Detection of BoHV-1 - Comparative Evaluation of Real Time PCR, Real Time LAMP and Subtyping

Autores

  • Hatice Pelin selçuk university https://orcid.org/0000-0001-9160-1255
  • Oya Bulut Department of Virology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey.

DOI:

https://doi.org/10.22456/1679-9216.139938

Palavras-chave:

BoHV-1, molecular characterization, Real-Time LAMP, Real-Time PCR

Resumo

Background: Bovine Herpesvirus 1 (BoHV-1) is an important bovine pathogen found throughout the world. It causes a subclinical, mild, or severe disease. It has different types of clinical manifestations in respiratory, genital, ocular, and encephalomyelitis forms. The aim of this study was to perform comparative diagnosis of BoHV-1 by Real Time PCR and Real Time LAMP and molecular characterization of BoHV-1. 

Materials, Methods & Results: In this study, BoHV-1 was investigated in nasal swab samples from cattle with clinical signs of respiratory problems using Real-Time PCR (Polymerase Chain Reaction) methods and the Real-Time Loop-Mediated Isothermal Amplification (LAMP) method, which is a cheap, fast, and reliable technique. BoHV-1 positive samples in both tests were cultured in the Madin-Darby Bovine Kidney (MDBK) cell culture. Conventional PCR was performed for the molecular characterization of the isolated samples. Eight (5.33%) nasal swab samples used in the study were found to be positive by the Real-Time PCR test, while 13 (8.66%) samples were found to be positive by the LAMP test. The results of the McNemar test showed that the difference between Real-Time PCR and Real-Time LAMP tests was not significant (P ˃ 0.05). BoHV-1 was isolated from 3 of 8 samples cultured in cell culture. In the sequence analysis of these three samples after PCR, molecular characterization of the isolates was performed, and they were found to belong to the BoHV-1.1 subtype. These findings indicated that the LAMP method can be used in the rapid diagnosis of BoHV-1 infection, and the BoHV-1.1 subtype should be considered in the fight against infection.

Discussion: Many studies have shown that PCR tests are more sensitive than virus isolation (VI). Similarly, in this study, only 3 of the 8 samples found to be positive by Real-Time PCR could be isolated in cell culture. The results of both tests differed in that PCR can detect any viral RNA (infectious whole virus, unpackaged viral genome, even genome strand or subgenomic fragments) whereas VI detects properly packaged and live virus particles. Although no statistical difference was recorded between Real-Time PCR and Real-Time LAMP in this study, a higher rate of positive samples was detected with LAMP, which matched the findings of other reports. These results showed that LAMP is a more resistant to PCR inhibitors and more sensitive test and due to the use of 6 different primers. BoHV-1 continues to cause significant economic losses in the cattle industry around the world. Therefore, a practical, fast, and cost-effective diagnostic tool needs to be used to identify the infection in the affected areas and control it at the earliest. In this context, the LAMP test is a promising method at the field level for the diagnosis and control of BoHV-1 infection and other diseases, as mentioned in other studies. Phylogenetic analysis was performed on 3 swab samples isolated in cell culture, after they were tested by conventional PCR with primers specific to the BoHV-1 gC region, in parallel with other reports. The isolate sequence was aligned using MUSCLE, with the sequences of other isolates obtained by a comparative analysis and multiple sequence alignment was performed in the AliView software. This analysis included the nucleotide sequences of 54 different isolates. All ambiguous locations were removed for each sequence. There were 312 nucleotides in the final dataset. Evolutionary analysis was performed using the Tamura 3-parameter model with the Neighbor-Joining algorithm in MEGA 11; in total, 1,000 iterations (bootstrap) were performed. Similar to the findings of other studies conducted in Turkey, it was determined in this study that the more common BoHV-1 strain in circulation was the BoHV-1.1 strain.

Keywords: BoHV-1, molecular characterization, Real-Time LAMP, Real-Time PCR.

Downloads

Não há dados estatísticos.

Referências

Abril C., Engels M., Liman A., Hilbe M., Albini S., Franchini M. & Ackermann M. 2004. Both viral and host factors contribute to neurovirulence of bovine herpesviruses 1 and 5 in interferon receptor-deficient mice. Virology Journal. 78(7): 3644-3653. DOI: 10.1128/JVI.78.7.3644–3653.2004. DOI: https://doi.org/10.1128/JVI.78.7.3644-3653.2004

Ackermann M. & Engels M. 2006. Pro and contra IBR-eradication. Veterinary Microbiology. 113(3-4): 293-302. DOI:10.1016/j.vetmic.2005.11.043. DOI: https://doi.org/10.1016/j.vetmic.2005.11.043

Albayrak H., Tamer C., Ozan E., Müftüoğlu B., Kadi H., Doğan F., Cağırgan A., Elhag A., Akman A. & Kuruçay H.N. 2020. Molecular identification and phylogeny of bovine herpesvirus-1 (BoHV-1) from cattle associated with respiratory disorders and death in Turkey. Medycyna Weterynaryjna. 76(6): 358-361. DOI: dx.doi.org/10.21521/mw.6393. DOI: https://doi.org/10.21521/mw.6393

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W. & Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17): 3389-3902. DOI: 10.1093/nar/25.17.3389. DOI: https://doi.org/10.1093/nar/25.17.3389

Bhat V., Chavan P., Khattry N. & Gupta S. 2021. Dynamics of viral RNA load, virus culture, seroconversion & infectivity in COVID-19 patients: Implications on isolation policy. Indian Journal of Medical Research. 153(5): 585. DOI: 10.4103/ijmr.IJMR_3564_20. DOI: https://doi.org/10.4103/ijmr.IJMR_3564_20

Biswas S., Bandyopadhyay S., Dimri U. & Patra P. 2013. Bovine herpesvirus-1 (BHV-1)–a re-emerging concern in livestock: a revisit to its biology, epidemiology, diagnosis, and prophylaxis. The Veterinary Quarterly. 33(2): 68-81. DOI: 10.1080/01652176.2013.799301. DOI: https://doi.org/10.1080/01652176.2013.799301

Bulut O. & Yavru S. 2004. Seroepidemiology and Comparative Diagnosis of Bovine Herpesvirus Type-1 (BHV-1) in Bulls using Enzyme-Linked Immunosorbent Assay (ELISA), Polymerase Chain Reaction (PCR) and Virus Isolation (VI). Eurasian Journal of Veterinary Sciences. 20(4): 61-70.

Chandranaik B.M., Shivaraj C., Sanjeev K. & Renukaprasad C. 2010. Isolation of BHV-1 from bovine semen and application of real time isolation of BHV-1 from bovine semen and application of real time PCR for diagnosis of IBR/IPV from clinical samples. Veterinarski Arhiv. 80(4): 467-475.

Chowdhury S. 1997. Fine mapping of bovine herpesvirus 1 (BHV-1) glycoprotein C neutralizing epitopes by type-specific monoclonal antibodies and synthetic peptides. Veterinary Microbiology. 58(2-4): 309-314. DOI: 10.1016/S0378-1135(97)00146-6. DOI: https://doi.org/10.1016/S0378-1135(97)00146-6

d’Offay J.M., Eberle R., Fulton R.W. & Kirkland P.D. 2016. Complete genomic sequence and comparative analysis of four genital and respiratory isolates of bovine herpesvirus subtype 1.2 b (BoHV-1.2 b), including the prototype virus strain K22. Archives of Virology. 161: 3269-3274. DOI 10.1007/s00705-016-3026-1. DOI: https://doi.org/10.1007/s00705-016-3026-1

Dağalp S.B., Farzani T.A., Doğan F., Alkan F. & Özkul A. 2020. Molecular and antigenic characterization of bovine herpesvirus type 1 (BoHV-1) strains from cattle with diverse clinical cases in Turkey. Tropical Animal Health and Production. 52: 555-564. DOI: /10.1007/s11250-019-02042-6. DOI: https://doi.org/10.1007/s11250-019-02042-6

Delhon G., Moraes M., Lu Z., Afonso C., Flores E., Weiblen R., Kutish G. & Rock D. 2003. Genome of bovine herpesvirus 5. Virology Journal. 77(19): 10339-10347. DOI: 10.1128/JVI.77.19.10339–10347.2003. DOI: https://doi.org/10.1128/JVI.77.19.10339-10347.2003

Dhama K., Karthik K., Chakraborty S., Tiwari R., Kapoor S., Kumar A. & Thomas P. 2014. Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review. Pakistan Journal of Biological Sciences. 17(2): 151-166. DOI: 10.3923/pjbs.2014.151.166. DOI: https://doi.org/10.3923/pjbs.2014.151.166

Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 32(5): 1792-1797. DOI: 10.1093/nar/gkh340. DOI: https://doi.org/10.1093/nar/gkh340

Elhassan A., Fadol M., Salih M. & El Hussein A. 2015. Bovine herpes virus-1 (BoHV-1) detection in dairy cattle with reproductive problems in Sudan. Journal of Advanced Veterinary and Animal Research. 2(2): 185-189. DOI: 10.5455/javar.2015.b81. DOI: https://doi.org/10.5455/javar.2015.b81

Engdawork A. & Aklilu H. 2024. Infectious bovine rhinotracheitis: Epidemiology, control, and impacts on livestock production and genetic resources. Veterinary Research Notes. 4(1): 1-9. DOI: 10.5455/vrn.2024.d35. DOI: https://doi.org/10.5455/vrn.2024.d35

Esteves P., Dellagostin O., Pinto L., Silva A., Spilki F., Ciacci-Zanella J., Hübner S., Puentes R., Maisonnave J. & Franco A. 2008. Phylogenetic comparison of the carboxy-terminal region of glycoprotein C (gC) of bovine herpesviruses (BoHV) 1.1, 1.2 and 5 from South America (SA). Virus Research. 131(1): 16-22. DOI: 10.1016/j.virusres.2007.08.004. DOI: https://doi.org/10.1016/j.virusres.2007.08.004

Guo J., Li Q. & Jones C. 2019. The bovine herpesvirus 1 regulatory proteins, bICP4 and bICP22, are expressed during the escape from latency. Journal of NeuroVirology. 25: 42-49. DOI: 10.1007/s13365-018-0684-7. DOI: https://doi.org/10.1007/s13365-018-0684-7

Hu S., Li M., Zhong L., Lu S., Liu Z., Pu J., Wen J. & Huang X. 2015. Development of reverse-transcription loop-mediated isothermal amplification assay for rapid detection and differentiation of dengue virus serotypes 1–4. BMC Microbiology. 15: 1-15. DOI: 10.1186/s12866-015-0595-1. DOI: https://doi.org/10.1186/s12866-015-0595-1

Irgashev A., Nurgaziev R., Nurmanov C., Asanova E. & Ishenbaeva S. 2023. Respiratory form of infectious rhinotracheitis: Analysis of immunomorphological reactions. Scientific Horizons. 26(10): 32-43. DOI: 10.48077/scihor10.2023.32. DOI: https://doi.org/10.48077/scihor10.2023.32

Iscaro C., Cambiotti V., Petrini S. & Feliziani F. 2021. Control programs for infectious bovine rhinotracheitis (IBR) in European countries: An overview. Animal Health Research Reviews. 22: 136-146. Health Research Reviews. 22: 136-146. DOI: 10.1017/S1466252321000116. DOI: https://doi.org/10.1017/S1466252321000116

Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformation. 30(22): 3276-3278. DOI: 10.1093/bioinformatics/btu531. DOI: https://doi.org/10.1093/bioinformatics/btu531

Mahajan V., Banga H., Deka D., Filia G. & Gupta A. 2013. Comparison of diagnostic tests for diagnosis of infectious bovine rhinotracheitis in natural cases of bovine abortion. Journal of Comparative Pathology. 149(4): 391-301. DOI: https://doi.org/10.1016/j.jcpa.2013.05.002

Mahdavi F., Mirjalali H., Niyyati M., Tabaei S.J.S., Shamloo A. & Aghdaei H.A. 2024. Design and evaluation of loop-mediated isothermal amplification for rapid detection of Enterocytozoon bieneusi. Food and Waterborne Parasitology. 35: 1-7. DOI: 10.1016/j.fawpar.2024.e00225. DOI: https://doi.org/10.1016/j.fawpar.2024.e00225

Metzler A., Matile H., Gassmann U., Engels M. & Wyler R. 1985. European isolates of bovine herpesvirus 1: a comparison of restriction endonuclease sites, polypeptides, and reactivity with monoclonal antibodies. Archives of Virology. 85: 57-69. DOI: https://doi.org/10.1007/BF01317006

Misra V., Babiuk L. & Darcel C. 1983. Analysis of bovine herpes virus-type 1 isolates by restriction endonuclease fingerprinting. Archives of Virology. 76: 341-354. DOI: https://doi.org/10.1007/BF01311201

Moeller J.R., Adaska R.B., Reynolds J. & Blanchard P.C. 2013. Systemic bovine herpesvirus 1 infections in neonatal dairy calves. Journal of Veterinary Diagnostic Investigation. 25(1): 136-141. DOI: 10.1177/1040638712470448. DOI: https://doi.org/10.1177/1040638712470448

Nguyen T., Vinayaka A.C., Linh Q.T., Andreasen S.Z., Golabi M., Bang D.D. &Wolff A. 2023. PATHPOD–A loop-mediated isothermal amplification (LAMP)-based point-of-care system for rapid clinical detection of SARS-CoV-2 in hospitals in Denmark. Sensors and Actuators B: Chemical. 392: 1-13. DOI: https://doi.org/10.1016/j.snb.2023.134085. DOI: https://doi.org/10.1016/j.snb.2023.134085

Notomi T., Taguchi F., Kanda H., Minekawa H., Itamura S., Odagiri T. & Tashiro M. 2004. RT-LAMP method provides a simple, rapid and specific detection system for SARS-CoV RNA. In: Proceedings of the International Conference on SARS - One Year after the (First) Outbreak (Lübeck, Germany). pp.8-11.

O’Donoghue S., Earley B., Johnston D., McCabe M.S., Kim J.W., Taylor J.F. & Waters S.M. 2023. Whole blood transcriptome analysis in dairy calves experimentally challenged with bovine herpesvirus 1 (BoHV-1) and comparison to a bovine respiratory syncytial virus (BRSV) challenge. Frontiers in Genetics 14: 1-10. DOI: 10.3389/fgene.2023.1092877. DOI: https://doi.org/10.3389/fgene.2023.1092877

Pawar S., Meshram C., Singh N., Sonwane A., Saini M., Rautmare S., Muglikar D., Mishra B. & Gupta P. 2014. Rapid detection of bovine herpesvirus 1 in bovine semen by loop-mediated isothermal amplification (LAMP) assay. Archives of Virology. 159: 641-648. DOI: 10.1007/s00705-013-1869-2. DOI: https://doi.org/10.1007/s00705-013-1869-2

Rana S.K., Kota S., Samayam P., Rajan S. & Srinivasan V. 2011. Use of real-time polymerase chain reaction to detect bovine herpesvirus 1 in frozen cattle and buffalo semen in India. Veterinaria Italiana. 47(3): 313-322.

Reddy R., Putla B., Sarangi L., Rana S., Surendra K., Ponnanna N. & Sharma G. 2020. Shedding of bovine alphaherpesvirus-1 in bovine extended frozen semen in Indian semen stations: a longitudinal analysis. Theriogenology. 157: 467-471. DOI: 10.1016/j.theriogenology.2020.08.021. DOI: https://doi.org/10.1016/j.theriogenology.2020.08.021

Sarangi L., Polapally S., Rana S., Bahekar V., Surendra K., Reddy R., Raichur A., Ponnanna N. & Sharma G. 2020. Development and validation of duplex real-time PCR for simultaneous detection of Brucella and bovine alphaherpesvirus from clinical specimens. Veterinaria Italiana. 56(1): 35-41. DOI: 10.12834/VetIt.1728.9123.2.

Satbige A.S., Kuotsu K., Patil N., Kasaralikar V., Bijurkar R. & Sandeep H. 2018. Molecular detection of bovine herpes virus-1 (BHV-1) infection in cattle in organized and unorganized farm in Bidar, Karnataka. Journal of Entomology and Zoology Studies. 6(4): 1258-1260.

Socha W., Rola J., Urban-Chmiel R. & Żmudziński J.F. 2017. Application of loop-mediated isothermal amplification (LAMP) assays for the detection of bovine herpesvirus 1. Polish Journal of Veterinary Sciences. 20(3): 619-622. DOI: 10.1515/pjvs-2017-0078 DOI: https://doi.org/10.1515/pjvs-2017-0078

Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Molecular Biology and Evolution. 9(4): 678-687.

Tamura K., Stecher G. & Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution. 38(7): 3022-3027. DOI: 10.1093/molbev/msab120. DOI: https://doi.org/10.1093/molbev/msab120

Toker E.B. & Yeşilbağ K. 2021. Molecular characterization and comparison of diagnostic methods for bovine respiratory viruses (BPIV-3, BRSV, BVDV, and BoHV-1) in field samples in northwestern Turkey. Tropical Animal Health and Production. 53(79): 1-11. /10.1007/s11250-020-02489-y. DOI: https://doi.org/10.1007/s11250-020-02489-y

Toker E.B., Yeşilbağ K., Özer A., Kadiroğlu B. & Aytoğu G. 2022. High mortality rate of shipping fever cases in cattle caused by bovine herpesvirus type 1 (BoHV-1). Ankara Üniversitesi Veteriner Fakültesi. 69: 69-75. DOI: 10.33988/auvfd.834671 DOI: https://doi.org/10.33988/auvfd.834671

Traesel C.K., Silva M.S., Spilki F.R., Weiblen R. & Flores E.F. 2013. Nucleotide sequencing and phylogenetic analysis of the 3′ region of glycoprotein C gene of South American bovine herpesviruses 1 and 5. Research in Veterinary Science. 94(1): 178-185. DOI: https://doi.org/10.1016/j.rvsc.2012.07.032

Tuppurainen E.S., Venter E.H. & Coetzer J.A.W. 2005. The detection of lumpy skin disease virus in samples of experimentally infected cattle using different diagnostic techniques. Onderstepoort Journal of Veterinary Research. 72: 153-164. DOI: https://doi.org/10.4102/ojvr.v72i2.213

Wang H., Liu X., Zeng F., Zhang T., Lian Y., Wu M., Xiao L., Zhu Y., Zhang Y. & Chen M. 2019. Development of a real-time loop-mediated isothermal amplification assay for detection of porcine circovirus 3. BMC Veterinary Research. 15: 305. DOI: 10.1186/s12917-019-2037-z. DOI: https://doi.org/10.1186/s12917-019-2037-z

Wang J., O’Keefe J., Orr D., Loth L., Banks M., Wakeley P., West D., Card R., Ibata G. & Van Maanen K. 2007. Validation of a real-time PCR assay for the detection of bovine herpesvirus 1 in bovine semen. Journal of Virological Methods. 144(1-2): 103-108. DOI: 10.1016/j.jviromet.2007.04.002. DOI: https://doi.org/10.1016/j.jviromet.2007.04.002

Watzinger F., Ebner K. & Lion T. 2006. Detection and monitoring of virus infections by real-time PCR. Molecular Aspects of Medicine. 27(2-3): 254-298. DOI: 10.1016/j.mam.2005.12.001. DOI: https://doi.org/10.1016/j.mam.2005.12.001

Wernike K., Hoffmann B., Kalthoff D., König P. & Beer M. 2011. Development and validation of a triplex real-time PCR assay for the rapid detection and differentiation of wild-type and glycoprotein E-deleted vaccine strains of Bovine herpesvirus type 1. Journal of Virological Methods. 174(1-2): 77-84. DOI: 10.1016/j.jviromet.2011.03.028 DOI: https://doi.org/10.1016/j.jviromet.2011.03.028

World Organization for Animal Health. 2024. https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.04.11_IBR_IPV.pdf [accessed on March 11, 2024].

Arquivos adicionais

Publicado

2024-08-22

Como Citar

Hatice Pelin, & Oya Bulut. (2024). Detection of BoHV-1 - Comparative Evaluation of Real Time PCR, Real Time LAMP and Subtyping: . Acta Scientiae Veterinariae, 52(1). https://doi.org/10.22456/1679-9216.139938

Edição

Seção

Articles