Determination of the Minimum Alveolar Concentration (MAC) of Isoflurane and Sevoflurane in Callithrix penicillata

Authors

DOI:

https://doi.org/10.22456/1679-9216.132347

Keywords:

Callithrix penicillata, marmoset, isoflurane, sevoflurane, minimum alveolar concentration (MAC)

Abstract

Background: The minimum alveolar concentration (MAC) is a measure of quantitative anesthetic potency and has become the standard index for the evaluation and comparison of volatile anesthetics, in addition to guiding dose administration. Black-tufted marmosets (Callithrix penicillata) are primates present in the clinical and surgical routine of veterinary hospitals, as well as experimental models, especially in neuroscience. Few studies have evaluated the potency of the main volatile anesthetics in this species. This study aimed to determine the MAC of isoflurane and sevoflurane in C. penicillata using the up-and-down method and to evaluate the effects of these drugs on the quality of anesthetic induction, maintenance, and recovery.

Materials, Methods & Results: Twenty-four animals of undetermined age were used. All marmosets were healthy according to hematological and physical evaluation. The animals were randomly divided into 2 groups: ISOMAC and SEVOMAC. Each animal was induced to general anesthesia in an anesthetic box with oxygen (5 L/min) and sevoflurane at 7% in the SEVOMAC group or isoflurane at 5% in the ISOMAC. Upon reaching lateral decubitus, orotracheal intubation was performed. General anesthesia was maintained with isoflurane or sevoflurane diluted in oxygen (0.8 L/min) using a non-rebreathing delivery system under spontaneous ventilation. As defined in the pilot study, the first animal from ISOMAC started the maintenance of anesthesia with 2.6% isoflurane, while the first animal in SEVOMAC received 4% sevoflurane. After finishing the instrumentation to assess heart rate, respiratory rate, systolic blood pressure, pulse oximeter oxygen saturation, end-tidal carbon dioxide concentration, and rectal temperature, a 15-min wait to reach anesthetic equilibrium was allowed, and then an electrical noxious stimulation (50 mA and 50 Hz) was performed on the lateral aspect of the thigh (a faradic current of 3 consecutive single stimuli, followed by 2 continuous stimuli). The animals' responses to the electrical stimulus were observed. The presence of a positive response (gross movement of the limbs, head, or vocalization) or a negative response (absence of gross movements) determined the increase or reduction, respectively, of the inhalation anesthetic concentration by 10% in the subsequent marmoset. The quality of anesthetic induction and recovery from anesthesia was evaluated using a scale that measured the intensity of agitation, coughing, nausea, and vomiting. Physiological variables were recorded before (M0) and after (M1) applying the nociceptive stimulus. Isoflurane and sevoflurane MAC values in C. penicillata were 2.29 ± 0.10% and 3.93 ± 0.61 % respectively. Physiological parameters, quality of anesthetic induction and recovery did not differ significantly between groups. However, isoflurane caused irritation of the airway and ocular mucous membranes, more coughing episodes, and tearing at induction. There was no difference between groups for time to extubation and recovery time to regain sternal position.

Discussion: Previous studies in primates found lower MAC values for both anesthetics, except for Lemur catta. Those findings may be explained by the use of different nociceptive stimuli and the MAC determination method employed, although no differences in MAC values have been described between bracketing or up-and-down methods in human primates and dogs. It is unlikely that the stimulus and technique alone are the determining factors for the high concentration of isoflurane and sevoflurane observed in the present study since MAC was high with both halogenates, indicating that dose extrapolation from other species can lead to the wrong anesthetic dosage.

Keywords: Callithrix penicillata, marmoset, isoflurane, sevoflurane, minimum alveolar concentration (MAC).

Downloads

Download data is not yet available.

References

Aguado D., Benito J. & Gómez de Segura I.A. 2011. Reduction of the minimum alveolar concentration of isoflurane in dogs using a constant rate of infusion of lidocaine-ketamine in combination with either morphine or fentanyl. Veterinary Journal. 189(1): 63-66. DOI: 10.1016/j.tvjl.2010.05.029. DOI: https://doi.org/10.1016/j.tvjl.2010.05.029

Anjos T.M., Veado J.C.C., Castro M.C.N., Diniz S.A., Rocha G.S.L., Silva E.F., Araújo C.A.V., Freitas C.D., Maia M.Q. & Tavares C.A.P. 2014. Avaliação e comparação entre métodos de mensuração de pressão arterial sistólica em gatos hígidos anestesiados. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 66(4): 1051-1059. DOI: 10.1590/1678-6722. DOI: https://doi.org/10.1590/1678-6722

Ansel T.V., Nour A.K. & Benavente-Perez A. 2016. The Effect of Anesthesia on Blood Pressure Measured Noninvasively by Using the Tail-Cuff Method in Marmosets (Callithrix jacchus). Journal of the American Association for Laboratory Animal Science: JAALAS. 55(5): 594-600.

Aranake A., Mashour G.A. & Avidan M.S. 2013. Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia. 68(5): 512-522. DOI: 10.1111/anae.12168. DOI: https://doi.org/10.1111/anae.12168

Bakker J., Roubos S., Remarque E.J., Arndt S. S., Kronen P.W. & Langermans J.A. 2018. Effects of buprenorphine, butorphanol or tramadol premedication on anaesthetic induction with alfaxalone in common marmosets (Callithrix jacchus). Veterinary Anaesthesia and Analgesia. 45(3): 309-319. DOI: 10.1016/j.vaa.2017.06.009. DOI: https://doi.org/10.1016/j.vaa.2017.06.009

Cereceda-Sánchez F.J. & Molina-Mula J. 2017. Capnography as a tool to detect metabolic changes in patients cared for in the emergency setting. Revista Latino-Americana de Enfermagem. 25: e2885. DOI: 10.1590/1518-8345.1756.2885. DOI: https://doi.org/10.1590/1518-8345.1756.2885

Chan M.T.V., Mainland P. & Gin T. 1996. Minimum alveolar concentration of halothane and enflurane are decreased in early pregnancy. Anesthesiology. 85(4): 782-786. DOI: 10.1097/00000542-199610000-00013. DOI: https://doi.org/10.1097/00000542-199610000-00013

Chinnadurai S.K., Balko J.A. & Williams C.V. 2017. Minimum Alveolar Concentration and Cardiopulmonary Effects of Isoflurane in Ring-tailed Lemurs (Lemur catta). Journal of the American Association for Laboratory Animal Science: JAALAS. 56(4): 452-456.

Chinnadurai S.K. & Williams C. 2016. The minimum alveolar concentration of sevoflurane in ring-tailed lemurs (Lemur catta) and aye-ayes (Daubentonia madagascariensis). Veterinary Anaesthesia and Analgesia. 43(1): 76-80. DOI: 10.1111/vaa.12266. DOI: https://doi.org/10.1111/vaa.12266

Dixon W.J. 1965. The Up-and-Down Method for Small Samples. Journal of the American Statistical Association. 60(312): 967-978. DOI: 10.2307/2283398. DOI: https://doi.org/10.1080/01621459.1965.10480843

Eger E.I., Saidman L.J. & Brandstater B. 1965. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. The Journal of the American Society of Anesthesiologists. 26(6): 756-763. DOI: 10.1097/00000542-196511000-00010. DOI: https://doi.org/10.1097/00000542-196511000-00010

Eger E.I., Saidman L.J. & Brandstater B. 1965. Temperature Dependence of Halothane and Cyclopropane Anesthesia in Dogs Correlation with Some Theories of Anesthetic Action. Anesthesiology. 26(6): 764-770. DOI: 10.1097/00000542-196511000-00011. DOI: https://doi.org/10.1097/00000542-196511000-00011

Ellenbroek B. & Youn J. 2016. Rodent models in neuroscience research: is it a rat race? Disease Models & Mechanisms. 9(10): 1079-1087. DOI: 10.1242/dmm.026120. DOI: https://doi.org/10.1242/dmm.026120

Fantoni D.T., Cortopassi S.R.G. & Bernardi M.M. 2015. Anestésicos Inalatórios. In: Spinosa H.S., Górniak S.L. & Bernardi M.M. (Eds). Farmacologia aplicada à medicina veterinária. 5.ed. Rio de Janeiro: Guanabara Koogan, pp.118-128.

Futema F. & Campos M.A.R. 2017. Anestesia Locorregional. In: Cubas Z.S., Silva J.C.R. & Catão-Dias J.L. (Eds). Tratado de Animais Selvagens: Medicina Veterinária. 2.ed. São Paulo: Roca, pp.1864-1883.

Giannico A.T., Somma A.T., Lange R.R., Andrade J.N.B.M., Lima L., Souza A.C. & Montiani-Ferreira F. 2013. Valores eletrocardiográficos em saguis-de-tufo-preto (Callithrix penicillata). Pesquisa Veterinária Brasileira. 33(7): 937-941. DOI: 10.1590/S0100-736X2013000700016. DOI: https://doi.org/10.1590/S0100-736X2013000700016

Górniak S.L. 2015. Hipnoanalgésicos. In: Spinosa H.S., Górniak S.L. & Bernardi M.M. (Eds). Farmacologia Aplicada à Medicina Veterinária. 5.ed. Rio de Janeiro: Guanabara Koogan, pp.171-179.

Haskins S.C. 2017. Monitoramento de Pacientes Anestesiados. In: Grimm K.A., Lamont L.A., Tranquilli W.J., Greene S.A. & Robertson S.A. (Eds). Lumb & Jones Anestesiologia e Analgesia em Veterinária. 5.ed. São Paulo: Roca, pp.81-108.

Ide T., Sakurai Y., Aono M. & Nishino T. 1998. Minimum alveolar anesthetic concentrations for airway occlusion in cats: a new concept of minimum alveolar anesthetic concentration-airway occlusion response. Anesthesia and Analgesia. 86(1): 191-197. DOI: 10.1097/00000539-199801000-00037. DOI: https://doi.org/10.1213/00000539-199801000-00037

King F.A., Yarbrough C.J., Anderson D.C., Gordon T.P. & Gould K.G. 1988. Primates. Science. 240(4858): 1475-1482. DOI: 10.1126/science.3287624. DOI: https://doi.org/10.1126/science.3287624

Lopes L.F.L., Gris V.N., Ferraro M.A. & Cortopassi S.R.G. 2022. Comparative study between S-(+)-ketamine–midazolam and fentanyl–droperidol in black-tufted marmosets (Callithrix penicillata). Brazilian Journal of Veterinary Research and Animal Science. 59: e188652–e188652. DOI: 10.11606/issn.1678-4456.bjvras.2022.188652. DOI: https://doi.org/10.11606/issn.1678-4456.bjvras.2022.188652

Lunardeli B., Moraes A.N., Bach E.C., Kuci C.C., Costa Á., Costa A., Baldini M. H.M. & Antonelli M. 2019. Influence of social stress on value of minimal anesthetic concentration of isuflurano in guan (Penelope obscura) captured in wildlife. Pesquisa Veterinária Brasileira. 39(8): 655-662. DOI: 10.1590/1678-5150-PVB-5096. DOI: https://doi.org/10.1590/1678-5150-pvb-5096

Malukiewicz J. 2019. A Review of Experimental, Natural, and Anthropogenic Hybridization in Callithrix Marmosets. International Journal of Primatology. 40(1): 72-98. DOI: 10.1007/s10764-018-0068-0. DOI: https://doi.org/10.1007/s10764-018-0068-0

Mattson S.F., Kerr C.L., Dyson D.H. & Mirakhur K.K. 2006. The effect of hypovolemia due to hemorrhage on the minimum alveolar concentration of isoflurane in the dog. Veterinary Anaesthesia and Analgesia 33(5): 296-301. DOI: 10.1111/j.1467-2995.2005.00273.x. DOI: https://doi.org/10.1111/j.1467-2995.2005.00273.x

Mietsch M. & Einspanier A. 2015. Non-invasive blood pressure measurement: values, problems and applicability in the common marmoset (Callithrix jacchus). Laboratory Animals. 49(3): 241-250. DOI: 10.1177/0023677214565843. DOI: https://doi.org/10.1177/0023677214565843

Monteiro E.R., Coelho K., Bressan T.F., Simões C.R. & Monteiro B.S. 2016. Effects of acepromazine-morphine and acepromazine-methadone premedication on the minimum alveolar concentration of isoflurane in dogs. Veterinary Anaesthesia and Analgesia. 43(1): 27-34. DOI: 10.1111/vaa.12265. DOI: https://doi.org/10.1111/vaa.12265

Nievergelt C.M. & Martin R.D. 1999. Energy intake during reproduction in captive common marmosets (Callithrix jacchus). Physiology & Behavior. 65(4-5): 849-854. DOI: 10.1016/s0031-9384(98)00249-2. DOI: https://doi.org/10.1016/S0031-9384(98)00249-2

Oliveira V.N.L. & Santos P.S.P. 2019. Anestesia geral volátil ou inalatória. In: Massone F. (Ed). Anestesiologia Veterinária: Farmacologia e Técnicas. 7.ed. Rio de Janeiro: Guanabara Koogan, pp.47-52.

Paul M. & Fisher D.M. 2001. Are estimates of MAC reliable? Anesthesiology. 95(6): 1362-1370. DOI: 10.1097/00000542-200112000-00014. DOI: https://doi.org/10.1097/00000542-200112000-00014

Pereira-Neto G.B., Brunetto M.A., Champion T., Ortiz E.M.G., Carciofi A.C. & Camacho A.A. 2014. Avaliação da pressão arterial sistêmica em cães obesos: comparação entre os métodos oscilométrico e doppler ultrassônico. Pesquisa Veterinária Brasileira. 34: 87-91. DOI: 10.1590/S0100-736X2014001300016. DOI: https://doi.org/10.1590/S0100-736X2014001300016

Prado L., Soares J.H.N., Ascoli F.O., Salomão Jr. E., Figueiró M.R. & Mársico Filho F. 2004. Minimum alveolar concentration of halothane in capuchin-monkeys (Cebus apella). In: 6º Congresso do Colégio Brasileiro de Cirurgia e Anestesiologia Veterinária (Indaiatuba, Brazil). Brazilian Journal of Veterinary Research and Animal Science. 41: 9-10.

Quasha A.L., Eger E.I. & Tinker J.H. 1980. Determination and applications of MAC. Anesthesiology. 53(4): 315-334. DOI: 10.1097/00000542-198010000-00008. DOI: https://doi.org/10.1097/00000542-198010000-00008

Reed R. & Doherty T. 2018. Minimum alveolar concentration: Key concepts and a review of its pharmacological reduction in dogs. Part 2. Research in Veterinary Science. 118: 27-33. DOI: 10.1016/j.rvsc.2018.01.009. DOI: https://doi.org/10.1016/j.rvsc.2018.01.009

Rylands A.B. & Mittermeier R.A. 2009. The Diversity of the New World Primates (Platyrrhini): An Annotated Taxonomy. In: Garber P.A., Estrada A., Bicca-Marques J.C., Heymann E.W. & Strier K.B. (Eds). South American Primates. Developments in Primatology: Progress and Prospects. New York: Springer, pp.23-54. DOI: https://doi.org/10.1007/978-0-387-78705-3_2

Schnell C.R. & Wood J.M. 1993. Measurement of blood pressure and heart rate by telemetry in conscious, unrestrained marmosets. The American Journal of Physiology. 264(5): H1509-H1516. DOI:10.1152/ajpheart.1993.264.5.h1509. DOI: https://doi.org/10.1152/ajpheart.1993.264.5.H1509

Silva D.F., Silva E.B. & Terra A.P. 2018. Controle populacional de espécies silvestres invasoras por meio de laqueadura e vasectomia em primatas Callithrix penicillata. Veterinária e Zootecnia. 25(1): 99-105. DOI:10.35172/rvz.2018.v25.7. DOI: https://doi.org/10.35172/rvz.2018.v25.7

Soma L.R., Tierney W.J., Hogan G.K. & Satoh N. 1995. The effects of multiple administrations of sevoflurane to cynomolgus monkeys: clinical pathologic, hematologic, and pathologic study. Anesthesia and Analgesia. 81(2): 347-352. DOI: https://doi.org/10.1097/00000539-199508000-00024

Sonner J.M. 2002. Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesthesia and Analgesia. 95(3): 609-614. DOI:10.1097/00000539-200209000-00021. DOI: https://doi.org/10.1097/00000539-200209000-00021

Steffey E.P., Baggot J.D., Eisele J.H., Willits N., Woliner M.J., Jarvis K.A., Elliott A.R. & Tagawa M. 1994. Morphine-isoflurane interaction in dogs, swine and Rhesus monkeys. Journal of Veterinary Pharmacology and Therapeutics. 17(3): 202-210. DOI:10.1111/j.1365-2885.1994.tb00234.x. DOI: https://doi.org/10.1111/j.1365-2885.1994.tb00234.x

Steffey E.P. & Howland D. 1977. Isoflurane potency in the dog and cat. American Journal of Veterinary Research. 38(11): 1833-1836.

Steffey E.P., Khursheed M.R. & Brosnan R.J. 2017. Anestésicos inalatórios. In: Grimm K.A., Lamont L.A., Tranquilli W.J., Greene S.A. & Robertson S.A. (Eds). Lumb & Jones Anestesiologia e Analgesia em Veterinária. 5.ed. São Paulo: Roca, pp.291-317.

Thomas A.A., Leach M.C. & Flecknell P.A. 2012. An alternative method of endotracheal intubation of common marmosets (Callithrix jacchus). Laboratory Animals. 46(1): 71-76. DOI:10.1258/la.2011.011092. DOI: https://doi.org/10.1258/la.2011.011092

Tinker J.H., Sharbrough F.W. & Michenfelder J.D. 1977. Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency. Anesthesiology. 46(4): 252-259. DOI:10.1097/00000542-197704000-00005. DOI: https://doi.org/10.1097/00000542-197704000-00005

Traad R.M., Leite J.C.M., Werckerlin P. & Trindade S. 2012. Introdução das espécies exóticas Callithrix penicillata (Geoffroy, 1812) e Callithrix jacchus (Linnaeus, 1758) em ambientes urbanos (Primates: Callithrichidae). Revista de Meio Ambiente e Sustentabilidade. 2(1): 9-23. DOI:10.22292/mas.v2i1.112.

Ulian C.M V., Carvajal A.P.L., Velasquez D.R.B., Teixeira Neto F.J., Lourenço M.L.G. & Chiacchio S.B. 2016. Acurácia dos Métodos Oscilométrico (Petmap®) e Doppler para Aferição Indireta da Pressão Arterial em Cordeiros. Ciência Animal Brasileira. 17(4): 593-600. DOI:10.1590/1089-6891v17i437301. DOI: https://doi.org/10.1590/1089-6891v17i437301

Valtonen M.H. & Eriksson L.M. 1970. The Effect of Cuff Width on Accuracy of Indirect Measurement of Blood Pressure in Dogs. Research in Veterinary Science. 11(4): 358-364. DOI:10.1016/S0034-5288(18)34303-0. DOI: https://doi.org/10.1016/S0034-5288(18)34303-0

Valverde A., Morey T.E., Hernández J. & Davies W. 2003. Validation of several types of noxious stimuli for use in determining the minimum alveolar concentration for inhalation anesthetics in dogs and rabbits. American Journal of Veterinary Research. 64(8): 957-962. DOI:10.2460/ajvr.2003.64.957. DOI: https://doi.org/10.2460/ajvr.2003.64.957

Verona C.E. & Pissinatti A. 2017. Primates - Primatas do Novo Mundo (Sagui, Macaco-prego, Macaco-aranha, Bugio e Muriqui). In: Cubas Z.S., Silva J.C.R. & Catão-Dias J.L. (Eds). Tratado de Animais Selvagens: Medicina Veterinária. 2.ed. São Paulo: Roca, pp.723-743.

Vilani R.G.D. de C. 2017. Anestesia Injetável e Inalatória. In: Cubas Z.S., Silva J.C.R. & Catão-Dias J.L. (Eds). Tratado de Animais Selvagens: Medicina Veterinária. 2.ed. São Paulo: Roca, pp.1827-1859.

Wouters P., Doursout M.F., Merin R.G. & Chelly J.E. 1990. Influence of hypertension on MAC of halothane in rats. Anesthesiology. 72(5): 843-845. DOI:10.1097/00000542-199005000-00013. DOI: https://doi.org/10.1097/00000542-199005000-00013

Additional Files

Published

2023-07-24

How to Cite

Dietze, W., Jorge Ronchi, S., Oliveira Vasques, W., Henrique Hasckel da Silva Pereira, L., Buoso de Souza, M., Ádson Costa, Ádson, & Nunes de Moraes, A. (2023). Determination of the Minimum Alveolar Concentration (MAC) of Isoflurane and Sevoflurane in Callithrix penicillata. Acta Scientiae Veterinariae, 51. https://doi.org/10.22456/1679-9216.132347

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.