Identification of Virulence Factors of Escherichia coli Isolates from Fecal Samples of Calves in Southern Brazil


  • Sergio Farias Vargas Júnior Programa de Pós-graduação em Veterinária, Universidade federal de Pelotas (UFPel), Pelotas, RS, Brazil. Nucleo de Ensino e Pesquisa em Reprodução Animal (ReproPel), UFPel, Pelotas.
  • Rodrigo Casquero Cunha Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico (CDTec), Universidade federal de Pelotas (UFPel), Pelotas, RS, Brazil.
  • Daniela Isabel Brayer Pereira Laboratório de Micologia, Departamento de Microbiologia e Parasitologia, Instituto de Biologia (IB), Universidade federal de Pelotas (UFPel), Pelotas, RS, Brazil.
  • Sônia de Ávila Botton Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS.
  • Silvia Regina Leal Ladeira Laboratório Regional de Diagnóstico (LRD), UFPel, Pelotas.
  • Thomaz Lucia Júnior Nucleo de Ensino e Pesquisa em Reprodução Animal (ReproPel), UFPel, Pelotas.
  • Eliza Simone Viegas Sallis Laboratório Regional de Diagnóstico (LRD), UFPel, Pelotas.



cattle diseases, antimicrobial susceptibility testing (AST), molecular diagnostics, productive chain of cattle, economic losses.


Background: Escherichia coli (E. coli) is an enteropathogen that commonly causes diarrhea in calves. However, not all E. coli isolates are pathogenic. The aim of this study was to identify E. coli virulence factors derived from fecal samples collected in the southern region of Rio Grande do Sul state (RS) from calves with and without diarrhea, as well as investigate the antimicrobial susceptibility of E. coli isolates from calves with diarrhea.

Materials, Methods & Results: Forty stool samples were collected in 12 farms, each one from calves having one day to six months of age, with and without diarrhea. The total DNA of from these isolates was extracted and a PCR using primers specific for the virulence factors Stx1, Eae, F41, F5 and STa was conducted. The susceptibility testing used the disk diffusion method and the susceptibility profile was evaluated against the following antimicrobials: ampicillin, penicillin, chloramphenicol, enrofloxacin, gentamicin, trimethoprim, sulfonamide, tetracycline and streptomycin. From all calves, 15 (15/40, 37.5%) had diarrheal stools and 25 (25/40, 62.5%) had normal or semi-liquid stools. Twelve (12/40; 30%) E. coli isolates showed at least one virulence factor. These factors were found in four isolates (4/15; 26.6%) from diarrheal stools and eight isolates (8/25; 28.5%) from normal stool. The Stx1 factor was identified in five isolates (5/40; 12.5%), and the Eae and the Sta factors in one (1/40; 0.2%) and in atypical associations between Stx1 and Eae and also between Eae and F41 in two isolates (2/40; 0.5%). Also, the Eae and Sta factors were identified in one isolate (1/40; 0.2%). The susceptibility test showed resistance to penicillin and tetracycline in 93% and 80% of the tested isolates, respectively.

Discussion: The identification of virulence factors is necessary because E. coli is an enterobacterium present in calves gastrointestinal tract, to prove its pathogenicity. The virulence factor most commonly found in E. coli isolates derived from feces of calves with and without diarrhea in the southern region of the RS was the Stx1 (Shiga toxin-producing E. coli STEC). It is likely that the highest occurrence of E. coli isolates positive for the Stx1 virulence factor was due to the fact that cattle were the main reservoirs of this type of bacteria. The occurrence of enterohemorrhagic E. coli (EHEC) in animals of nine and 34 days of life, respectively, is highlighted. Studies have shown that contamination of animal foods with EHEC can cause enteric disorders, hemorrhagic colitis, and uremic hemolytic syndrome (UHS) in humans. Although in the present study the identification of the Stx2 factor was not performed, authors describe that the presence of the genes encoding Stx2 and Eae is determinant in the occurrence of UHS. In the susceptibility test, it was observed that E. coli isolates from diarrheal stools showed resistance to antimicrobials penicillin (10 mg) and tetracycline (30 mg) [93% and 80%, respectively], ampicillin (10 mg) [47%], streptomycin (10 mg) [47%], trimethoprim (5 mg) [47%] and sulfonamide (300 mg) [53%]. Although the percentage of antimicrobial resistance varies among studies, it is believed that the indiscriminate use of antimicrobial therapies as a common practice among rural properties contributes to bacterial resistance to these drugs. The sensitivity profile to antimicrobials showed that the analyzed Escherichia coli isolates are resistant to the antimicrobials commonly used for diarrhea treatment in the southern region of the Rio Grande do Sul state, Southern Brazil.


Download data is not yet available.


Aidar L., Penteado A.S., Trabulsi L.R., Blanco J.E., Blanco M., Blanco J. & Pestana de Castro A.F. 2000. Subtypes of intimin among non-toxigenic Escherichia coil from diarrheic calves in Brazil. The Canadian Journal of Veterinary Research. 64: 15-20.

Alustiza F.E., Picco N.Y., Bellingeri R.V., Terzolo H.R. & Vivas A.B. 2012. Frequency of virulence genes of

Escherichia coli among new born piglets from an intensive pig farm in Argentina. Revista Argentina de Microbiología. 44: 250-254.

Andrade G.I., Coura F.M., Santos E.L.S., Ferreira M.G., Galinari G.C.F., Facury Filho E.J., de Carvalho A.U., Lage A.P. & Heinemann M.B. 2012. Identification of virulence factors by multiplex PCR in Escherichia coli isolated from calves in Minas Gerais, Brazil. Tropical Animal Health and Production. 44: 1783-1790.

Bandyopadhyay S., Mahanti A., Samanta I., Dutra T.K., Ghosh M.K., Bera A.K., Bandyopadhyay S. & Bhattacharya D. 2011. Virulence repertoire of Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic Escherichia coli (ETEC) from diarrhoeic lambs of Arunachal Pradesh, India. Tropical Animal Health and Production. 43: 705-710.

Bauer A.W., Kirby W.M.M., Sherris J.C. & Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology. 45: 493-496.

Chandra M., Cheng P., Rondeau G., Porwollik S. & McClelland M. 2013. A Single Step Multiplex Pcr for Identification of Six Diarrheagenic E. Coli Pathotypes and Salmonella. International Journal of Medical Microbiology. 303(4): 210-216.

Cho Y.I., Han J.I., Wang C., Cooper V., Schwartz K., Engelken T. & Yonn K.J. 2013. Case-Control Study of Microbiological Etiology Associated with Calf Diarrhea. Veterinary Microbiology. 166(3-4): 375-385.

Coura F.M., Lage A.P. & Heinemann M.B. 2014. Patotipos de Escherichia coli causadores de diarreia em bezerros: uma atualização. Pesquisa Veterinária Brasileira. 34(9): 811-818.

De la Fuente R., Garcia A., Ruiz-Santa-Quiteria J.A., Luzon M., Cid D., Garcia S., Orden J.A. & Gomez-Bautista M. 1998. Proportional morbidity rates of enteropathogens among diarrheic dairy calves in central Spain. Preventive Veterinary Medicine. 36: 145-152.

Debroy C. & Maddox C.W. 2001. Identification of virulence atributes of gastrointestinal Escherichia coli isolates of veterinary significance. Animal Health Research Reviews. 2: 129-140.

Ethelberg S., Olsen K.E., Scheutz F., Jensen C., Schiellerup P., Enberg J., Petersen A.M., Olesen B., Gerner-Smidt P. & Molbak K. 2004. Virulence factors for hemolytic uremic syndrome, Denmark. Emerging Infectious Diseases Journal. 10: 842-847.

Farah S.M.S.S., de Souza E.M., Pedrosa F.O., Irino K., da Silva L.R., Rigo L.U., Steffens M.B.R., Pigatto C.P. & Fadel-Picheth C.M.T. 2007. Phenotypic and genotypic traits of Shiga toxin producing Escherichia coli strains isolated from beef cattle from Paraná State, Southern Brazil. Letters in Applied Microbiology. 44: 607-612.

Franck S.M., Bosworth B.T. & Moon H.W. 1998. Multiplex PCR for enterotoxigenic, attaching and effacing, and Shiga toxin producing Escherichia coli strains from calves. Journal of Clinical Microbiology. 36: 1795-1797.

Foster D.M. & Smith G.W. 2009. Pathophysiology of diarrhea in calves. Veterinary Clinics of North America: Food Animal Practice. 25: 13-36.

Gyles C.L. & Fairbrother J.M. 2010. Escherichia coli. In: Gyles C.L., Prescott J.F., Songer J.G. & Thoen C.O. (Eds). Pathogenesis of Bacterial Infections in Animals. 4th edn. Iowa: Wiley-Blackwell, pp.267-309.

Kaneene J.B. & Hurd H.S. 1990. The national animal health monitoring system in Michigan. III. Cost estimates of selected dairy cattle diseases. Preventive Veterinary Medicine. 8: 127-140.

Mainil J.G., Bex F., Jacquemin E., Pohl P., Couturier M. & Kaeckenbeeck A. 1990. Prevalence of four enterotoxin (STaP, STaH, STb, and LT) and four adhesion subunit (K99, K88, 987P, and F41) genes among Escherichia coli isolates from cattle. American Journal of Veterinary Research. 51: 187-190.

Mittelstaed S. & Carvalho V.M. 2006. Escherichia coli enterohemorrágica (EHEC) O157:H7 – revisão. Revista do Instituto de Ciências da Saúde. 24(3): 175-82.

Moxley R.A. & Smith D.R. 2010. Attaching-effacing Escherichia coli Infections in Cattle. Veterinary Clinics of North America: Food Animal Practice. 26: 29-56.

Nguyen T.V., Van P.L., Huy C.L., Gia K.N. & Weintraub A. 2005. Detection and Characterization of Diarrheagenic Escherichia coli from Young Children in Hanoi, Vietnam. Journal of Clinical Microbiology. 43(2): 755-760.

Ok M., Güler L., Turgut K., Ok Ü., Sen I., Günduz I.K., Birdane M.F. & Güzelbektes H. 2009. The studies on the aetiology of diarrhoea in neonatal calves and determination of virulence gene markers of Escherichia coli strains by multiplex PCR. Zoonoses and Public Health. 56: 94-101.

Oliveira Filho J.P., Silva D.P.G., Pacheco M.D., Mascarini L.M., Ribeiro M.G., Alfieri A.A., Alfieri A.F., Stipp D.T., Barros B.J.P. & Borges A.S. 2007. Diarreia em bezerros da raça Nelore criados extensivamente: estudo clínico e etiológico. Pesquisa Veterinária Brasileira. 27(10): 419-424.

Reising A., Hafer C., Hiss M., Kielstein J.T., Menne J., Gueler F., Beneke J., Linnenweber-Held S., Haller H. & Einecke G. 2016. Ultrasound findings in EHEC-associated hemolytic-uremic syndrome and their clinical relevance. International Urology and Nephrology. 48: 561-570.

Rigobelo E.C., Gamez H.J., Marin J.M., Macedo C., Ambrosin A.J. & Ávila F.A. 2006. Virulence factors of Escherichia coli isolated from diarrheic calves. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 58(3): 305-310.

Salvadori M.R., Valadares G.F., Leite D.S., Blanco J. & Yano T. 2003. Virulence factors of Escherichia coli isolated from calves with diarrhea in Brazil. Brazilian Journal of Microbiology. 34: 230-235.

Sambrook J. & Russell D. 2001. Molecular Cloning: a Laboratory Manual. 3rd edn. New York: Cold Spring Harbor Laboratory, 2100p.

Timm C.D., Irino K., Gomes T.A.T., Vieira M.M., Guth B.E.C., Vaz T.M.I., Moreira C.N. & Aleixo J.A.G. 2007. Virulence markers and serotypes of Shiga toxin-producing Escherichia coli, isolated from cattle in Rio Grande do Sul, Brazil. Letters in Applied Microbiology. 44: 419-425.

Tzipori S. 1981. The aetiology and diagnosis of calf diarrhoea. Veterinary Record. 108: 510-514.

Wani S.A., Bhat M.A., Samanta I., Nishikawa Y. & Buchh A.S. 2003. Isolation and characterization of Shiga toxinproducing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from calves and lambs with diarrhea in India. Letters in Applied Microbiology. 37: 121-126.



How to Cite

Júnior, S. F. V., Cunha, R. C., Pereira, D. I. B., Botton, S. de Ávila, Ladeira, S. R. L., Júnior, T. L., & Sallis, E. S. V. (2017). Identification of Virulence Factors of Escherichia coli Isolates from Fecal Samples of Calves in Southern Brazil. Acta Scientiae Veterinariae, 45(1), 6.




Most read articles by the same author(s)