Pathogenic Microorganisms in the Environment of Sheep Slaughterhouse

Authors

DOI:

https://doi.org/10.22456/1679-9216.146484

Keywords:

sheep slaughterhouse, public health, environment microbiology, zoonoses, pathogens, metagenomics

Abstract

Background: As critical nodes for zoonotic disease transmission, the microbial community composition in sheep slaughterhouse environments directly impacts meat safety and public health. While existing studies have focused on single-pathogen detection, there remains a lack of systematic understanding of the diversity, distribution patterns, and transmission risks of pathogenic microorganisms in complex environments. This study aims to elucidate the microbial community characteristics of mutton slaughterhouse environments using metagenomics approaches, with a focus on analyzing the ecological distribution of zoonotic pathogens and their potential threats.

Materials, Methods & Results: A total of 12 environmental samples (n=3 per zone) were collected from a sheep slaughterhouse in Suzhou, Jiangsu Province, including slaughter workshop, slaughter tools, pre-slaughter holding area, and production wastewater. Samples were preserved in liquid nitrogen, and total DNA was extracted using the HiPure Stool DNA Kit. Paired-end sequencing (PE150) was performed on the Illumina HiSeq platform. Raw reads were quality-filtered (Cutadapt), and host-contaminant sequences removed (BWA). Clean reads were assembled with MEGAHIT, and unigenes predicted via Prodigal. Clustering by MMseq2 generated a non-redundant gene set, which was annotated against the NCBI NT database using Diamond to obtain taxonomic assignments. Species abundance was calculated at phylum, genus, and species levels, and principal component analysis (PCA) assessed variation between zones. At the phylum level, microbial communities were dominated by Proteobacteria (31.39% - 75%), Firmicutes (11.89% - 43.66%), Bacteroidota (9.15% -41.61%), and Actinobacteria (3% - 14.69%), with significant clustering by functional zones. Genus-level analysis revealed Chryseobacterium, Comamonas, Acinetobacter, Psychrobacter, and Prevotella as top taxa across samples. Species-level profiling detected 6 categories of zoonotic pathogens, notably Staphylococcus aureus (7.07% relative abundance in slaughter tools), Mycobacteroides abscessus (3.56% in slaughter workshop), Vibrio cholerae, and Klebsiella pneumoniae. Slaughter tools harbored the highest pathogen load; Lactococcus garvieae accounted for 10.39%. Production wastewater contained elevated levels of aquatic pathogens, suggesting environmental dissemination risks. An upset plot showed 116 species shared across all samples, with unique species counts ranging from 88 to 505 per sample.

Discussion: This study elucidates the ecological niches of drug-resistant and opportunistic pathogens in a sheep slaughterhouse, identifying production wastewater and slaughter tools as high-risk contamination sources. High abundances of Staphylococcus aureus and Mycobacteroides abscessus underscore occupational exposure risks for abattoir workers, while detection of Vibrio cholerae highlights vulnerabilities in wastewater treatment and potential for zoonotic outbreaks. The prevalence of biofilm-forming Firmicutes on tools indicates that conventional disinfectants may be insufficient. Horizontal transfer of antibiotic resistance genes among dominant phyla could exacerbate public health threats. We recommend implementing targeted disinfection protocols, routine metagenomic monitoring for early pathogen detection, stricter PPE use and worker training, and optimization of wastewater pH control. Future studies should expand geographic sampling and integrate functional metagenomics to unravel resistance mechanisms and cross-species gene flow. These strategies will strengthen slaughterhouse biosafety and mitigate zoonotic disease transmission.

Keywords: sheep slaughterhouse, public health, environment microbiology, zoonoses, pathogens, metagenomics.

Downloads

Download data is not yet available.

References

Alam M., Sultana M., Balakrish Nair G., Siddique A.K., Hasan N.A., Bradley Sack R., Sack D.A., Ahmed K.U., Sadique A., Watanabe H., Grim C.J., Huq A. & Colwell R.R. 2007. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proceedings of the National Academy of Sciences of the United States of America. 104(45): 17801–17806. DOI: 10.1073/PNAS.0705599104/SUPPL_FILE/05599FIG6.PDF. DOI: https://doi.org/10.1073/pnas.0705599104

Alves V.F., Tadielo L.E., Pires A.C.M.S., Pereira M.G., Bersot L.S. & De Martinis E.C.P. 2024. Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry. Foods. 13(24): 3994. DOI: 10.3390/FOODS13243994. DOI: https://doi.org/10.3390/foods13243994

Andreoletti O., Baggesen D.L., Bolton D., Butaye P., Cook P., Davies R., Fernández Escámez P.S., Griffin J., Hald T., Havelaar A., Koutsoumanis K., Lindqvist R., McLauchlin J., Nesbakken T., Prieto M., Ricci A., Ru G., Sanaa M., Simmons M., Sofos J., Threlfall J., Buncic S., Collins J.D., Dorny P., Blaga R., Benford D., Ceccatelli S., Cottrill B., Dinovi M., Dogliotti E., Edler L., Farmer P., Fürst P., Hoogenboom L., Knutsen H.K., Haldorsen A.K.L., Metzler M., Nebbia C.S., O‘Keeffe M., Rietjens I., Schrenk D., Silano V., van Loveren H., Vleminckx C., Wester P., Baars B.J., Fink-Gremmels J., Fries R., McOrist S., Nebbia C., Authie E., Berg C., Bøtner A., Browman H., Capua I., De Koeijer A., Depner K., Domingo M., Edwards S., Fourichon C., Koenen F., More S., Raj M., Sihvonen L., Spoolder H., Stegeman J.A., Thulke H.H., Vågsholm I., Velarde A., Willeberg P., Zientara S., Broom D., Doherr M., Dominguez J., Murray D., Oltenacu P., Salman M., Wierup M., Warns-Petit E., Chavarrias V.L., Vivas-Alegre L., Liébana E., Mazzolini E., Georgiadis M., Nicolau-Solano S.I., Curtui V., Cioacata G., Mackay K., Zancanaro G., Georgiev M. & Afonso A. 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat (bovine animals). EFSA Journal. 11(6). DOI: 10.2903/J.EFSA.2013.3266. DOI: https://doi.org/10.2903/j.efsa.2013.3266

Bialek-Davenet S., Criscuolo A., Ailloud F., Passet V., Jones L., Delannoy-Vieillard A.S., Garin B., Hello S. Le, Arlet G., Nicolas-Chanoine M.H., Decré D. & Brisse S. 2014. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerging Infectious Diseases. 20(11): 1812-1820. DOI: 10.3201/EID2011.140206. DOI: https://doi.org/10.3201/eid2011.140206

Bishop E.J., Shilton C., Benedict S., Kong F., Gilbert G.L., Gal D., Godoy D., Spratt B.G. & Currie B.J. 2007. Necrotizing fasciitis in captive juvenile Crocodylus porosus caused by Streptococcus agalactiae: an outbreak and review of the animal and human literature. Epidemiology and Infection. 135(8): 1248-1255. DOI: 10.1017/S0950268807008515. DOI: https://doi.org/10.1017/S0950268807008515

Bradley M.E. & Scoular S.K. 2021. Metastatic Klebsiella pneumoniae Invasive Liver Abscess Syndrome in Denver, Colorado. Journal of Pharmacy Practice. 34(2): 332–336. DOI: 10.1177/0897190019882867. DOI: https://doi.org/10.1177/0897190019882867

Brown-Elliott B.A. & Wallace R.J. 2002. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clinical Microbiology Reviews. 15(4): 716-746. DOI: 10.1128/CMR.15.4.716-746.2002. DOI: https://doi.org/10.1128/CMR.15.4.716-746.2002

Burke R.L., Kronmann K.C., Daniels C.C., Meyers M., Byarugaba D.K., Dueger E., Klein T.A., Evans B.P. & Vest K.G. 2012. A review of zoonotic disease surveillance supported by the Armed Forces Health Surveillance Center. Zoonoses and Public Health. 59(3): 164-175. DOI: 10.1111/J.1863-2378.2011.01440.X. DOI: https://doi.org/10.1111/j.1863-2378.2011.01440.x

Cheng C., Du J., Tao J. & Cheng D. 2025. Growth Characteristics of Sheep-Derived Bacteroides fragilis and Preliminary Research on Effects in Mice and Lambs. Microorganisms. 13(1): 87. DOI: 10.3390/MICROORGANISMS13010087. DOI: https://doi.org/10.3390/microorganisms13010087

Cheng C., Wang G., Cheng D., Liu M., Zhu S., Chen X. & Tao J. 2022. Zoonotic Bacteria Harboring in Goat Intestine: A One Health Perspective. Journal of Pure and Applied Microbiology. 16(3): 2151-2164. DOI: 10.22207/JPAM.16.3.73. DOI: https://doi.org/10.22207/JPAM.16.3.73

Cheng C., Zheng Y., Wang X., Tao J. & Cheng D. 2025. Research in etiology of Floppy Kid Syndrome. Frontiers in Veterinary Science. 12: 1557951. DOI: 10.3389/FVETS.2025.1557951. DOI: https://doi.org/10.3389/fvets.2025.1557951

Chin C.-S., Sorenson J., Harris J.B., Robins W.P., Charles R.C., Jean-Charles R.R., Bullard J., Webster D.R., Kasarskis A., Peluso P., Paxinos E.E., Yamaichi Y., Calderwood S.B., Mekalanos J.J., Schadt E.E. & Waldor M.K. 2011. The origin of the Haitian cholera outbreak strain. The New England Journal of Medicine. 364(1): 33-42. DOI: 10.1056/NEJMOA1012928. DOI: https://doi.org/10.1056/NEJMoa1012928

Dutra V.G., Alves V.M.N., Olendzki A.N., Dias C.A.G., Bastos A.F.A., Santos G.O., Amorin E.L.T., Sousa M.T., Santos R., Ribeiro P.C.S., Fontes C.F., Andrey M., Magalhães K., Araujo A.A., Paffadore L.F., Marconi C., Murta E.F.C., Fernandes P.C., Raddi M.S.G., Marinho P.S., Bornia R.B.G., Palmeiro J.K., Dalla-Costa L.M., Pinto T.C.A., Botelho A.C.N., Teixeira L.M. & Fracalanzza S.E.L. 2014. Streptococcus agalactiae in Brazil: serotype distribution, virulence determinants and antimicrobial susceptibility. BMC Infectious Diseases. 14(1). DOI: 10.1186/1471-2334-14-323. DOI: https://doi.org/10.1186/1471-2334-14-323

Ferrieri P. & Flores A.E. 1997. Surface protein expression in group B streptococcal invasive isolates. Advances in Experimental Medicine and Biology. 418: 635-637. DOI: 10.1007/978-1-4899-1825-3_148. DOI: https://doi.org/10.1007/978-1-4899-1825-3_148

Galié S., García-Gutiérrez C., Miguélez E.M., Villar C.J. & Lombó F. 2018. Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology. 9: 315815. DOI: 10.3389/FMICB.2018.00898/PDF. DOI: https://doi.org/10.3389/fmicb.2018.00898

Manaia C.M., Macedo G., Fatta-Kassinos D. & Nunes O.C. 2016. Antibiotic resistance in urban aquatic environments: can it be controlled? Applied Microbiology and Biotechnology. 100(4): 1543-1557. DOI: 10.1007/S00253-015-7202-0. DOI: https://doi.org/10.1007/s00253-015-7202-0

Nessar R., Cambau E., Reyrat J.M., Murray A. & Gicquel B. 2012. Mycobacterium abscessus: a new antibiotic nightmare. The Journal of Antimicrobial Chemotherapy. 67(4): 810-818. DOI: 10.1093/JAC/DKR578. DOI: https://doi.org/10.1093/jac/dkr578

Rabaa M.A., Tue N.T., Phuc T.M., Carrique-Mas J., Saylors K., Cotten M., Bryant J.E., Nghia H.D.T., Cuong N. Van, Pham H.A., Berto A., Phat V.V., Dung T.T.N., Bao L.H., Hoa N.T., Wertheim H., Nadjm B., Monagin C., van Doorn H.R., Rahman M., Tra M.P.V., Campbell J.I., Boni M.F., Tam P.T.T., van der Hoek L., Simmonds P., Rambaut A., Toan T.K., Van Vinh Chau N., Hien T.T., Wolfe N., Farrar J.J., Thwaites G., Kellam P., Woolhouse M.E.J. & Baker S. 2015. The Vietnam Initiative on Zoonotic Infections (VIZIONS): A Strategic Approach to Studying Emerging Zoonotic Infectious Diseases. Ecohealth. 12(4): 726. DOI: 10.1007/S10393-015-1061-0. DOI: https://doi.org/10.1007/s10393-015-1061-0

Rizzo L., Manaia C., Merlin C., Schwartz T., Dagot C., Ploy M.C., Michael I. & Fatta-Kassinos D. 2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of The Total Environment. 447: 345-360. DOI: 10.1016/J.SCITOTENV.2013.01.032. DOI: https://doi.org/10.1016/j.scitotenv.2013.01.032

Ryan M.R. & Cleaveland S. 2017. Zoonotic diseases: sharing insights from interdisciplinary research. The Veterinary Record. 180(11): 270-271. DOI: 10.1136/VR.J1261. DOI: https://doi.org/10.1136/vr.j1261

Sack D.A., Sack R.B., Nair G.B. & Siddique A.K. 2004. Cholera. Lancet. 363(9404): 223-233. DOI: 10.1016/S0140-6736(03)15328-7. DOI: https://doi.org/10.1016/S0140-6736(03)15328-7

Saishu N., Ozaki H. & Murase T. 2014. CTX-M-Type Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae Isolated from Cases of Bovine Mastitis in Japan. The Journal of Veterinary Medical Science. 76(8): 1153. DOI: 10.1292/JVMS.13-0120. DOI: https://doi.org/10.1292/jvms.13-0120

Swai E.S., Schoonman L. & Daborn C.J. 2010. Knowledge and attitude towards zoonoses among animal health workers and livestock keepers in Arusha and Tanga, Tanzania. Tanzania Journal of Health Research. 12(4). DOI: 10.4314/THRB.V12I4.54709. DOI: https://doi.org/10.4314/thrb.v12i4.54709

Woolhouse M.E.J. 2002. Population biology of emerging and re-emerging pathogens. Trends in Microbiology. 10(10). DOI: 10.1016/S0966-842X(02)02428-9. DOI: https://doi.org/10.1016/S0966-842X(02)02428-9

Zhang Y., Wang Q., Yin Y., Chen H., Jin L., Gu B., Xie L., Yang C., Ma X., Li H., Li W., Zhang X., Liao K., Man S., Wang S., Wen H., Li B., Guo Z., Tian J., Pei F., Liu L., Zhang L., Zou C., Hu T., Cai J., Yang H., Huang J., Jia X., Huang W., Cao B. & Wang H. 2018. Epidemiology of Carbapenem-Resistant Enterobacteriaceae Infections: Report from the China CRE Network. Antimicrobial Agents and Chemotherapy. 62(2). DOI: 10.1128/AAC.01882-17. DOI: https://doi.org/10.1128/AAC.01882-17

Additional Files

Published

2025-07-04

How to Cite

Cheng, C., Yan, L., Xin, W., Cheng, D., & Tao, J. (2025). Pathogenic Microorganisms in the Environment of Sheep Slaughterhouse. Acta Scientiae Veterinariae, 53. https://doi.org/10.22456/1679-9216.146484

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.