Host Skin during Tick Infestation: Unearthing the Local Immunity to Lead an Anti-Tick Vaccine
DOI:
https://doi.org/10.22456/1679-9216.146441Keywords:
tick, skin, immunity, parasite, vaccineAbstract
Background: The host skin is the first line of defense against most microorganisms and parasites such as bacteria, fungi and ticks. The immune system present in skin takes part of a sophisticate defense mechanism, firstly as physical, cellular and chemical barriers, followed by a wide range of antimicrobial molecules and specialized immune cells. These cells are responsible for inflammatory processes, antigen uptake and presentation, allergic responses that untimely could control the pathogens.
Review: Concerning tick parasitism, skin immunity has a paramount role during tick attachment and blood feeding through both the innate and adaptive responses. In recent years, an increasing number of discoveries in tick physiology revealed a more detailed picture of the role of immune cells and their mediators against tick parasitism. Therefore, a systematic review and summarization of this information can give a more comprehensive understanding of the orchestration of the diverse and complex host immune response mechanisms that reject at least part of infesting ticks and give clues to suggest potential applications to develop better methods for tick control.
Conclusion: The local skin immune response to tick and other ectoparasite infestations is intricately influenced by the microenvironment created by parasite attachment components and secreted proteins, attracting and engaging local immune cells. Host immune status further contributes to this dynamic. This review discusses the major cellular responses, functional diversity, and host skin immunity mechanisms stimulated by ticks. However, more research is needed to fill existing gaps and fully understand how the skin responds to ticks and other parasites. For example, studying B-cell responses, their diversity, and exploring the full Th2 immune response could provide valuable insights for improving tick control strategies.
Keywords: tick, skin, immunity, parasite, vaccine
Downloads
References
Abbas M.N., Jmel M.A., Mekki I., Dijkgraaf I. & Kotsyfakis M. 2023. Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development. International Jounal of Molecular Sciences. 24(5): 4969. DOI: 10.3390/ijms24054969 DOI: https://doi.org/10.3390/ijms24054969
Ali A., Tirloni L., Isezaki M., Seixas A., Konnai S., Ohashi K., da Silva Vaz Junior I. & Termignoni C. 2014. Reprolysin metalloproteases from Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus microplus ticks. Experimental & Applied Acarology. 63(4): 559-578. DOI: 10.1007/s10493-014-9796-9 DOI: https://doi.org/10.1007/s10493-014-9796-9
Ali A., Zeb I., Alouffi A., Zahid H., Almutairi M.M., Ayed Alshammari F., Alrouji M., Termignoni C., Vaz Jr. I.D.S. & Tanaka T. 2022. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Frontiers in Cellular and Infectious Microbiology. 16(12): 809052. DOI: 10.3389/fcimb.2022.809052 DOI: https://doi.org/10.3389/fcimb.2022.809052
Allen J.E. & Sutherland T.E. 2014. Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin. Seminars in Immunology. 26(4): 329-340. DOI: 10.1016/j.smim.2014.06.003 DOI: https://doi.org/10.1016/j.smim.2014.06.003
Allen J.R. 1973. Tick resistance: basophils in skin reactions of resistant guinea pigs. International Journal for Parasitology. 3(2): 195-200. DOI: 10.1016/0020-7519(73)90024-6 DOI: https://doi.org/10.1016/0020-7519(73)90024-6
Allen J.R. 1994. Host resistance to ectoparasites. Revue Scientifique et Technique (International Office of Epizootics).13(4): 1287-1303. DOI: 10.20506/rst.13.4.824 DOI: https://doi.org/10.20506/rst.13.4.824
Allen J.R. & Humphreys S.J. 1979. Immunisation of guinea pigs and cattle against ticks. Nature. 280(5722): 491-493. DOI: 10.1038/280491a0 DOI: https://doi.org/10.1038/280491a0
Allen J.R., Doube, B.M. & Kemp D.H. 1977. Histology of bovine skin reactions to Ixodes holocyclus Neumann. Canadian Journal of Comparative Medicine. 41(1): 26-35.
Anderson J.F. & Magnarelli L.A 2008. Biology of ticks. Infection Disease Clinics of North America. 22(2): 195-215. DOI: 10.1016/j.idc.2007.12.006 DOI: https://doi.org/10.1016/j.idc.2007.12.006
Anderson J.M., Moore I.N., Nagata B.M., Ribeiro J., Valenzuela J.G. & Sonenshine D.E. 2017. Ticks, Ixodes scapularis, feed repeatedly on white- footed mice despite strong inflammatory response: an expanding paradigm for understanding tick–host interactions. Frontiers in Immunology.8: 1784. DOI: 10.3389/fimmu.2017.01784 DOI: https://doi.org/10.3389/fimmu.2017.01784
Babayan S.A., Read A.F., Lawrence R.A., Bain O. & Allen J.E. 2010. Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy. PLoS Biology. 8(10): e1000525. DOI: 10.1371/journal.pbio.1000525 DOI: https://doi.org/10.1371/journal.pbio.1000525
Bechara G.H., Szabó M.P.J., Ferreira B.R. & Garcia M.V. 1995. Rhipicephalus sanguineus tick in Brazil: feeding and reproductive aspects under laboratorial conditions. Brazilian Journal of Veterinary Parasitology. 4(61): 66.
Bhat S.A., Mounsey K.E. & Liu X. 2017. Host immune responses to the itch mite, Sarcoptes scabiei, in humans. Parasites & Vectors. 10: 385. DOI: 10.1186/s13071-017-2320-4 DOI: https://doi.org/10.1186/s13071-017-2320-4
Bhat S.A., Walton S.F., Ventura T., Liu X., McCarthy J.S., Burgess S.T.G. & Mounsey K.E. 2020. Early immune suppression leads to uncontrolled mite proliferation and potent host inflammatory responses in a porcine model of crusted versus ordinary scabies. PLoS Negleted Tropical Diseases. 14(9): e0008601. DOI: 10.1371/journal.pntd.0008601 DOI: https://doi.org/10.1371/journal.pntd.0008601
Binnington K.C. & Kemp D.H. 1980. Role of tick salivary glands in feeding and disease transmission. Advances in Parasitology. 18: 315-39. DOI: 10.1016/S0065-308X(08)60403-0 DOI: https://doi.org/10.1016/S0065-308X(08)60403-0
Bishop R., Lambson B., Wells C., Pandit P., Osaso J., Nkonge C., Morzaria S., Musoke A. & Nene V. 2002. A cement protein of the tick Rhipicephalus appendiculatus, located in the secretory e cell granules of the type III salivary gland acini, induces strong antibody responses in cattle. International Journal for Parasitology. 32(7): 833-42. DOI: 10.1016/S0020-7519(02)00027-9 DOI: https://doi.org/10.1016/S0020-7519(02)00027-9
Boppana D.K.V., Wikel S.K., Raj D.G., Manohar M.B. & Lalitha J. 2005. Cellular infiltration at skin lesions and draining lymph nodes of sheep infested with adult Hyalomma anatolicum anatolicum ticks. Parasitology. 131(5): 657. DOI: 10.1017/S0031182005008243 DOI: https://doi.org/10.1017/S0031182005008243
Briant L., Desprès P., Choumet V. & Missé D. 2014. Role of skin immune cells on the host susceptibility to mosquito-borne viruses. Virology. 464: 26-32. DOI: 10.1016/j.virol.2014.06.023 DOI: https://doi.org/10.1016/j.virol.2014.06.023
Brossard M. 1982. Rabbits infested with adult Ixodes ricinus L.: effects of mepyramine on acquired resistance. Experientia. 38(6): 702-4. DOI: 10.1007/BF01964106 DOI: https://doi.org/10.1007/BF01964106
Brown S.J., Galli S.J., Gleich G.J. & Askenase P.W. 1982. Ablation of immunity to Amblyomma americanum by anti-basophil serum: cooperation between basophils and eosinophils in expression of immunity to ectoparasites (ticks) in guinea pigs. Journal of Immunology. 129(2): 790-6. DOI: 10.4049/jimmunol.129.2.790 DOI: https://doi.org/10.4049/jimmunol.129.2.790
Buczek W., Buczek A.M., Bartosik K. & Buczek A. 2020. Comparison of Skin Lesions Caused by Ixodes ricinus Ticks and Lipoptena cervi Deer Keds Infesting Humans in the Natural Environment. International Journal of Environmental Research and Public Health. 17(9): 3316. DOI: 10.3390/ijerph17093316 DOI: https://doi.org/10.3390/ijerph17093316
Carvalho W.A., Franzin A.M., Abatepaulo A.R.R., de Oliveira C.J. F., Moré D.D., da Silva J.S. & de Miranda Santos I.K.F. 2010. Modulation of cutaneous inflammation induced by ticks in contrasting phenotypes of infestation in bovines. Veterinary Parasitology. 167(2-4): 260-273. DOI: 10.1016/j.vetpar.2009.09.028 DOI: https://doi.org/10.1016/j.vetpar.2009.09.028
Chmelař J., Kotál J., Langhansová H. & Kotsyfakis M. 2017. Protease inhibitors in tick saliva: the role of serpins and cystatins in tick-host-pathogen interaction. Frontiers in Cellular and Infection Microbiology. 7: 216. DOI: 10.3389/fcimb.2017.00216 DOI: https://doi.org/10.3389/fcimb.2017.00216
Constantinoiu C.C., Jackson L.A., Jorgensen W.K., Lew-Tabor A.E., Piper E.K., Mayer D.G. & Jonsson N.N. 2010. Local immune response against larvae of Rhipicephalus (Boophilus) microplus in Bos taurus indicus and Bos taurus taurus cattle. International Journal for Parasitology. 40(7): 865-875. DOI: 10.1016/j.ijpara.2010.01.004 DOI: https://doi.org/10.1016/j.ijpara.2010.01.004
Constantinoiu CC, Jonsson NN, Jorgensen WK, Jackson LA, Piper EK. & Lew-Tabor AE. 2013. Immuno-fluorescence staining patterns of leukocyte subsets in the skin of taurine and indicine cattle. Research in Veterinary Science. 95(3): 854-60. DOI: 10.1016/j.rvsc.2013.08.014 DOI: https://doi.org/10.1016/j.rvsc.2013.08.014
Constantinoiu C.C., Lew-Tabor A., Jackson L.A., Jorgensen W.K., Piper E.K., Mayer D.G., Johnson L, Venus B. & Jonsson N.N. 2018. Local immune response to larvae of Rhipicephalus microplus in Santa Gertrudis cattle. Parasite Immunology. 40(4): e12515. DOI: 10.1111/pim.12515 DOI: https://doi.org/10.1111/pim.12515
Daly C.M., Mayrhofer G. & Dent L.A. 1999. Trapping and immobilization of Nippostrongylus brasiliensis larvae at the site of inoculation in primary infections of interleukin-5 transgenic mice. Infection and Immunity. 67(10): 5315-23. DOI: 10.1128/IAI.67.10.5315-5323.1999 DOI: https://doi.org/10.1128/IAI.67.10.5315-5323.1999
Dantas-Torres F., Chomel B.B. & Otranto D. 2012. Ticks and tick-borne diseases: a One Health perspective. Trends in Parasitology. 28(10): 437-446. DOI: 10.1016/j.pt.2012.07.003 DOI: https://doi.org/10.1016/j.pt.2012.07.003
De La Fuente J. & Estrada-Peña A. 2019. Why new vaccines for the control of ectoparasite vectors have not been registered and commercialized? Vaccines. 7(3). DOI: 10.3390/vaccines7030075 DOI: https://doi.org/10.3390/vaccines7030075
De La Fuente J., Estrada-Pena A., Venzal J.M., Kocan K.M. & Sonenshine D.E. 2008. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Frontiers Bioscience, 13(13): 6938-6946. DOI: 10.2741/3200 DOI: https://doi.org/10.2741/3200
denHollander N. & Allen JR. 1985. Dermacentor variabilis: resistance to ticks acquired by mast cell-deficient and other strains of mice. Experimental Parasitology. 59(2): 169-79. DOI: 10.1016/0014-4894(85)90069-4 DOI: https://doi.org/10.1016/0014-4894(85)90069-4
De Meneghi D., Stachurski F. & Adakal H. 2016. Experiences in Tick Control by acaricide in the Traditional Cattle Sector in Zambia and Burkina Faso: Possible Environmental and Public Health Implications. Frontiers in Public Health. 4: 239. DOI: 10.3389/fpubh.2016.00239 DOI: https://doi.org/10.3389/fpubh.2016.00239
Eisen L. & Stafford K.C. 2021. Barriers to Effective Tick Management and Tick-Bite Prevention in the United States (Acari: Ixodidae). Journal of Medical Entomology. 58(4): 1588-1600. DOI:10.1093/jme/tjaa079 DOI: https://doi.org/10.1093/jme/tjaa079
Elwood H., Berry R.S., Gardner J.M. & Shalin S.C. 2015. Superficial fibrin thrombi and other findings: a review of the histopathology of human scabietic infections. Journal of Cutaneous Pathology. 42(5): 346-352. DOI: 10.1111/cup.12482 DOI: https://doi.org/10.1111/cup.12482
Engracia Filho, J.R., Araújo C.D., Pinto G.N., Mendes Y.H. & Bechara G.H. 2017. Cellular response in the tick feeding site in crossbred cattle artificially infested by Rhipicephalus microplus. Experimental and Applied Acarology. 72(2): 171-178. DOI: 10.1007/s10493-017-0143-9 DOI: https://doi.org/10.1007/s10493-017-0143-9
Esteves E., Bizzarro B., Costa F.B., Ramírez-Hernández A., Peti A.P. F., Cataneo A.H.D. & Sá-Nunes A. 2019. Amblyomma sculptum Salivary PGE2 Modulates the Dendritic Cell-Rickettsia rickettsii Interactions in vitro and in vivo. Frontiers in Immunology. 10: 118. DOI: 10.3389/fimmu.2019.00118 DOI: https://doi.org/10.3389/fimmu.2019.00118
Ferreira B.R., Machado R.Z. & Bechara G.H. 1996. Western blot analysis of tick antigens from a Rhipicephalus sanguineus unfed larval extract and identification of antigenic sites in tick sections using immunohistochemistry. A comparative study between resistant and susceptible host species. Veterinary Parasitology. 62(1-2): 161-74. DOI: 10.1016/0304-4017(95)00838-1 DOI: https://doi.org/10.1016/0304-4017(95)00838-1
Francischetti I.M., Sa-Nunes A., Mans B.J., Santos I.M. & Ribeiro J.M. 2009. The role of saliva in tick feeding. Frontiers in Bioscience: A Journal and Virtual Library. 14: 2051. DOI: 10.2741/3363 DOI: https://doi.org/10.2741/3363
Franzin A.M., Maruyama S.R., Garcia G.R., Oliveira R.P., Ribeiro J.M.C., Bishop R. & de Miranda Santos I.K.F. 2017. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus. Parasites & Vectors. 10(1): 1-24. DOI: 10.1186/s13071-016-1945-z DOI: https://doi.org/10.1186/s13071-016-1945-z
Gao B., Adhikari R., Howarth M., Nakamura K., Gold M.C., Hill A.B., Knee R., Michalak M. & Elliott T. 2002. Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity. 16(1): 99-109. DOI: 10.1016/S1074-7613(01)00260-6 DOI: https://doi.org/10.1016/S1074-7613(01)00260-6
Garcia G.R., Ribeiro J.M. C., Maruyama S.R., Gardinassi L.G., Nelson K., Ferreira B.R. & de Miranda Santos I.K.F. 2020. A transcriptome and proteome of the tick Rhipicephalus microplus shaped by the genetic composition of its hosts and developmental stage. Scientific Reports. 10(1): 1-23. DOI: 10.1038/s41598-020-69793-3 DOI: https://doi.org/10.1038/s41598-020-69793-3
Gazim Z.C., Demarchi I.G., Lonardoni M.V.C., Amorim A.C.L., Hovell, M.C., Rezende C.M. & Cortez D.A. G. 2010. Acaricidal activity of the essential oil from Tetradenia riparia (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari; Ixodidae). Experimental Parasitology. 129(2): 175-178. DOI: 10.1016/j.exppara.2011.06.011 DOI: https://doi.org/10.1016/j.exppara.2011.06.011
Gill H.S. 1986. Kinetics of mast cell, basophil and eosinophil populations at Hyalomma anatolicum anatolicum feeding sites on cattle and the acquisition of resistance. Parasitology. 93(2): 305-315. DOI: 10.1017/S0031182000051477 DOI: https://doi.org/10.1017/S0031182000051477
Glatz M., Means T., Haas, J., Steere A.C. & Müllegger R.R. 2017. Characterization of the early local immune response to Ixodes ricinus tick bites in human skin. Experimental Dermatology. 26(3): 263-269. DOI: 10.1111/exd.13207 DOI: https://doi.org/10.1111/exd.13207
Glennie ND, Yeramilli VA, Beiting DP, Volk SW, Weaver CT. & Scott P. 2015. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. Journal of Experimental Medicine. 12(9): 1405-14. DOI: 10.1084/jem.20142101 DOI: https://doi.org/10.1084/jem.20142101
Guimaraes-Costa A.B., Shannon J.P., Waclawiak I., Oliveira J., Meneses C., de Castro W., Wen X., Brzostowski J., Serafim T.D., Andersen J.F., Hickman H.D., Kamhawi S., Valenzuela J.G. & Oliveira F. 2021. A sand fly salivary protein acts as a neutrophil chemoattractant. Nature Communications. 12(1): 3213. DOI: 10.1038/s41467-021-23002-5 DOI: https://doi.org/10.1038/s41467-021-23002-5
Guizzo M.G., Parizi L.F., Nunes R.D., Schama R., Albano R.M., Tirloni L., Oldiges D.P., Vieira R.P., Oliveira W.H.C., Leite M.S. Gonzales S.A., Farber M, Martins O, Vaz IDS Jr. & Oliveira PL.2017. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Scientific Reports. 7(1): 17554. DOI: 10.1038/s41598-017-17309-x DOI: https://doi.org/10.1038/s41598-017-17309-x
Guizzo M.G., Tirloni L., Gonzalez S.A., Farber M.D., Braz G., Parizi L.F., Dedavid E Silva L.A., da Silva Vaz I. Jr. & Oliveira P.L. 2022. Coxiella Endosymbiont of Rhipicephalus microplus Modulates Tick Physiology with a Major Impact in Blood Feeding Capacity. Frontiers in Microbiology. 13: 868575. DOI: 10.3389/fmicb.2022.868575 DOI: https://doi.org/10.3389/fmicb.2022.868575
Havlíková S., Roller L., Koci J., Trimnell A.R., Kazimírová M.,Klempa B. & Nuttall P.A. 2009. Functional role of 64P, the candidate transmission-blocking vaccine antigen from the tick, Rhipicephalus appendiculatus. International Journal for Parasitology. 39(13): 1485-94. DOI: 10.1016/j.ijpara.2009.05.005 DOI: https://doi.org/10.1016/j.ijpara.2009.05.005
Hebling L.M.G.F., Furquim K.C.S. & Bechara G.H. 2013. Inoculation of salivary gland extracts obtained from female of Rhipicephalus sanguineus (Latreille, 1806) (Acari, Ixodidae) with 2, 4, and 6 days of feeding in rabbit: I—histopathology of the feeding lesion. Parasitology Research. 112: 577–584. DOI: 10.1007/s00436-012-3169-2 DOI: https://doi.org/10.1007/s00436-012-3169-2
Heinze D.M., Carmical J.R., Aronson J.F. & Thangamani S. 2012. Early immunologic events at the tick-host interface. PloS One. 7(10): e47301. DOI: 10.1371/journal.pone.0047301 DOI: https://doi.org/10.1371/journal.pone.0047301
Heinze D.M., Carmical J.R., Aronson J.F., Alarcon-Chaidez F. Wikel S. & Thangamani S. 2014. Murine cutaneous responses to the Rocky mountain spotted fever vector, Dermacentor andersoni, feeding. Frontiers in Microbiology. 5: 198. DOI: 10.3389/fmicb.2014.00198 DOI: https://doi.org/10.3389/fmicb.2014.00198
Henrique M.O., Neto, L.S. Assis J.B., Barros M.S., Capurro M.L., Lepique P. & Sá-Nunes A. 2019. Evaluation of inflammatory skin infiltrate following Aedes aegypti bites in sensitized and non-sensitized mice reveals saliva dependent and immune dependent phenotypes. Immunology. 158(1): 47-59. DOI: 10.1111/imm.13096 DOI: https://doi.org/10.1111/imm.13096
Hermance M.E., Santos R.I., Kelly B.C., Valbuena G. & Thangamani S. 2016. Immune cell targets of infection at the tick-skin interface during Powassan virus transmission. PLoS One. 11(5): e0155889. DOI: 10.1371/journal.pone.0155889 DOI: https://doi.org/10.1371/journal.pone.0155889
Hoek A Rutten V.P., Kool J., Arkesteijn G.J., Bouwstra R.J., Van Rhijn I. & Koets A.P. 2009. Subpopulations of bovine WC1+ gammadelta T cells rather than CD4+CD25(high)Foxp3+ T cells act as immune regulatory cells ex vivo. Veterinary Research. 40(1): DOI: 10.1051/vetres:2008044 DOI: https://doi.org/10.1051/vetres:2008044
Hollmann T., Kim T.K., Tirloni L., Radulović Ž.M., Pinto A.F.M., Diedrich J.K., Yates J.R. 3rd, da Silva Vaz Jr. I. & Mulenga A. 2018. Identification and characterization of proteins in the Amblyomma americanum tick cement cone. International Journal for Parasitology. 48(3-4): 211-224. DOI: 10.1016/j.ijpara.2017.08.018 DOI: https://doi.org/10.1016/j.ijpara.2017.08.018
Hu Y., Hu Q. Li Y., Lu L., Xiang Z., Yin Z., Kabelitz D. & Wu Y. 2023. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduction and Targeted Therapy. 8: 434. DOI: 10.1038/s41392-023-01653-8 DOI: https://doi.org/10.1038/s41392-023-01653-8
Huang L. & Appleton J.A. 2016. Eosinophils in Helminth Infection: Defenders and Dupes. Trends in Parasitology. 32(10): 798-807. DOI: 10.1016/j.pt.2016.05.004 DOI: https://doi.org/10.1016/j.pt.2016.05.004
Ito Y., Satoh T., TakayamaK., Miyagishi C., Walls A. F. & Yokozeki H. 2011. Basophil recruitment and activation in inflammatory skin diseases. Allergy. 66(8): 1107-1113. DOI: 10.1111/j.1398-9995.2011.02570.x DOI: https://doi.org/10.1111/j.1398-9995.2011.02570.x
Kashem S.W., Haniffa M. & Kaplan D.H. 2017. Antigen-Presenting Cells in the Skin. Annual Review of Immunology. 35: 469-499. DOI: 10.1146/annurev-immunol-051116-052215 DOI: https://doi.org/10.1146/annurev-immunol-051116-052215
Karasuyama H., Miyake K. & Yoshikawa S. 2020. Immunobiology of Acquired Resistance to Ticks. Frontiers in immunology. 11. DOI:10.3389/fimmu.2020.601504 DOI: https://doi.org/10.3389/fimmu.2020.601504
Karasuyama H., Mukai K., Obata K., Tsujimura Y. & Wada T. 2011. Nonredundant roles of basophils in immunity. Annual review of immunology. 29: 45-69. DOI: 10.1146/annurev-immunol-031210-101257 DOI: https://doi.org/10.1146/annurev-immunol-031210-101257
Karasuyama H., Tabakawa Y., Ohta T., Wada T. & Yoshikawa S. 2018. Crucial role for basophils in acquired protective immunity to tick infestation. Frontiers in Physiology. 9: 1769. DOI: doi.org/10.3389/fphys.2018.01769 DOI: https://doi.org/10.3389/fphys.2018.01769
Kazimírová M. & Stibraniova I. 2013. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Frontiers in Cellular and Infection Microbiology. 3: 43. DOI: 10.3389/fcimb.2013.00043 DOI: https://doi.org/10.3389/fcimb.2013.00043
Keesing F., Mowry S., Bremer W., Duerr S., Evans A.S.Jr, Fischhoff I.R., Hinckley A.F., Hook S.A., Keating F., Pendleon J., Pfister A., Teator M. & Ostfeld R.S. 2022. Effects of Tick-Control Interventions on Tick Abundance, Human Encounters with Ticks, and Incidence of Tick-borne Diseases in Residential Neighborhoods. Emerging Infectious Diseases. 28(5): 957–966. DOI: 10.3201/eid2805.211146 DOI: https://doi.org/10.3201/eid2805.211146
Kim T.K., Tirloni L., Pinto A.F., Moresco J., Yates J.R., da Silva Vaz Jr. I. & Mulenga A. 2016. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding. PLoS Negleted Tropical Disease. 10(1): e0004323.3. DOI: 10.1371/journal.pntd.0004323 DOI: https://doi.org/10.1371/journal.pntd.0004323
Klompen J.S. H., Black W., Keirans J.E. & Oliver Jr. J.H. 1996. Evolution of ticks. Annual review of entomology. 41(1): 141-161. DOI: 10.1146/annurev.en.41.010196.001041 DOI: https://doi.org/10.1146/annurev.en.41.010196.001041
Knott M.L., Matthaei K.I., Giacomin P.R., Wang H., Foster P.S. & Dent L.A. 2007. Impaired resistance in early secondary Nippostrongylus brasiliensis infections in mice with defective eosinophilopoeisis. International Journal for Parasitology. 37(12): 1367-1378. DOI: 10.1016/j.ijpara.2007.04.006 DOI: https://doi.org/10.1016/j.ijpara.2007.04.006
Kotál J., Langhansová H., Lieskovská J., Andersen J.F., Francischetti I.M., Chavakis T. & Chmelař J. 2015. Modulation of host immunity by tick saliva. Journal of Proteomics. 128: 58-68. DOI: 10.1016/j.jprot.2015.07.005 DOI: https://doi.org/10.1016/j.jprot.2015.07.005
Kurokawa C., Narasimhan S., Vidyarthi A., Booth C.J., Mehta S., Meister L. & Fikrig E. 2020. Repeat tick exposure elicits distinct immune responses in guinea pigs and mice. Ticks and Tick-borne Diseases. 11(6): 101529. DOI: 10.1016/j.ttbdis.2020.101529 DOI: https://doi.org/10.1016/j.ttbdis.2020.101529
Latif A.A., Nokoe S., Punyua D.K. & Capstick P.B. 1991a. Tick infestations on Zebu cattle in western Kenya: quantitative assessment of host resistance. Journal of Medical Entomology. 28(1): 122-126. DOI: 10.1093/jmedent/28.1.122 DOI: https://doi.org/10.1093/jmedent/28.1.122
Latif A.A., Punyua D.K., Capstick P.B., Nokoe S., Walker A.R. & Fletcher J.D. 1991b. Histopathology of attachment sites of Amblyomma variegatum and Rhipicephalus appendiculatus on zebu cattle of varying resistance to ticks. Veterinary Parasitology. 38(2-3): 205-213. DOI: 10.1016/0304-4017(91)90130-N DOI: https://doi.org/10.1016/0304-4017(91)90130-N
Leal B.F, Alzugaray M.F, Seixas A, Da Silva Vaz I. & Ferreira C.A.S. 2018. Characterization of a glycine-rich protein from Rhipicephalus microplus: tissue expression, gene silencing and immune recognition. Parasitology. 145(7): 927-938. DOI: 10.1017/S0031182017001998 DOI: https://doi.org/10.1017/S0031182017001998
Little S.E., Davidson W.R., Rakich P.M., Nixon T.L., Bounous D.I. & Nettles V.F. 1998. Responses of red foxes to first and second infection with Sarcoptes scabiei. Journal of Wildlife Diseases. 34(3): 600-611. DOI: 10.7589/0090-3558-34.3.600 DOI: https://doi.org/10.7589/0090-3558-34.3.600
Lohmeyer K.H., May M.A., Thomas D.B. & Pérez de León A.A. 2018. Implication of nilgai antelope (Artiodactyla: Bovidae) in reinfestations of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in South Texas: a review and update. Journal of Medical Entomology. 55(3): 515-522. DOI: 10.1093/jme/tjy004 DOI: https://doi.org/10.1093/jme/tjy004
Mans B.J., De Klerk D., Pienaar R. & Latif A.A. 2011. Nuttalliella namaqua: a living fossil and closest relative to the ancestral tick lineage: implications for the evolution of blood-feeding in ticks. PloS one. 6(8): e23675. DOI: 10.1371/journal.pone.0023675 DOI: https://doi.org/10.1371/journal.pone.0023675
Mans B.J., Featherston J., Kvas M., Pillay K.A., de Klerk D.G., Pienaar R. & Latif A.A. 2019. Argasid and ixodid systematics: implications for soft tick evolution and systematics, with a new argasid species list. Ticks and Tick-Borne Diseases. 10(1): 219-240. DOI: 10.1016/j.ttbdis.2018.09.010 DOI: https://doi.org/10.1016/j.ttbdis.2018.09.010
Mantilla Valdivieso E.F., Ross E.M., Raza A., Nguyen L., Hayes B.J. Jonsson N.N. James P. & Tabor A.E. 2024. Expression network analysis of bovine skin infested with Rhipicephalus australis identifies pro-inflammatory genes contributing to tick susceptibility. Scientific Reports. 14(1): 4419. DOI: 10.1038/s41598-024-54577-w DOI: https://doi.org/10.1038/s41598-024-54577-w
Marques A.R., Strle F. & Wormser G.P. 2021. Comparison of Lyme Disease in the United States and Europe. Emerging Infectious Diseases. 27(8): 2017-2024. DOI: 10.3201/eid2708.204763 DOI: https://doi.org/10.3201/eid2708.204763
Marufu M.C., Dzama K. & Chimonyo M. 2014. Cellular responses to Rhipicephalus microplus infestations in pre-sensitised cattle with differing phenotypes of infestation. Experimental and Applied Acarology. 62(2): 241-252. DOI: 10.1007/s10493-013-9723-5 DOI: https://doi.org/10.1007/s10493-013-9723-5
Maruyama S.R., Garcia G.R., Teixeira F.R., Brandão L.G., Anderson J.M., Ribeiro J.M. & de Miranda-Santos I.K. 2017. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasites & vectors. 10(1): 1-16. DOI: 10.1186/s13071-017-2136-2 DOI: https://doi.org/10.1186/s13071-017-2136-2
Matsuda H., Watanabe N., Kiso Y., Hirota S., Ushio H., Kannan Y. & Kitamura Y. 1990. Necessity of IgE antibodies and mast cells for manifestation of resistance against larval Haemaphysalis longicornis ticks in mice. The Journal of Immunology. 144(1): 259-262. DOI: 10.4049/jimmunol.144.1.259 DOI: https://doi.org/10.4049/jimmunol.144.1.259
Moorhouse D.E. & Tatchell R.J. 1969. Histological responses of cattle and other ruminants to the recent attachment of ixodid larvae. Journal of Medical Entomology. 6(4): 419-22. DOI: 10.1093/jmedent/6.4.419 DOI: https://doi.org/10.1093/jmedent/6.4.419
Muhanguzi D., Byaruhanga J., Amanyire W., Ndekezi C., Ochwo S., Nkamwesiga J. & Jongejan F. 2020. Invasive cattle ticks in East Africa: morphological and molecular confirmation of the presence of Rhipicephalus microplus in south-eastern Uganda. Parasites & Vectors. 13: 1-9. DOI: 10.1186/s13071-020-04043-z DOI: https://doi.org/10.1186/s13071-020-04043-z
Muhanguzi D., Ndekezi C., Nkamwesiga J., Kalayou S., Ochwo S., Vuyani M. & Kimuda M.P. 2022. Anti-Tick Vaccines: Current Advances and Future Prospects. Vaccine Design:Methods and Molecular Biology. 2411: 253-267. DOI: 10.1007/978-1-0716-1888-2_15 DOI: https://doi.org/10.1007/978-1-0716-1888-2_15
Mulenga A., Radulovic Z., Porter L., Britten T.H., Kim T.K., Tirloni L., Gaithuma A.K., Adeniyi-Ipadeola G.O., Dietrich J.K., Moresco J.J. & Yates J.R. 2022. Identification and characterization of proteins that form the inner core Ixodes scapularis tick attachment cement layer. Scientific Reports. 12(1): 21300. DOI: 10.1038/s41598-022-24881-4 DOI: https://doi.org/10.1038/s41598-022-24881-4
Narasimhan S., Deponte K., Marcantonio N., Liang X., Royce T.E., Nelson K.F., Booth C.J., Koski B., Anderson J.F., Kantor F. & Fikrig E. 2007. Immunity against Ixodes scapularis salivary proteins expressed within 24 hours of attachment thwarts tick feeding and impairs Borrelia transmission. PLoS One. 2(5): e451. DOI: 10.1371/journal.pone.0000451 DOI: https://doi.org/10.1371/journal.pone.0000451
Narasimhan S., Kurokawa C., DeBlasio M., Matias J., Sajid A., Pal U. & Fikrig E. 2020. Acquired tick resistance: The trail is hot. Parasite Immunology. 43(5): e12808. DOI: 10.1111/pim.12808 DOI: https://doi.org/10.1111/pim.12808
Nithiuthai S. & Allen J.R. 1984. Significant changes in epidermal Langerhans cells of guinea-pigs infested with ticks (Dermacentor andersoni). Immunology. 51(1): 133.
Nuttall P.A. 2019. Wonders of tick saliva. Ticks and Tick-Borne Diseases. 10(2): 470-481. DOI: 10.1016/j.ttbdis.2018.11.005 DOI: https://doi.org/10.1016/j.ttbdis.2018.11.005
Ohta T., Yoshikawa S., Tabakawa Y., Yamaji K., Ishiwata K., Shitara H. & Karasuyama H. 2017. Skin CD4+ memory T cells play an essential role in acquired anti-tick immunity through interleukin-3-mediated basophil recruitment to tick-feeding sites. Frontiers in Immunology. 8: 1348. DOI: 10.3389/fimmu.2017.01348 DOI: https://doi.org/10.3389/fimmu.2017.01348
Otranto D. 2001. The immunology of myiasis: parasite survival and host defense strategies. Trends in Parasitology. 17(4): 176-182. DOI: 10.1016/S1471-4922(00)01943-7 DOI: https://doi.org/10.1016/S1471-4922(00)01943-7
Ozdenerol E. 2015. GIS and remote sensing use in the exploration of lyme disease epidemiology. International Journal of Environmental Research and Public Health. 12(12): 15182-15203. DOI: 10.3390/ijerph121214971 DOI: https://doi.org/10.3390/ijerph121214971
Pacheco I., Prado E., Artigas-Jerónimo S., Lima-Barbero J.F., de la Fuente G, Antunes S., Couto J., Domingos A., Villar M. & de la Fuente J. 2021. Comparative analysis of Rhipicephalus tick salivary gland and cement elementome. Heliyon. 7(4): e06721. DOI: 10.1016/j.heliyon.2021.e06721 DOI: https://doi.org/10.1016/j.heliyon.2021.e06721
Paludan S.R., Pradeu T., Masters S.L. & Mogensen T.H. 2020. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nature Reviews Immunology. 1:14. DOI: 10.1038/s41577-020-0391-5 DOI: https://doi.org/10.1038/s41577-020-0391-5
Parizi L.F., Githaka N.W., Logullo C., Zhou J., Onuma M., Termignoni C. & da Silva Vaz I Jr. 2023. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals (Basel). 13(12): 2031. DOI: 10.3390/ani13122031 DOI: https://doi.org/10.3390/ani13122031
Piper E.K., Jackson L.A., Bielefeldt-Ohmann H., Gondro C., Lew-Tabor A. E. & Jonsson N.N. 2010. Tick-susceptible Bos taurus cattle display an increased cellular response at the site of larval Rhipicephalus (Boophilus) microplus attachment, compared with tick-resistant Bos indicus cattle. International Journal for Parasitology. 40(4): 431-441. DOI: 10.1016/j.ijpara.2009.09.009 DOI: https://doi.org/10.1016/j.ijpara.2009.09.009
Piper E.K., Jonsson N.N., Gondro C., Vance M.E., Lew-Tabor A. & Jackson L.A. 2017. Peripheral cellular and humoral responses to infestation with the cattle tick Rhipicephalus microplus in Santa Gertrudis cattle. Parasite Immunology. 39(1): e12402. DOI: 10.1111/pim.12402 DOI: https://doi.org/10.1111/pim.12402
Rechav Y., Dauth J. & Els D.A. 1990. Resistance of Brahman and Simmentaler cattle to southern African ticks. Onderstepoort Journal of Veterinary Research. 57(1): 7-12.
Ribeiro J.M. 1989. Role of saliva in tick/host interactions. Experimental & Applied Acarology. 7(1): 15-20. DOI: 10.1007/BF01200449 DOI: https://doi.org/10.1007/BF01200449
Robbertse L., Richards S.A. & Maritz-Olivier C. 2017. Bovine Immune Factors Underlying Tick Resistance: Integration and Future Directions. Frontiers Cellular and Infectious Microbiology. 19(7): 522. DOI: 10.3389/fcimb.2017.00522 DOI: https://doi.org/10.3389/fcimb.2017.00522
Robbertse L., Richards S.A., Clift S.J, Barnard A.C., Leisewitz A., Crafford J.E. & Maritz-Olivier C. 2018. Comparison of the differential regulation of T and B-lymphocyte subsets in the skin and lymph nodes amongst three cattle breeds as potential mediators of immune-resistance to Rhipicephalus microplus. Ticks and Tick-Borne Diseases. 9(4): 976-987. DOI: 10.1016/j.ttbdis.2018.03.034 DOI: https://doi.org/10.1016/j.ttbdis.2018.03.034
Robbertse L., Richards S.A., Stutzer C., Olivier N.A., Leisewitz A. L., Crafford J. E. & Maritz-Olivier C. 2020. Temporal analysis of the bovine lymph node transcriptome during cattle tick (Rhipicephalus microplus) infestation. Vaccine. 38(44): 6889-6898. DOI: 10.1016/j.vaccine.2020.08.060 DOI: https://doi.org/10.1016/j.vaccine.2020.08.060
Rocklöv J. & Dubrow R. 2020. Climate change: an enduring challenge for vector-borne disease prevention and control. Nature Immunology. 21: 479–483. DOI: 10.1038/s41590-020-0648-y DOI: https://doi.org/10.1038/s41590-020-0648-y
Rodriguez-Valle M, Lew-Tabor A, Gondro C, Moolhuijzen P, Vance M, Guerrero FD, Bellgard M. & Jorgensen W. 2010. Comparative microarray analysis of Rhipicephalus (Boophilus) microplus expression profiles of larvae pre-attachment and feeding adult female stages on Bos indicus and Bos taurus cattle. BMC Genomics. 11: 437. DOI: 10.1186/1471-2164-11-437 DOI: https://doi.org/10.1186/1471-2164-11-437
Sá-Nunes A., Bafica A., Lucas D.A., Conrads T.P., Veenstra T.D., Andersen J.F., Mather T.N., Ribeiro J.M. & Francischetti I.M. 2007. Prostaglandin E2 is a major inhibitor of dendritic cell maturation and function in Ixodes scapularis saliva. The Journal of Immunology. 179(3): 1497-505. DOI: 10.4049/jimmunol.179.3.14973.6 DOI: https://doi.org/10.4049/jimmunol.179.3.1497
Sá-Nunes A. & Oliveira C.J.F. 2021. Dendritic Cells as a Disputed Fortress on the Tick-Host Battlefield. Trends in Parasitology. 37(4): 340-354. DOI: 10.1016/j.pt.2020.11.004 DOI: https://doi.org/10.1016/j.pt.2020.11.004
Saito Tais B. & Walker David H.2019. Eosinophils in tick transmitted Ehrlichial infection. The Journal of Immunology. 202(190): 58. DOI: 10.4049/jimmunol.202.Supp.190.58 DOI: https://doi.org/10.4049/jimmunol.202.Supp.190.58
Skallová A., Iezzi G., Ampenberger F., Kopf M. & Kopecký J. 2008. Tick saliva inhibits dendritic cell migration, maturation, and function while promoting development of Th2 responses. The Journal of Immunology. 180(9): 6186-6192. DOI: 10.4049/jimmunol.180.9.6186 DOI: https://doi.org/10.4049/jimmunol.180.9.6186
Sonenshine D.E. & Hynes W.L. 2008. Molecular characterization and related aspects of the innate immune response in ticks. Frontiers in Bioscience. 1(13): 7046-63. DOI: 10.2741/3209 DOI: https://doi.org/10.2741/3209
Schleger A.V., Lincoln D.T., McKenna R.V., Kemp D.H. & Roberts J.A. 1976. Boophilus microplus: cellular responses to larval attachment and their relationship to host resistance. Australian Journal of Biological Sciences. 29(5-6): 499-512. DOI: 10.1071/BI9760499 DOI: https://doi.org/10.1071/BI9760499
Steeves E.B. & Allen J.R. 1991. Tick resistance in mast cell-deficient mice: histological studies. International Journal for Parasitology. 21(2): 265-8. DOI: 10.1016/0020-7519(91)90020-8 DOI: https://doi.org/10.1016/0020-7519(91)90020-8
Szabó M.P., Morelli J.Jr. & Bechara .G.H. 1995. Cutaneous hypersensitivity induced in dogs and guinea-pigs by extracts of the tick Rhipicephalus sanguineus (Acari: Ixodidae). Experimental and Applied Acarology. 19(12): 723-30. DOI: 10.1007/BF00052083 DOI: https://doi.org/10.1007/BF00052083
Szabó M.P. & Bechara G.H. 1999. Sequential histopathology at the Rhipicephalus sanguineus tick-feeding site on dogs and guinea pigs. Experimental and Applied Acarology. 23(11): 915-28. DOI: 10.1007/BF00052083 DOI: https://doi.org/10.1023/A:1006347200373
Szabó M.P., Aoki V.L., Sanches F.P., Aquino L.P., Garcia M.V., Machado R.Z. & Bechara G.H. 2003. Antibody and blood leukocyte response in Rhipicephalus sanguineus (Latreille, 1806) tick-infested dogs and guinea pigs. Veterinary Parasitology. 115(1): 49-59. DOI: 10.1016/S0304-4017(03)00188-2 DOI: https://doi.org/10.1016/S0304-4017(03)00188-2
Tabakawa Y., Ohta T., Yoshikawa S., Robinson E.J., Yamaji K., IshiwataK. & Karasuyama H. 2018. Histamine released from skin-infiltrating basophils but not mast cell is crucial for acquired tick resistance in mice. Frontiers in Immunology. 9: 1540. DOI: 10.3389/fimmu.2018.01540 DOI: https://doi.org/10.3389/fimmu.2018.01540
Tabor A.E., Ali A., Rehman G., Rocha Garcia G., Zangirolamo A.F., Malardo T. & Jonsson N.N. 2017. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses. Frontier in Cellular and Infectious Microbiology. 11(7): 506. DOI: 10.3389/fcimb.2017.00506 DOI: https://doi.org/10.3389/fcimb.2017.00506
Tirloni L., Reck J., Terra R.M., Martins J.R,Mulenga A., Sherman N.E., Fox J.W., Yates J.R., Termignoni C., Pinto A.F. & Vaz Ida S.Jr. 2014. Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PLoS One. 9(4): e94831. DOI: 10.1371/journal.pone.0094831 DOI: https://doi.org/10.1371/journal.pone.0094831
Tirloni L., Kim T.K., Coutinho M.L., Ali A., Seixas A, Termignoni C, Mulenga A. & da Silva Vaz I.Jr. 2016. The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship. Insect Biochemistry and Molecular Biology.71: 12-28. DOI: 10.1016/j.ibmb.2016.01.004 DOI: https://doi.org/10.1016/j.ibmb.2016.01.004
Tirloni L., Kim T.K., Pinto A.F.M., Yates J.R., da Silva Vaz I.Jr. & Mulenga. 2017. A. Tick-Host Range Adaptation: Changes in Protein Profiles in Unfed Adult Ixodes scapularis and Amblyomma americanum Saliva Stimulated to Feed on Different Hosts. Frontier in Cellular and Infectious Microbiology. 7: 517. DOI: 10.3389/fcimb.2017.00517 DOI: https://doi.org/10.3389/fcimb.2017.00517
Trager W. 1939. Acquired immunity to ticks. The Journal of Parasitology. 25(1): 57-81. DOI: 10.2307/3272160 DOI: https://doi.org/10.2307/3272160
Trimnell A.R., Davies G.M., Lissina O., Hails R.S. & Nuttall P.A. 2005. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine. 23(34): 4329-41. DOI: 10.1016/j.vaccine.2005.03.041 DOI: https://doi.org/10.1016/j.vaccine.2005.03.041
Tufts D.M., VanAcker M.C., Fernandez M.P., DeNicola A., Egizi A. & Diuk-Wasser M.A. 2019. Distribution, host-seeking phenology, and host and habitat associations of Haemaphysalis longicornis ticks, Staten Island, New York, USA. Emerging Infectious Diseases. 25(4): 792. DOI: 10.3201/eid2504.181541 DOI: https://doi.org/10.3201/eid2504.181541
van den Broek A.H., Huntley J.F., MacHell J., Taylor M., Bates P., Groves B. & Miller H.R. 2000. Cutaneous and systemic responses during primary and challenge infestations of sheep with the sheep scab mite, Psoroptes ovis. Parasite Immunology. 22(8): 407-14. DOI: 10.1046/j.1365-3024.2000.00318.x DOI: https://doi.org/10.1046/j.1365-3024.2000.00318.x
van der Heijden K.M., Szabó M.P., Egami M.I., Pereira M.C. & Matushima E.R. 2005. Histopathology of tick-bite lesions in naturally infested capybaras (Hydrochoerus hydrochaeris) in Brazil. Experimental and Applied Acarology. 37(3-4): 245-55. DOI: 10.1007/s10493-005-4155-5 DOI: https://doi.org/10.1007/s10493-005-4155-5
Vasconcelos C. O., Coêlho Z.C. B., Chaves C.D. S., Teixeira C.R., Pompeu M.M.L. & Teixeira M.J. 2014. Distinct cellular migration induced by Leishmania infantum chagasi and saliva from Lutzomyia longipalpis in a hemorrhagic pool model. Revista do Instituto de Medicina Tropical de São Paulo. 56(1): 21-27. DOI: https: 10.1590/S0036-46652014000100003 DOI: https://doi.org/10.1590/S0036-46652014000100003
Veríssimo C. J., Bechara G. H. Mukai L. S. Otsuk I. P. & Pozzi Arcaro J. R. 2008. Mast cell counts correlate with Rhipicephalus (Boophilus) microplus tick load in different cattle breeds. Brazilian Journal of Veterinary. Pathology. 1: 81–87.
Veronez V.A., de Castro M.B., Bechara G.H. & Szabó M.P. 2010. Histopathology of Rhipicephalus sanguineus (Acari: Ixodidae) ticks fed on resistant hosts. Experimental and Applied Acarology. 50(2): 151-61. DOI: 10.1007/s10493-009-9286-7 DOI: https://doi.org/10.1007/s10493-009-9286-7
Willadsen P., Riding G.A., McKenna R.V., Kemp D.H., Tellam R.L., Nielsen J.N., Lahnstein J., Cobon G.S. & Gough J.M. 1989. Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. The Journal of Immunology. 143(4): 1346-51. DOI: 10.4049/jimmunol.143.4.1346 DOI: https://doi.org/10.4049/jimmunol.143.4.1346
Wada T., Ishiwata K., KosekiH., Ishikura T., Ugajin T., Ohnuma N. & Karasuyama H. 2010. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. The Journal of Clinical Investigation. 120(8): 2867-2875. DOI: 10.1172/JCI42680. DOI: https://doi.org/10.1172/JCI42680
Walker A.R. & Fletcher J.D. 1986. Histological study of the attachment sites of adult Rhipicephalus appendiculatus on rabbits and cattle. International Journal for Parasitology. 16(4): 399-413. DOI: 10.1016/0020-7519(86)90121-9 DOI: https://doi.org/10.1016/0020-7519(86)90121-9
Walton S.F., Beroukas D., Roberts-Thomson P. & Currie B.J. 2008. New insights into disease pathogenesis in crusted (Norwegian) scabies: the skin immune response in crusted scabies. British Journal of Dermatology. 158(6): 1247-55. DOI: 10.1111/j.1365-2133.2008.08541.x DOI: https://doi.org/10.1111/j.1365-2133.2008.08541.x
Wikel S. 2013. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Frontiers in Microbiology. 4: 337. DOI: 10.3389/fmicb.2013.00337 DOI: https://doi.org/10.3389/fmicb.2013.00337
Wikel S. K. 1982. Histamine content of tick attachment sites and the effects of H1 and H2 histamine antagonists on the expression of resistance. Annals of Tropical Medicine & Parasitology. 76(2): 179-185. DOI: 10.1080/00034983.1982.11687525 DOI: https://doi.org/10.1080/00034983.1982.11687525
Xu Z., Lin Z., Wei N., Di Q., Cao J., Zhou Y.& Zhou J. 2019. Immunomodulatory effects of Rhipicephalus haemaphysaloides serpin RHS2 on host immune responses. Parasites & Vectors. 12(1): 1-13. DOI: 10.1186/s13071-019-3607-4 DOI: https://doi.org/10.1186/s13071-019-3607-4
Yoshikawa S., Miyake K., Kamiya A. & Karasuyama H. 2021. The role of basophils in acquired protective immunity to tick infestation. Parasite Immunology. 43(5): e12804. DOI: 10.1111/pim.12804 DOI: https://doi.org/10.1111/pim.12804
Zaheer T., Ali M.M., Abbas R.Z., Atta K., Amjad I., Suleman A., Khalid Z. & Aqib A.I. 2022. Insights into Nanopesticides for Ticks: The Superbugs of Livestock. Oxidative Medicine and Cellular Longevity. 2022:7411481. DOI: 10.1155/2022/7411481 DOI: https://doi.org/10.1155/2022/7411481
Zhao G., Yu M., Cui Q.W., Zhou X., Zhang J.C., Li H.X., Qu K.X., Wang G.L. & Huang B.Z. 2013. Association of bovine Toll-like receptor 4 with tick infestation rates and blood histamine concentration. Genetic and Molecular Research. 12(3): 2783-93. DOI: 10.4238/2013.February.28.21 DOI: https://doi.org/10.4238/2013.February.28.21
Zhang X., Zhang B., Masoudi A., Wang X., Xue X., Li M., Xiao Q., Wang M., Liu J. & Wang H. 2020. Comprehensive analysis of protein expression levels and phosphorylation levels in host skin in response to tick (Haemaphysalis longicornis) bite. Journal of Proteomics. 226: 103898. DOI: 10.1016/j.jprot.2020.103898 DOI: https://doi.org/10.1016/j.jprot.2020.103898
Zhou J., Gong H., Zhou Y., Xuan X. & Fujisaki K. 2006. Identification of a glycine-rich protein from the tick Rhipicephalus haemaphysaloides and evaluation of its vaccine potential against tick feeding. Parasitology Research. 100(1): 77-84. DOI: 10.1007/s00436-006-0243-7 DOI: https://doi.org/10.1007/s00436-006-0243-7
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Benvindo Capela João, Luís Fernando Parizi, Jinlin Zhou, Satoru Konnai, Carlos Termignonni, Itabajara da Silva Vaz Júnior

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides open access to all of its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project and Directory of Open Access Journals.
We define open access journals as journals that use a funding model that does not charge readers or their institutions for access. From the BOAI definition of "open access" we take the right of users to "read, download, copy, distribute, print, search, or link to the full texts of these articles" as mandatory for a journal to be included in the directory.
La Red y Portal Iberoamericano de Revistas Científicas de Veterinaria de Libre Acceso reúne a las principales publicaciones científicas editadas en España, Portugal, Latino América y otros países del ámbito latino