Canine Parvoviral Enteritis - The Role of MMP-9 and TIMP-1 in the Pathogenesis of Intestinal Inflammation

Authors

  • Mehmet Önder Karayiğit Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana, Turkey. https://orcid.org/0000-0002-7958-180X
  • Ahmet Aydoğan Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana, Turkey. https://orcid.org/0000-0002-7958-180X
  • Mehmet Halıgür Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana, Turkey. https://orcid.org/0000-0002-7958-180X
  • Onur Başbuğ Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Turkey.
  • Özhan Karataş Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Turkey.

DOI:

https://doi.org/10.22456/1679-9216.141400

Keywords:

dog, viral infection, metalloproteinase activity, MMP-9, parvoviral enteritis, TIMP-1

Abstract

Background: Canine parvoviral enteritis is a highly contagious infection in the intestines caused great morbidity and mortality in untreated dogs younger than 6 months. Matrix metalloproteinases consist of zinc- and calcium-dependent extracellular matrix-degrading endopeptidases that are tightly controlled by endogenous metalloproteinase tissue inhibitors. Canine parvoviral enteritis is common in Turkey. The aim of this study was to examine the expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in natural canine parvoviral enteritis infection of 25 dogs diagnosed with parvoviral enteritis by clinical tests and histopathology. 

Materials, Methods & Results: The study material consists of dog’s small intestine, which was brought to Cumhuriyet University Faculty of Veterinary Medicine pathology department for necropsy and diagnosed with parvoviral enteritis. This investigation was suported by the Comission of Scientific Research Projects of Cumhuriyet University (Project No: V-086). For the study, sections of 5 μm were taken from small intestine blocks consisting of duodenum, jejunum and ileum, fixed in 10% buffered formalin solution and embedded in paraffin, and stained with hematoxylin-eosin and MMP-9 and TIMP-1 antibodies using immunohistochemical procedure. On histopathology, shedding and blunting of the villi epithelium, severe mononuclear inflammation in the lamina propria and locally enlarged crypts with lymphocytolysis in peyer's patches were noted in the ileum. Immunohistochemically, strong expression for MMP-9 and moderate expression for TIMP-1 were observed in the crypt epithelium and inflammatory cells in the small intestines of infected animals compared controls (P < 0.001). 

Discussion: In the present study, immunohistochemical expressions of MMP-9 and TIMP-1 in intestinal tissues were investigated in canine parvoviral enteritis, which is an important viral disease in veterinary medicine. Statistically strong expression for MMP-9 and moderate expression for TIMP-1 were observed in the crypt epithelium and inflammatory cells in the small intestines of infected animals. As a result, high levels of MMP-9 may be one of the factors that trigger the inflammatory process in the disease. It is thought that the increase in MMP-9 may be directly proportional to the severity of inflammation in the tissue. In addition, it is suggested that the level of its inhibitor, TIMP-1, may increase at similar rates in response to this increase in MMP-9 levels. As a result, severe increases MMP-9 and TIMP-1 may indicate the presence of inflammation of similar severity in that tissue. Immunohistochemical data obtained from the study showed that MMP-9 expression was found to increase in inflammatory and degenerative changes in parvoviral enteritis. This may have triggered extracellular matrix degradation, intestinal permeability, degenerative changes and inflammation. Abnormal increase in MMP-9 levels is thought to contribute significantly to the intestinal lesions in parvoviral enteritis. It was observed that TIMP-1 levels increased similarly in response to this increase but weaker expression of TIMP-1 as its inhibitor in canine parvoviral enteritis may determine the development of the disease. In this regard, matrix metalloproteinases appear to be potential therapeutic targets in canine parvoviral enteritis, and the use of their inhibitors can significantly reduce disease progression. However, current findings need to be confirmed by more detailed studies in the future.

Keywords: dog, viral infection, metalloproteinase activity, MMP-9, parvoviral enteritis, TIMP-1.

Downloads

Download data is not yet available.

References

Amalinei C., Carunt I.D., Giusca S.E. & Balan R.A. 2010. Matrix metalloproteinases involvement in pathologic conditions. Romanian Journal of Morphology and Embryology. 51(2): 215-228. PMID:20495735.

Atkinson B.K., Goddard A., Engelbrecht M., Pretorius S. & Pazzi P. 2022. Circulating markers of endothelial activation in canine parvoviral enteritis. Journal of South African Veterinary Association. 93(1): 2-7. PMID:35950803. DOI: https://doi.org/10.36303/JSAVA.2022.93.1.496

Bailey C.J., Hembry R.M., Alexander A., Irving M.H., Grant M.E. & Shuttleworth C.A. 1994. Distribution of the matrix metalloproteinases stromelysin, gelatinasesA and B, and collagenase in Crohn’s disease and normal intestine. Journal of Clinical Pathology. 7(2): 113-116. DOI: 10.1136/jcp.47.2.113. DOI: https://doi.org/10.1136/jcp.47.2.113

Birkedal-Hansen H., Moore W.G., Bodden M.K., Windsor L.J., Birkedal-Hansen B., DeCarlo A. & Engler J.A. 1993. Matrixmetalloproteinases: a review. Critical Review in Oral Biology & Medicine. 4(2): 197-250. DOI: 10.1177/10454411930040020401. DOI: https://doi.org/10.1177/10454411930040020401

Brinckerhoff C.E. & Matrisian L.M. 2002. Matrixmetalloproteinases: a tail of a frog that became a prince. Nature Reviews Molecular Cell Biology. 3(3): 207-214. DOI: 10.1038/nrm763. DOI: https://doi.org/10.1038/nrm763

Camilleri M. 2019. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 68(8): 1516-1526. DOI: 10.1136/gutjnl-2019-318427. DOI: https://doi.org/10.1136/gutjnl-2019-318427

Cabral-Pacheco G.A., Garza-Veloz I., Castruita-De la Rosa C., Ramirez-Acuña J.M., Perez-Romero B.A., Guerrero-Rodriguez J.F., Martinez-Avila N. & Martinez-Fierro M.L. 2020. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. International Journal of Molecular Sciences. 21(24): 9739. DOI: 10.3390/ijms21249739. DOI: https://doi.org/10.3390/ijms21249739

Capaldo C.T., Powell D.N. & Kalman D. 2017. Layered defense: how mucus and tight junctions seal the intestinal barrier. Journal of Molecular Medicine. 95(9): 927-934. DOI: 10.1007/s00109-017-1557-x DOI: https://doi.org/10.1007/s00109-017-1557-x

Chen C., Guo X., Liang H., Ning B., Li J., Zhong S., Liu X. & Li L. 2019. Determination of parvovirus antibodies in canine serum using magnetic bead-based chemiluminescence immunoassay. Biotechnology and Applied Biochemistry. 66(4): 586-590. DOI: 10.1002/bab.1758. DOI: https://doi.org/10.1002/bab.1758

David M.R., Andrew J.S., Steve P.H., Vong L., Gareau M.G., Kumar S.A., Johnson-Henry K.C. & Sherman P.M. 2012. Matrix metalloproteinase 9 contributes to intestinal microbe homeostasis in a model of infectious colitis. BMC Microbiology. 13(12): 105. DOI: 10.1186/1471-2180-12-105. DOI: https://doi.org/10.1186/1471-2180-12-105

Groschwitz K.R. & Hogan S.P. 2009. Intestinal barrier function: molecular regulation and disease pathogenesis. Journal of Allergy and Clinical Immunology. 124(1): 3-20. DOI: 10.1016/j.jaci.2009.05.038. DOI: https://doi.org/10.1016/j.jaci.2009.05.038

Hayden D.M., Forsyth C. & Keshavarzian A. 2010. The role of matrix metalloproteinases in intestinal epithelial wound healing during normal and inflammatory states. Journal of Surgical Research. 168(2): 315-324. DOI: 10.1016/j.jss.2010.03.002. DOI: https://doi.org/10.1016/j.jss.2010.03.002

Heimesaat M.M., Dunay I.R., Fuchs D., Trautmann D., Fischer A., Kühl A.A., Loddenkemper C., Siegmund B., Batra A., Bereswill S. & Liesenfeld O. 2011. The distinct roles of MMP-2 and MMP-9 in acute DSS colitis. European Jorrnal of Microbiology and Immunology. 1(4): 302-310. DOI: 10.1556/EuJMI.1.2011.4.6. DOI: https://doi.org/10.1556/EuJMI.1.2011.4.6

Jakubowska K., Pryczynicz A., Iwanowicz P., Niewinski A., Maciorkowska E., Hapanowicz J., Jagodzinska D., Kemona A. & Guzinska-Ustymowiczi K. 2016. Expressions of Matrix Metalloproteinases (MMP-2, MMP-7, and MMP-9) and Their Inhibitors (TIMP-1, TIMP-2) in Inflammatory Bowel Diseases. Gastroenterology Research and Practice. 2016: 2456179. DOI: 10.1155/2016/2456179. DOI: https://doi.org/10.1155/2016/2456179

Lakatos G., Hritz I., Varga M.Z., Juhasz M., Miheller P., Cierny G., Tulassay G. & Herszényi L. 2012. The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Digestive Disease. 30(3): 289-295. DOI: 10.1159/000336995. DOI: https://doi.org/10.1159/000336995

Lee B., Moon K.M. & Kim C.Y. 2018. Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals. Journal of Immunology Research. 2018: 2645465. DOI: 10.1155/2018/2645465. DOI: https://doi.org/10.1155/2018/2645465

Li Z., Wei J., Chen B., Wang Y., Yang S., Wu K. & Meng X. 2023. The Role of MMP-9 and MMP-9 Inhibition in Different Types of Thyroid Carcinoma. Molecules. 28(9): 3705. DOI: 10.3390/molecules28093705. DOI: https://doi.org/10.3390/molecules28093705

Liu T.H., Wei Y., Dong X.L., Chen P., Wang L., Yang X., Lu C. & Pan M.H. 2022. The dual roles of three MMPs and TIMP in innate immunity and metamorphosis in the silkworm, Bombyx mori. The FEBS Journal. 289(10): 2828-2846. DOI: 10.1111/febs.16313. DOI: https://doi.org/10.1111/febs.16313

Mazzaferro E.M. 2020. Update on Canine Parvoviral Enteritis. Veterinary Clinics of North America: Small Animal Practice. 50: 1307-1325. DOI: 10.1016/j.cvsm.2020.07.008. DOI: https://doi.org/10.1016/j.cvsm.2020.07.008

Munoz M., Heimesaat M.M., Danker K., Struck D., Lohmann U., Plickert R., Bereswill S., Fischer A., Dunay I.R., Wolk K., Loddenkemper C., Hans-Willi K., Libert C., Lund L.R., Frey O., Hölscher C., Iwakura Y., Ghilardi N., Ouyang W., Kamradt T., Sabat R. & Liesenfeld O. 2009. Interleukin (IL)-23 mediates Toxoplasma gondii induced immunopathology in the intestinal via matrixmetalloproteinase- 2 and IL-22 but independent of IL-17. Journal of Experimental Medicine. 206(13): 3047-3059. DOI: 10.1084/jem.20090900. DOI: https://doi.org/10.1084/jem.20090900

O’Sullivan S., Gilmer J.F. & Medina C. 2015. Matrix metalloproteinases in inflammatory bowel disease: anupdate. Mediators of Inflammation. 2015: 964131. DOI: 10.1155/2015/964131. DOI: https://doi.org/10.1155/2015/964131

Salmela M.T., MacDonald T.T., Black D., Irvine B., Zhuma T., Saarialho-Kere U. & Pender S.L.F. 2002. Upregulation of matrix metalloproteinases in a model of T cell mediated tissue injury in the intestinal: analysis by gene array and in situ hybridization. Gut. 5(4): 540-547. DOI: 10.1136/gut.51.4.540. DOI: https://doi.org/10.1136/gut.51.4.540

Schmitt R., Tscheuschler A., Laschinski P., Uffelmann X., Discher P., Fuchs J., Remi P. & Kari F.A. 2020. A Potential key mechanism in ascending aortic aneurysm development: Detection of a linear relationship between MMP-14/TIMP-2 ratio and active MMP-2. Plos one. 14(2): e0212859. DOI: 10.1371/journal.pone.0212859. DOI: https://doi.org/10.1371/journal.pone.0212859

Turk J., Miller M., Brown T., Fales W., Fischer C., Gosser H., Nelson S., Shaw D. & Solorzano R. 1990. Coliform septicemia and pulmonary disease associated with canine parvoviral enteritis: 88 cases (1987-1988). Journal of American Veterinary Medical Association. 196(5): 771-773. PMID: 2155191. DOI: https://doi.org/10.2460/javma.1990.196.05.771

William C.S., Carole L.W. & Yolanda S.L.B. 2014. Matrix metalloproteinases as modulators of inflammation and innate immunity. Immunology. 4(8): 617-629. DOI: 10.1038/nri1418. DOI: https://doi.org/10.1038/nri1418

Additional Files

Published

2024-10-30

How to Cite

Karayiğit, M. Önder, Aydoğan, A., Halıgür, M., Başbuğ, O., & Karataş, Özhan. (2024). Canine Parvoviral Enteritis - The Role of MMP-9 and TIMP-1 in the Pathogenesis of Intestinal Inflammation. Acta Scientiae Veterinariae, 52(1). https://doi.org/10.22456/1679-9216.141400

Issue

Section

Articles