Mastitis in Sheep - Procalcitonin Level as a Biomarker for Early Diagnosis
DOI:
https://doi.org/10.22456/1679-9216.141777Keywords:
sheep, haptoglobin, biomarker, diagnosis, clinical mastitis, subclinical mastitis, bacterial infectionAbstract
Background: Mastitis in sheep is significant due to its ability to cause both clinical and subclinical infections, being one of the most important diseases affecting dairy sheep worldwide. Infection caused by Staphylococcus aureus (S. aureus) is significant due to its ability to cause both clinical and subclinical mastitis. Procalcitonin (PCT) is a prohormone that increases in cases of bacterial inflammation, sepsis, and multiple organ failure. This study was conducted to determine changes in procalcitonin levels in subclinical and clinical mastitis in sheep.
Materials, Methods & Results: The study used 60 Ivesi breed sheep that were within the 1st 45 days of lactation and had not received any medication in the past 20 days. The sheep were divided into 3 groups based on clinical examination, somatic cell count (SCC), California mastitis test (CMT), and results from bacteriological isolation and identification. Group 1 (n = 20) consisted of healthy sheep; Group 2 (n = 20) consisted of sheep with subclinical mastitis, and Group 3 (n = 20) consisted of sheep with clinical mastitis. Blood samples were collected from the jugular vein and then centrifuged. Serum Amyloid A (SAA), Haptoglobin (Hp), and Procalcitonin (PCT) levels were assessed using commercial kits. The obtained data were analyzed using one-way ANOVA. Body temperature and leukocyte count were found to be higher in the clinical mastitis group compared to the other groups (P < 0.001). Somatic cell count (SCC), SAA, Hp, and PCT levels were lowest in the healthy group and highest in the clinical mastitis group (P < 0.001). Significant positive correlations were found between procalcitonin and body temperature, leukocyte count, SCC, SAA, and Hp (r = 0.897, P < 0.01; r = 0.940, P < 0.01; r = 0.985, P < 0.01; r = 0.928, P < 0.01; r = 0.956, P < 0.01, respectively).
Discussion: In our study, higher PCT levels were detected in sheep with clinical mastitis. This finding supports the theory that PCT increases in bacterial infections. The presence of infection triggers an inflammatory response, which increases procalcitonin (PCT) production. The increase in leukocyte count and PCT levels reflects the severity of the infection and the immune system's response. This parallel increase explains the positive correlation between PCT and leukocyte count observed in our study. Somatic cell count (SCC) is particularly indicative of mammary gland infections. During mastitis, somatic cells, especially leukocytes, increase in milk. This increase leads to elevated procalcitonin (PCT) levels as part of the inflammatory response. The high correlation between SCC and PCT indicates that both parameters increase in response to the presence and severity of infection. This parallel increase explains the positive correlation between SCC and PCT observed in our study. Serum amyloid A (SAA) is another indicator of the inflammatory response and is classified as an acute phase protein. Both SAA and PCT reflect the severity and extent of the inflammatory response. This parallel increase explains the positive correlation between SAA and PCT observed in our study. Haptoglobin (Hp) is another acute phase protein produced by the liver as part of the inflammatory response. Hp levels increase during infection or tissue damage. Similarly, procalcitonin (PCT) levels also rise in response to inflammatory cytokines. In our study, the positive correlation between Hp and PCT indicates that both biomarkers increase in response to the severity of inflammatory processes. In conclusion, procalcitonin may be a novel biomarker for diagnosing both subclinical and clinical mastitis in sheep.
Keywords: sheep, haptoglobin, procalcitonin, biomarker, diagnosis, clinical mastitis, subclinical mastitis, bacterial infection.
Downloads
References
Assicot M., Gendrel D., Carsin H., Raymond J., Guilbaud J. & Bohuon C. 1993. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet. 341(8844): 515-518. DOI: 10.1016/0140-6736(93)90277-N. DOI: https://doi.org/10.1016/0140-6736(93)90277-N
Battaglia F., Meucci V., Tognetti R., Bonelli F., Sgorbini M., Lubas G. & Intorre L. 2020. Procalcitonin Detection in Veterinary Species: Investigation of Commercial ELISA Kits. Animals. 10: 1511. DOI: 10.3390/ani10091511. DOI: https://doi.org/10.3390/ani10091511
Bergonier D., De Cremoux R., Rupp R., Lagriffoul G. & Berthelot X. 2003. Mastitis of dairy small ruminants. Veterinary Research. 34: 689-716. DOI: 10.1051/vetres:2003030. DOI: https://doi.org/10.1051/vetres:2003030
Bonelli F., Madrigali A., Sgorbini M., Meucci V., Battaglia F., Guélat-Brechbuehl M. & Meylan M. 2023. Case–Control study: Evaluation of plasma procalcitonin concentration as an indicator of inflammation in healthy and sick cows. Research in Veterinary Science. 155: 56-61. DOI: 10.1016/j.rvsc.2023.01.004. DOI: https://doi.org/10.1016/j.rvsc.2023.01.004
Eckersall P.D., Young F.J., McComb C., Hogarth C.J., Safi S., Fitzpatrick J.L. & McDonald T. 2001. Acute phase proteins in serum and milk from dairy cows with clinical mastitis. Veterinary Record. 148: 35-41. DOI: 10.1136/vr.148.2.35. DOI: https://doi.org/10.1136/vr.148.2.35
El-Deeb W.E., Elsohaby I., Fayez M., Mkrtchyan H., El-Etriby D. & ElGioushy M. 2020. Use of procalcitonin, neopterin, haptoglobin, serum amyloid a and proinflammatory cytokines in diagnosis and prognosis of bovine respiratory disease in feedlot calves under field conditions. Acta Tropica. 204: 105336. DOI: 10.1016/j.actatropica.2020.105336. DOI: https://doi.org/10.1016/j.actatropica.2020.105336
Fasulkov I., Karadev M., Vasilev N., Urumova V. & Mircheva T. 2014. Determination of plasma fibrinogen and haptoglobin, hematological and blood biochemical changes in Bulgarian local goats with experimentally induced Staphylococcus aureus mastitis. Turkish Journal of Veterinary & Animal Sciences. 38: 439-444. DOI: 10.3906/vet-1309-64. DOI: https://doi.org/10.3906/vet-1309-64
Furlaneto C.J. & Campa A. 2000. A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil. Biochemical and Biophysical Research Communications. 268: 405-408. DOI: 10.1006/bbrc.2000.2143. DOI: https://doi.org/10.1006/bbrc.2000.2143
Gabay C. & Kushner I. 1999. Acute-Phase Proteins and Other Systemic Responses to Inflammation. The New England Journal of Medicine. 340: 448-454. DOI: 10.1056/NEJM199902113400607. DOI: https://doi.org/10.1056/NEJM199902113400607
Gonzalo C., Tardàguila J.A., De La Fuente L.F. & San Primitivo F. 2004. Effects of selective and complete dry therapy on prevalence of intramammary infection and on milk yield in the subsequent lactation in dairy ewes. Journal of Dairy Research. 71: 33-38. DOI: 10.1017/S0022029903006526. DOI: https://doi.org/10.1017/S0022029903006526
He R., Sang H. & Ye R.D. 2003. Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL 1/LXA4R. Blood. 101: 1572-1581. DOI: 10.1182/blood-2002-05-1431. DOI: https://doi.org/10.1182/blood-2002-05-1431
Huntoon K.M., Wang Y., Eppolito C.A., Barbour K.W., Berger F.G., Shrikant P.A. & Baumann H. 2008. The acute phase protein haptoglobin regulates host immunity. Journal of Leukocyte Biology. 84(1): 170-181. DOI: 10.1189/jlb.0208100. DOI: https://doi.org/10.1189/jlb.0208100
Jacobsen S., Niewold T.A., Kornalijnslijper E., Toussaint M.J.M. & Gruys E. 2005. Kinetics of local and systemic isoforms of serum amyloid A in bovine mastitic milk. Veterinary Immunology and Immunopathology. 104: 21-31. DOI: 10.1016/j.vetimm.2004.09.031. DOI: https://doi.org/10.1016/j.vetimm.2004.09.031
Katsafadou A.I., Politis A.P., Mavrogianni V.S., Barbagianni M.S., Vasileiou N.G. Fthenakis G.C. & Fragkou I.A. 2019. Mammary Defences and Immunity against Mastitis in Sheep. Animals. 9(10): 726. DOI: 10.3390/ani9100726. DOI: https://doi.org/10.3390/ani9100726
Kiossis E., Brozos C.N., Petridou E. & Boscos C. 2007. Program for the control of subclinical mastitis in dairy Chios breed ewes during lactation. Small Ruminant Research. 73: 194-199. DOI: 10.1016/j.smallrumres.2007.01.021. DOI: https://doi.org/10.1016/j.smallrumres.2007.01.021
Kivaria F.M,. Noordhuizen J.P.T.M. & Nielen M. 2007. Interpretation of California mastitis test scores using Staphylococcus aureus culture results for screening of subclinical mastitis in low yielding smallholder dairy cows in the Dar es Salaam region of Tanzania. Preventive Veterinary Medicine. 78(3-4): 274-285. DOI: 10.1016/j.prevetmed.2006.10.011. DOI: https://doi.org/10.1016/j.prevetmed.2006.10.011
Leitner G., Chaffer M., Shamay A., Merin U., Saran A. & Silanikove N. 2004. Changes in milk composition as affected by subclinical mastitis in sheep. Journal of Dairy Science. 87: 46-52. DOI: 10.3168/jds.S0022-0302(04)73140-9. DOI: https://doi.org/10.3168/jds.S0022-0302(04)73140-9
Limper M., De Kruif M.D., Duits A.J., Brandjes D.P.M. & Van Gorp E.C.M. 2010. The diagnostic role of procalcitonin and other biomarkers in discriminating infectious from non-infectious fever. Journal of Infection. 60(6): 409-416. DOI: 10.1016/j.jinf.2010.03.016. DOI: https://doi.org/10.1016/j.jinf.2010.03.016
Markey B., Leonard F., Archambault M., Cullinane A. & Maguire D. 2013. Staphylococcus species. In: Markey B., Leonard F., Archambault M., Cullinane A. & Maguire D. (Eds). Clinical Veterinary Microbiology. 2nd edn. Saint Louis: Elsevier, pp.105-121.
Menzies P.I. & Ramanoon S.Z. 2001. Mastitis of sheep and goats. Veterinary Clinics of North America: Food Animal Practice. 17: 333-358. DOI: 10.1016/S0749-0720(15)30032-3. DOI: https://doi.org/10.1016/S0749-0720(15)30032-3
Miglio A., Moscati L., Scoccia E., Maresca C., Antognoni M.T. & Felici A. 2018. Reference Values for Serum Amyloid A, Haptoglobin, Lysozyme, Zinc and Iron in Healthy Lactating Lacaune Sheep. Acta Veterinaria Scandinavica. 60: 46. DOI: 10.1186/s13028-018-0400-x. DOI: https://doi.org/10.1186/s13028-018-0400-x
Neumann S., Siegert S. & Fischer A. 2023. Procalcitonin as an Endogenous Biomarker for Mastitis in Cows. Animals. 13(13): 2204. DOI: 10.3390/ani13132204. DOI: https://doi.org/10.3390/ani13132204
Orro T., Pohjanvirta T., Rikula U., Huovilainen A., Alasuutari S., Sihvonen L., Pelkonen S. & Soveri T. 2011. Acute phase protein changes in calves during an outbreak of respiratory disease caused by bovine respiratory syncytial virus. Comparative Immunology Microbiology and Infectious Diseases. 34: 23-29. DOI: 10.1016/j.cimid.2009.10.005. DOI: https://doi.org/10.1016/j.cimid.2009.10.005
Pomorska-Mól G. 2010. Białka ostrej fazy w weterynarii: Przydatno´s´c w diagnostyce i monitoringu stanu zdrowia. Medycyna Weterynaryjna. 66(12): 822-826.
Reinhart K., Karzai W. & Meisner M. 2000. Procalcitonin as a marker of the systemic inflammatory response to infection. Intensive Care Medicine. 26: 1193-1200. DOI: 10.1007/s001340000624. DOI: https://doi.org/10.1007/s001340000624
Sala G., Orsetti C., Meucci V., De Marchi L., Sgorbini M. & Bonelli F. 2023. Case–control study: endogenous procalcitonin and protein carbonylated content as a potential biomarker of subclinical mastitis in dairy cows. Veterinary Sciences. 10(12): 670. DOI: 10.3390/vetsci10120670. DOI: https://doi.org/10.3390/vetsci10120670
Schneider H.G. & Lam Q.T. 2007. Procalcitonin for the clinical laboratory: A review. Pathology. 39: 383-390. DOI: 10.1080/00313020701444564. DOI: https://doi.org/10.1080/00313020701444564
Schulthess B., Brodner K., Bloemberg G.V., Zbinden R., Böttger E.C. & Hombach M. 2013. Identification of Gram-positive cocci by use of matrix-assisted laser desorption ionization–time of flight mass spectrometry: comparison of different preparation methods and implementation of a practical algorithm for routine diagnostics. Journal of clinical microbiology. 51(6): 1834-1840. DOI: 10.1128/jcm.02654-12. DOI: https://doi.org/10.1128/JCM.02654-12
Selvaggi M., D'Alessandro A.G. & Dario C. 2017. Environmental and genetic factors affecting milk yield and quality in three Italian sheep breeds. Journal of Dairy Science. 84(1): 27-31. DOI: 10.1017/S0022029916000765. DOI: https://doi.org/10.1017/S0022029916000765
Shiferaw B., Bekele E., Kumar K., Boutin A. & Frieri M. 2016. The role of procalcitonin as a biomarker in sepsis. Journal of Infectious Diseases and Epidemiology. 2(006): 10-23937. DOI:10.23937/2474-3658/1510006. DOI: https://doi.org/10.23937/2474-3658/1510006
Velissaris D., Zareifopoulos N., Lagadinou M., Platanaki C., Tsiotsios K., Stavridis E. L. & Karamouzos V. 2021. Procalcitonin and sepsis in the Emergency Department: An update. European Review for Medical and Pharmacological Sciences. 25: 466-479. DOI: 10.26355/eurrev_202101_24416.
Wu F., Hou X.Q., Sun R.R. & Cui X.J. 2019. The predictive value of joint detection of serum amyloid protein A, PCT, and Hs-CRP in the diagnosis and efficacy of neonatal septicemia. European Review for Medical and Pharmacological Sciences. 23(13): 5904-5911. DOI: 10.26355/eurrev_201907_18334.
Yu J., Tien N., Liu Y.C., Cho D.Y., Chen J.W., Tsai Y.T. & Chen C.J. 2022. Rapid identification of methicillin-resistant Staphylococcus aureus using MALDI-TOF MS and machine learning from over 20,000 clinical isolates. Microbiology Spectrum. 10: e0048322. DOI: 10.1128/spectrum.00483-22. DOI: https://doi.org/10.1128/spectrum.00483-22
Zafalon L.F., Sanatna R.C.M., Pilon L.E. & Fim Jr. G.A. 2016. Diagnosis of Subclinical Mastitis in Santa Inês and Morada Nova Sheep in Southeastern Brazil. Tropical Animal Health and Production. 48: 967-972. DOI: 10.1007/s11250-016-1046-1. DOI: https://doi.org/10.1007/s11250-016-1046-1
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tuğra Akkuş, Ömer Yaprakci, Mahmut Niyazi Mogulkoç, Mehmet Ekici, Ali Coşkun Demirtas , Hüseyin Ates

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides open access to all of its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project and Directory of Open Access Journals.
We define open access journals as journals that use a funding model that does not charge readers or their institutions for access. From the BOAI definition of "open access" we take the right of users to "read, download, copy, distribute, print, search, or link to the full texts of these articles" as mandatory for a journal to be included in the directory.
La Red y Portal Iberoamericano de Revistas Científicas de Veterinaria de Libre Acceso reúne a las principales publicaciones científicas editadas en España, Portugal, Latino América y otros países del ámbito latino