are among the most common causes of disability among the elderly human population and animal athletes. The xenogeneic transplantation of mesenchymal stem cells is a questionable therapeutic alternative that, despite the low expression of Major Histocompatibility Complex type II by these cells, still has relevant
uncertainties about the safety and clinical efficacy. The main objective of the present study was to investigate whether the xenogeneic transplantation of mesenchymal stem cells induces hyaline cartilage formation, without histopathological evidence of rejection, in osteochondral
failures of goats.


Materials, Methods & Results: Five female goats were used, submitted to three surgical osteocondral failures in the right knee, treated with xenogenic mesenchymal stem cells of dental pulp, xenogenic platelet-rich plasma and hemostatic sponge of hydrolyzed collagen, respectively. The lesions were evaluated after 60 days of treatment, aiming to identify the
presence of hyaline cartilage or fibrocartilage and the subchondral bone pattern (regenerated or disorganized). Transplantation of xenogenic mesenchymal stem cells induced predominant formation of hyaline cartilage (P < 0.05), with no histopathological evidence of inflammation
when compared to the other treatments. Therapies with xenogeneic platelet-rich plasma and hemostatic sponge of hydrolyzed collagen induced greater formation of fibrocartilaginous cartilage, with no significant difference between them (P > 0.05). Macroscopically, the lesions of the stem cell treated group showed formation of firm repair tissue, opaque staining, integrated with adjacent cartilage and with the failure filling almost completely. The groups treated with PRP and hemostatic sponge of hydrolyzed collagen presented, on average, partial filling of the lesion, with irregular shape and darkened coloration.

Discussion. The absence of macroscopic and histopathological evidences of an inflammatory process on the surface and in the internal portion of the osteochondral lesions treated with xenogeneic stem cells, probably due to the low expression of Major Histocompatibility Complex type II by these cells, which would theoretically induce low rejection response. Such observations are of great importance, since graft-versus- host disease syndrome is a serious condition, responsible for the low therapeutic efficacy with transplantation of cells or grafts in humans. The formation of fibrocartilage, although without macro and microscopic evidence of degeneration or necrosis, in the osteochondral failures treated with PRP and hemostatic collagen sponge suggest that paracrine factors of the local microenvironment of the osteochondral failure are possibly responsible for the formation of fibrocartilaginous tissue or by inhibition of normal cartilage formation. The fibrocartilage formed in the Plasma
and Control groups, contributed to the commitment in the filling of the lesion, contrasting with the almost complete fill of the lesions treated with stem cells. The xenotransplantation of mesenchymal stem cells induced formation of hyaline cartilage and did not promote histopathological evidence of rejection in osteochondral lesions of goat knees. The treatments with PRP and hemostatic sponge of hydrolyzed collagen induced greater formation of fibrocartilaginous cartilaginous surface in the osteochondral failures.


Full Text:

PDF

References


Açil Y., Zhang X., Nitsche T., Möller B., Gassling V., Wiltfang J. & Gierloff M. 2014. Effects of different scaffolds on rat adipose tissue derived stroma cells. Journal of Cranio-Maxillo-Facial Surgery. 42(6): 825-834.

Argôlo Neto N.M., Del Carlo R.J., Monteiro B.S., Nardi N.B., Chagastelles P.C., Brito A.F.S. & Reis A.M.S. 2012. Role of autologous mesenchymal stem cells associated with platelet-rich plasma on healing of cutaneous wounds in diabetic mice. Clinical and Experimental Dermatology. 37(5): 544-553.

Argôlo Neto N.M., Feitosa M.L.T., Sousa S.S., Fernandes P.B., Pessoa G.T., Bezerra D.O., Almeida H.M., Carvalho Y.K.P., Rocha A.R., Silva L.M.C. & Carvalho M.A.M. 2016. Isolation, expansion, differentiation and growth kinetics essay in mesenchymal stem cells culture from the bone marrow of collared peccaries (Tayassu tajacu). Acta Scientiae Veterinariae. 44(1): 1-11.

Berenguel I.A. 2006. Implantes das esponjas hemostáticas Gelfoam e Hemospon em alvéolos dentais em ratos após exodontia. Estudo histológico e histométrico comparativo. 108 f. Marília, SP. Dissertação (Mestrado em Odontologia) – Programa de Pós-Graduação em Odontologia, Faculdade de Odontologia de Marília.

Brehm W., Aklin B., Yamashita T., Rieser F., Trüb T., Jakob R.P. & Mainil-Varlet P. 2006. Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis and Cartilage. 14(12): 1214-1226.

Cardoso E.C., Oliveira D.R., Dourado A.P., Araújo C.V., Ortalani E.L. & Brandão F.Z. 2010. Peso e condição corporal, contagem de OPG e perfil metabólico sanguíneo de ovelhas da raça Santa Inês no periparto, criadas na região da Baixada Litorânea do Estado do Rio de Janeiro. Revista Brasileira de Ciência Veterinária. 17(2): 77-82.

Carneiro M.O., Barbieri C.H. & Barbieri Neto, J. 2013. Platelet-rich plasma gel promotes regeneration of articular cartilage in knees of sheeps. Acta Ortopédica Brasileira. 21(2): 80-86.

Carvalho Y.K.P., Argôlo Neto N.M., Ambrósio C.E., Oliveira L.J., Rocha A.R., Silva J.B., Carvalho A.A.M. & Alves F.R. 2015. Isolation, expansion and differentiation of cellular progenitors obtained from dental pulp of agouti (Dasyprocta prymnolopha Wagler, 1831). Pesquisa Veterinária Brasileira. 35(6): 590-598.

Casaroto A.R., Sell A.M., Nagata J.Y., Vasconcelos Brunetta E., Franco S.L., & Marubayashi Hidalgo M. 2012. Manutenção da viabilidade das células mononucleares de sangue periférico humano em extratos e formulações de própolis. Acta Scientiarum Health Sciences. 34(1): 59-66.

Cunha A.P., Bello A.C.P.P., Leite R.C., Melo M.M., Braz G.F., Ribeiro A.C.C.L. & Oliveira P.R. 2008. Avaliação de parâmetros clínicos e hematológicos de eqüinos submetidos a um programa de controle estratégico de Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae). Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 60(1): 113-120.

Daramola J.O., Adeloye A.A.A., Fatoba T.A. & Soladoye A.O. 2005. Haematological and biochemical parameters of West African Dwarf goats. Livestock Research for Rural Development. 17(8): 3-4.

Gabrielli M.A.C., Hochuli-Vieira E., Paleari A.G., Cerri P.S. & Klüppel, L.E. 2009. Avaliação histológica de agentes hemostáticos implantados em mandíbulas de coelhos. Revista de Cirurgia e Traumatologia Buco-maxilo-facial. 9(2): 97-106.

Galdino A.G.S., Oliveira E.M., Filippin-Monteiro F.B. & Zavaglia C.A.C. 2014. Análise de ensaios in vitro do compósito de 50% HA-50% TiO2 fabricados pelo método da esponja polimérica. Cerâmica. 60(1): 586-593.

Huang G.T., Gronthos S. & Shi S. 2009. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Research. 88(9): 792–806.

Jackson D.W., Lalor P.A., Aberman H.M. & Simon T.M. 2001. Spontaneous repair of fullthickness defects of articular cartilage in a goat model. A preliminary study. The Journal of Bone and Joint Surgery American. 83(1): 53-64.

Jiang X., Wang Y., Fan D., Zhu C., Liu L. & Duan Z. 2017. A novel human-like collagen hemostatic sponge with uniform morphology, good biodegradability and biocompatibility. Journal of biomaterials applications. 31(8): 1099-1107.

Krenger W., Hill G.R. & Ferrara J.LM. 1997. Cytokine cascades in acute graft-versus-host disease1. Transplantation. 64(4): 553-558.

Larocca T.F., Souza B.S.F., Silva C.A., Kaneto C.M., Alcantara A.C., Azevedo C.M., Castro M.F., Macambira S.G., Soares M.B.P & Ribeiro-Dos-Santos R. 2013. Transplante de células mesenquimais de tecido adiposo na cardiopatia chagásica crônica experimental. Arquivo Brasileiro de Cardiologia. 100(5): 460-468.

Lenza M., Ferraz S.B., Viola D.C.M., Santos O.F.P., Neto M.C. & Ferretti M. 2013. Plasma rico em plaquetas para consolidação de ossos longos. Revista Einstein. 11(1): 122-127.

Li J.H., Liu D.Y., Zhang F.M., Wang F., Zhang W.K. & Zhang Z.T. 2011. Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering. Chinese Medical Journal. 124(23): 4022–4028.

Lubowitz J.H. & Poehling G.G. 2010. Shoulder, hip, knee, and PRP. Arthroscopy: The Journal of Arthroscopic and Related Surgery. 26(2): 141-142.

Marti L.C., Ribeiro A.A.F. & Hamerschlak N. 2011. Immunomodulatory effect of mesenchymal stem cells. Einstein. 9(2): 224-228.

Murphy C.M., Duffy G.P., Schindeler A. & O'brien F.J. 2016. Effect of collagen‐glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. Journal of Biomedical Materials Research Part A. 104(1): 291-304.

Monteiro B.S., Argôlo Neto N.M. & Del Carlo R.J. 2008. Terapia celular em reparação óssea–aplicação clínica de células-tronco mesenquimais. Ciência Veterinária nos Trópicos. 11(2): 95-100.

Monteiro B.S., Del Carlo R.J., Argôlo Neto N.M., Nardi N.B., Carvalho P.H., Bonfá L.P., Chagastelles P.C., Moreira H.N., Viloria M.I.V. & Santos B.S. 2012. Association of mesenchymal stem cells with platelet rich plasma on the repair of critical calvarial defects in mice. Acta Cirúrgica Brasileira.

(3): 201-209.

Morad G., Kheiri L. & Khojasteh A. 2013. Dental pulp stem cells for in vivo bone regeneration: A systematic review of literature. Archives of Oral Biology. 58(12): 1818-1827.

Morito A., Kida Y., Suzuki K., Inoue K., Kuroda N. & Gomi K. 2009. Effects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cells. Archives of Histology Cytology. 72(1): 51-64.

Moshiri A. & Oryan A. 2013. Role of platelet rich plasma in soft and hard connective tissue healing: an evidence based review from basic to clinical application. Hard Tissue. 2(1): 6-7.

Murphy C.M. & O’Brien F.J. 2010. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell adhesion & migration. 4(3): 377-381.

Oliveira G.K., Raiser A.G., Olsson D., Pippi N.L., Tognoli G.K, Trindade L.B., Santos Júnior E.B., Dezengrine R., Martins D.B., Salbego F.Z., Rappeti J. & Sausen L. 2010. Células-tronco mononucleares autólogas e proteína óssea morfogenética na cicatrização de defeitos tibiais experimentalmente induzidos em cães. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 62(1): 72-79.

Pittenger M.F., Mackay A.M. & Beck S.C. 1999. Multilineage potential of adult human mesenchymal stem cells. Science. 284(5411): 143-147.

Rocha A.L., Shirasu B.K., Hayacibara R.M., Magro-Filho O., Zanoni J.N. & Araújo M.G. 2012. Clinical and histological evaluation of subepithelial connective tissue after collagen sponge implantation in the human palate. Journal of Periodontal Research. 47(6): 758-765.

Rocha M.A.D.C., Silva L.M.C., Oliveira W.A.D., Bezerra D.D.O., Silva G.C.D., Silva L.D.S., Medeiros B.L.N, Baêta, S.A.F. Carvalho, M.A.M. & Argolo Neto N.M. 2017. Allogeneic mesenchymal stem cells and xenogenic platelet rich plasma, associated or not, in the repair of bone failures in rabbits with secondary osteoporosis. Acta Cirurgica Brasileira. 32(9): 767-780.

Saw K.Y., Hussin P., Loke S.C., Azam M., Chen H.C. & Tay Y.G. 2009. Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy. 25(12): 1391-400.

Soares D.S., Freitas K., Barbosa G.M. & Araújo M.C.S. 2007. Doença enxerto contra hospedeiro: relato de caso. Disciplinarum Scientia. 8(1): 91-113.

Souza C.F., Napoli P., Han S.W., Lima V.C. & Carvalho A.C.C. 2010. Células-tronco mesenquimais: células ideais para a regeneração cardíaca? Revista Brasileira de Cardiologia. 18(3): 344-353.

Trappmann B. & Chen C.S. 2013. How cells sense extracellular matrix stiffness: a material's perspective. Current opinion in biotechnology. 24(5): 948-953.

Yamada A.L.M., Alvarenga M.L., Brandão J.S., Watanabe M.J., Rodrigues C.A., Hussni C.A. & Alves A.L. 2016. Arcabouço de PRP-gel associado a células tronco mesenquimais: uso em lesões condrais em modelo experimental equino. Pesquisa Veterinária Brasileira. 36(6): 461-467.




DOI: https://doi.org/10.22456/1679-9216.82560

Copyright (c) 2018 Laís Meireles Costa Silva, Mariá Andrade de Carvalho Rocha, Marllos Henrique Vieira Nunes, Brenda Lurian do Nascimento Medeiros, Yulla Klinger de Carvalho Leite, Huanna Waleska Soares Rodrigues, Marcelo Campos Rodrigues, Hermínio José da Rocha Neto, Maria Acelina Martins de Carvalho, Napoleão Martins Argôlo Neto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.