Determination of the Minimum Alveolar Concentration (MAC) of Isoflurane and Sevoflurane in Callithrix penicillata
DOI:
https://doi.org/10.22456/1679-9216.132347Keywords:
Callithrix penicillata, marmoset, isoflurane, sevoflurane, minimum alveolar concentration (MAC)Abstract
Background: The minimum alveolar concentration (MAC) is a measure of quantitative anesthetic potency and has become the standard index for the evaluation and comparison of volatile anesthetics, in addition to guiding dose administration. Black-tufted marmosets (Callithrix penicillata) are primates present in the clinical and surgical routine of veterinary hospitals, as well as experimental models, especially in neuroscience. Few studies have evaluated the potency of the main volatile anesthetics in this species. This study aimed to determine the MAC of isoflurane and sevoflurane in C. penicillata using the up-and-down method and to evaluate the effects of these drugs on the quality of anesthetic induction, maintenance, and recovery.
Materials, Methods & Results: Twenty-four animals of undetermined age were used. All marmosets were healthy according to hematological and physical evaluation. The animals were randomly divided into 2 groups: ISOMAC and SEVOMAC. Each animal was induced to general anesthesia in an anesthetic box with oxygen (5 L/min) and sevoflurane at 7% in the SEVOMAC group or isoflurane at 5% in the ISOMAC. Upon reaching lateral decubitus, orotracheal intubation was performed. General anesthesia was maintained with isoflurane or sevoflurane diluted in oxygen (0.8 L/min) using a non-rebreathing delivery system under spontaneous ventilation. As defined in the pilot study, the first animal from ISOMAC started the maintenance of anesthesia with 2.6% isoflurane, while the first animal in SEVOMAC received 4% sevoflurane. After finishing the instrumentation to assess heart rate, respiratory rate, systolic blood pressure, pulse oximeter oxygen saturation, end-tidal carbon dioxide concentration, and rectal temperature, a 15-min wait to reach anesthetic equilibrium was allowed, and then an electrical noxious stimulation (50 mA and 50 Hz) was performed on the lateral aspect of the thigh (a faradic current of 3 consecutive single stimuli, followed by 2 continuous stimuli). The animals' responses to the electrical stimulus were observed. The presence of a positive response (gross movement of the limbs, head, or vocalization) or a negative response (absence of gross movements) determined the increase or reduction, respectively, of the inhalation anesthetic concentration by 10% in the subsequent marmoset. The quality of anesthetic induction and recovery from anesthesia was evaluated using a scale that measured the intensity of agitation, coughing, nausea, and vomiting. Physiological variables were recorded before (M0) and after (M1) applying the nociceptive stimulus. Isoflurane and sevoflurane MAC values in C. penicillata were 2.29 ± 0.10% and 3.93 ± 0.61 % respectively. Physiological parameters, quality of anesthetic induction and recovery did not differ significantly between groups. However, isoflurane caused irritation of the airway and ocular mucous membranes, more coughing episodes, and tearing at induction. There was no difference between groups for time to extubation and recovery time to regain sternal position.
Discussion: Previous studies in primates found lower MAC values for both anesthetics, except for Lemur catta. Those findings may be explained by the use of different nociceptive stimuli and the MAC determination method employed, although no differences in MAC values have been described between bracketing or up-and-down methods in human primates and dogs. It is unlikely that the stimulus and technique alone are the determining factors for the high concentration of isoflurane and sevoflurane observed in the present study since MAC was high with both halogenates, indicating that dose extrapolation from other species can lead to the wrong anesthetic dosage.
Keywords: Callithrix penicillata, marmoset, isoflurane, sevoflurane, minimum alveolar concentration (MAC).
Downloads
References
Aguado D., Benito J. & Gómez de Segura I.A. 2011. Reduction of the minimum alveolar concentration of isoflurane in dogs using a constant rate of infusion of lidocaine-ketamine in combination with either morphine or fentanyl. Veterinary Journal. 189(1): 63-66. DOI: 10.1016/j.tvjl.2010.05.029. DOI: https://doi.org/10.1016/j.tvjl.2010.05.029
Anjos T.M., Veado J.C.C., Castro M.C.N., Diniz S.A., Rocha G.S.L., Silva E.F., Araújo C.A.V., Freitas C.D., Maia M.Q. & Tavares C.A.P. 2014. Avaliação e comparação entre métodos de mensuração de pressão arterial sistólica em gatos hígidos anestesiados. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 66(4): 1051-1059. DOI: 10.1590/1678-6722. DOI: https://doi.org/10.1590/1678-6722
Ansel T.V., Nour A.K. & Benavente-Perez A. 2016. The Effect of Anesthesia on Blood Pressure Measured Noninvasively by Using the Tail-Cuff Method in Marmosets (Callithrix jacchus). Journal of the American Association for Laboratory Animal Science: JAALAS. 55(5): 594-600.
Aranake A., Mashour G.A. & Avidan M.S. 2013. Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia. 68(5): 512-522. DOI: 10.1111/anae.12168. DOI: https://doi.org/10.1111/anae.12168
Bakker J., Roubos S., Remarque E.J., Arndt S. S., Kronen P.W. & Langermans J.A. 2018. Effects of buprenorphine, butorphanol or tramadol premedication on anaesthetic induction with alfaxalone in common marmosets (Callithrix jacchus). Veterinary Anaesthesia and Analgesia. 45(3): 309-319. DOI: 10.1016/j.vaa.2017.06.009. DOI: https://doi.org/10.1016/j.vaa.2017.06.009
Cereceda-Sánchez F.J. & Molina-Mula J. 2017. Capnography as a tool to detect metabolic changes in patients cared for in the emergency setting. Revista Latino-Americana de Enfermagem. 25: e2885. DOI: 10.1590/1518-8345.1756.2885. DOI: https://doi.org/10.1590/1518-8345.1756.2885
Chan M.T.V., Mainland P. & Gin T. 1996. Minimum alveolar concentration of halothane and enflurane are decreased in early pregnancy. Anesthesiology. 85(4): 782-786. DOI: 10.1097/00000542-199610000-00013. DOI: https://doi.org/10.1097/00000542-199610000-00013
Chinnadurai S.K., Balko J.A. & Williams C.V. 2017. Minimum Alveolar Concentration and Cardiopulmonary Effects of Isoflurane in Ring-tailed Lemurs (Lemur catta). Journal of the American Association for Laboratory Animal Science: JAALAS. 56(4): 452-456.
Chinnadurai S.K. & Williams C. 2016. The minimum alveolar concentration of sevoflurane in ring-tailed lemurs (Lemur catta) and aye-ayes (Daubentonia madagascariensis). Veterinary Anaesthesia and Analgesia. 43(1): 76-80. DOI: 10.1111/vaa.12266. DOI: https://doi.org/10.1111/vaa.12266
Dixon W.J. 1965. The Up-and-Down Method for Small Samples. Journal of the American Statistical Association. 60(312): 967-978. DOI: 10.2307/2283398. DOI: https://doi.org/10.1080/01621459.1965.10480843
Eger E.I., Saidman L.J. & Brandstater B. 1965. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. The Journal of the American Society of Anesthesiologists. 26(6): 756-763. DOI: 10.1097/00000542-196511000-00010. DOI: https://doi.org/10.1097/00000542-196511000-00010
Eger E.I., Saidman L.J. & Brandstater B. 1965. Temperature Dependence of Halothane and Cyclopropane Anesthesia in Dogs Correlation with Some Theories of Anesthetic Action. Anesthesiology. 26(6): 764-770. DOI: 10.1097/00000542-196511000-00011. DOI: https://doi.org/10.1097/00000542-196511000-00011
Ellenbroek B. & Youn J. 2016. Rodent models in neuroscience research: is it a rat race? Disease Models & Mechanisms. 9(10): 1079-1087. DOI: 10.1242/dmm.026120. DOI: https://doi.org/10.1242/dmm.026120
Fantoni D.T., Cortopassi S.R.G. & Bernardi M.M. 2015. Anestésicos Inalatórios. In: Spinosa H.S., Górniak S.L. & Bernardi M.M. (Eds). Farmacologia aplicada à medicina veterinária. 5.ed. Rio de Janeiro: Guanabara Koogan, pp.118-128.
Futema F. & Campos M.A.R. 2017. Anestesia Locorregional. In: Cubas Z.S., Silva J.C.R. & Catão-Dias J.L. (Eds). Tratado de Animais Selvagens: Medicina Veterinária. 2.ed. São Paulo: Roca, pp.1864-1883.
Giannico A.T., Somma A.T., Lange R.R., Andrade J.N.B.M., Lima L., Souza A.C. & Montiani-Ferreira F. 2013. Valores eletrocardiográficos em saguis-de-tufo-preto (Callithrix penicillata). Pesquisa Veterinária Brasileira. 33(7): 937-941. DOI: 10.1590/S0100-736X2013000700016. DOI: https://doi.org/10.1590/S0100-736X2013000700016
Górniak S.L. 2015. Hipnoanalgésicos. In: Spinosa H.S., Górniak S.L. & Bernardi M.M. (Eds). Farmacologia Aplicada à Medicina Veterinária. 5.ed. Rio de Janeiro: Guanabara Koogan, pp.171-179.
Haskins S.C. 2017. Monitoramento de Pacientes Anestesiados. In: Grimm K.A., Lamont L.A., Tranquilli W.J., Greene S.A. & Robertson S.A. (Eds). Lumb & Jones Anestesiologia e Analgesia em Veterinária. 5.ed. São Paulo: Roca, pp.81-108.
Ide T., Sakurai Y., Aono M. & Nishino T. 1998. Minimum alveolar anesthetic concentrations for airway occlusion in cats: a new concept of minimum alveolar anesthetic concentration-airway occlusion response. Anesthesia and Analgesia. 86(1): 191-197. DOI: 10.1097/00000539-199801000-00037. DOI: https://doi.org/10.1213/00000539-199801000-00037
King F.A., Yarbrough C.J., Anderson D.C., Gordon T.P. & Gould K.G. 1988. Primates. Science. 240(4858): 1475-1482. DOI: 10.1126/science.3287624. DOI: https://doi.org/10.1126/science.3287624
Lopes L.F.L., Gris V.N., Ferraro M.A. & Cortopassi S.R.G. 2022. Comparative study between S-(+)-ketamine–midazolam and fentanyl–droperidol in black-tufted marmosets (Callithrix penicillata). Brazilian Journal of Veterinary Research and Animal Science. 59: e188652–e188652. DOI: 10.11606/issn.1678-4456.bjvras.2022.188652. DOI: https://doi.org/10.11606/issn.1678-4456.bjvras.2022.188652
Lunardeli B., Moraes A.N., Bach E.C., Kuci C.C., Costa Á., Costa A., Baldini M. H.M. & Antonelli M. 2019. Influence of social stress on value of minimal anesthetic concentration of isuflurano in guan (Penelope obscura) captured in wildlife. Pesquisa Veterinária Brasileira. 39(8): 655-662. DOI: 10.1590/1678-5150-PVB-5096. DOI: https://doi.org/10.1590/1678-5150-pvb-5096
Malukiewicz J. 2019. A Review of Experimental, Natural, and Anthropogenic Hybridization in Callithrix Marmosets. International Journal of Primatology. 40(1): 72-98. DOI: 10.1007/s10764-018-0068-0. DOI: https://doi.org/10.1007/s10764-018-0068-0
Mattson S.F., Kerr C.L., Dyson D.H. & Mirakhur K.K. 2006. The effect of hypovolemia due to hemorrhage on the minimum alveolar concentration of isoflurane in the dog. Veterinary Anaesthesia and Analgesia 33(5): 296-301. DOI: 10.1111/j.1467-2995.2005.00273.x. DOI: https://doi.org/10.1111/j.1467-2995.2005.00273.x
Mietsch M. & Einspanier A. 2015. Non-invasive blood pressure measurement: values, problems and applicability in the common marmoset (Callithrix jacchus). Laboratory Animals. 49(3): 241-250. DOI: 10.1177/0023677214565843. DOI: https://doi.org/10.1177/0023677214565843
Monteiro E.R., Coelho K., Bressan T.F., Simões C.R. & Monteiro B.S. 2016. Effects of acepromazine-morphine and acepromazine-methadone premedication on the minimum alveolar concentration of isoflurane in dogs. Veterinary Anaesthesia and Analgesia. 43(1): 27-34. DOI: 10.1111/vaa.12265. DOI: https://doi.org/10.1111/vaa.12265
Nievergelt C.M. & Martin R.D. 1999. Energy intake during reproduction in captive common marmosets (Callithrix jacchus). Physiology & Behavior. 65(4-5): 849-854. DOI: 10.1016/s0031-9384(98)00249-2. DOI: https://doi.org/10.1016/S0031-9384(98)00249-2
Oliveira V.N.L. & Santos P.S.P. 2019. Anestesia geral volátil ou inalatória. In: Massone F. (Ed). Anestesiologia Veterinária: Farmacologia e Técnicas. 7.ed. Rio de Janeiro: Guanabara Koogan, pp.47-52.
Paul M. & Fisher D.M. 2001. Are estimates of MAC reliable? Anesthesiology. 95(6): 1362-1370. DOI: 10.1097/00000542-200112000-00014. DOI: https://doi.org/10.1097/00000542-200112000-00014
Pereira-Neto G.B., Brunetto M.A., Champion T., Ortiz E.M.G., Carciofi A.C. & Camacho A.A. 2014. Avaliação da pressão arterial sistêmica em cães obesos: comparação entre os métodos oscilométrico e doppler ultrassônico. Pesquisa Veterinária Brasileira. 34: 87-91. DOI: 10.1590/S0100-736X2014001300016. DOI: https://doi.org/10.1590/S0100-736X2014001300016
Prado L., Soares J.H.N., Ascoli F.O., Salomão Jr. E., Figueiró M.R. & Mársico Filho F. 2004. Minimum alveolar concentration of halothane in capuchin-monkeys (Cebus apella). In: 6º Congresso do Colégio Brasileiro de Cirurgia e Anestesiologia Veterinária (Indaiatuba, Brazil). Brazilian Journal of Veterinary Research and Animal Science. 41: 9-10.
Quasha A.L., Eger E.I. & Tinker J.H. 1980. Determination and applications of MAC. Anesthesiology. 53(4): 315-334. DOI: 10.1097/00000542-198010000-00008. DOI: https://doi.org/10.1097/00000542-198010000-00008
Reed R. & Doherty T. 2018. Minimum alveolar concentration: Key concepts and a review of its pharmacological reduction in dogs. Part 2. Research in Veterinary Science. 118: 27-33. DOI: 10.1016/j.rvsc.2018.01.009. DOI: https://doi.org/10.1016/j.rvsc.2018.01.009
Rylands A.B. & Mittermeier R.A. 2009. The Diversity of the New World Primates (Platyrrhini): An Annotated Taxonomy. In: Garber P.A., Estrada A., Bicca-Marques J.C., Heymann E.W. & Strier K.B. (Eds). South American Primates. Developments in Primatology: Progress and Prospects. New York: Springer, pp.23-54. DOI: https://doi.org/10.1007/978-0-387-78705-3_2
Schnell C.R. & Wood J.M. 1993. Measurement of blood pressure and heart rate by telemetry in conscious, unrestrained marmosets. The American Journal of Physiology. 264(5): H1509-H1516. DOI:10.1152/ajpheart.1993.264.5.h1509. DOI: https://doi.org/10.1152/ajpheart.1993.264.5.H1509
Silva D.F., Silva E.B. & Terra A.P. 2018. Controle populacional de espécies silvestres invasoras por meio de laqueadura e vasectomia em primatas Callithrix penicillata. Veterinária e Zootecnia. 25(1): 99-105. DOI:10.35172/rvz.2018.v25.7. DOI: https://doi.org/10.35172/rvz.2018.v25.7
Soma L.R., Tierney W.J., Hogan G.K. & Satoh N. 1995. The effects of multiple administrations of sevoflurane to cynomolgus monkeys: clinical pathologic, hematologic, and pathologic study. Anesthesia and Analgesia. 81(2): 347-352. DOI: https://doi.org/10.1097/00000539-199508000-00024
Sonner J.M. 2002. Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesthesia and Analgesia. 95(3): 609-614. DOI:10.1097/00000539-200209000-00021. DOI: https://doi.org/10.1097/00000539-200209000-00021
Steffey E.P., Baggot J.D., Eisele J.H., Willits N., Woliner M.J., Jarvis K.A., Elliott A.R. & Tagawa M. 1994. Morphine-isoflurane interaction in dogs, swine and Rhesus monkeys. Journal of Veterinary Pharmacology and Therapeutics. 17(3): 202-210. DOI:10.1111/j.1365-2885.1994.tb00234.x. DOI: https://doi.org/10.1111/j.1365-2885.1994.tb00234.x
Steffey E.P. & Howland D. 1977. Isoflurane potency in the dog and cat. American Journal of Veterinary Research. 38(11): 1833-1836.
Steffey E.P., Khursheed M.R. & Brosnan R.J. 2017. Anestésicos inalatórios. In: Grimm K.A., Lamont L.A., Tranquilli W.J., Greene S.A. & Robertson S.A. (Eds). Lumb & Jones Anestesiologia e Analgesia em Veterinária. 5.ed. São Paulo: Roca, pp.291-317.
Thomas A.A., Leach M.C. & Flecknell P.A. 2012. An alternative method of endotracheal intubation of common marmosets (Callithrix jacchus). Laboratory Animals. 46(1): 71-76. DOI:10.1258/la.2011.011092. DOI: https://doi.org/10.1258/la.2011.011092
Tinker J.H., Sharbrough F.W. & Michenfelder J.D. 1977. Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency. Anesthesiology. 46(4): 252-259. DOI:10.1097/00000542-197704000-00005. DOI: https://doi.org/10.1097/00000542-197704000-00005
Traad R.M., Leite J.C.M., Werckerlin P. & Trindade S. 2012. Introdução das espécies exóticas Callithrix penicillata (Geoffroy, 1812) e Callithrix jacchus (Linnaeus, 1758) em ambientes urbanos (Primates: Callithrichidae). Revista de Meio Ambiente e Sustentabilidade. 2(1): 9-23. DOI:10.22292/mas.v2i1.112.
Ulian C.M V., Carvajal A.P.L., Velasquez D.R.B., Teixeira Neto F.J., Lourenço M.L.G. & Chiacchio S.B. 2016. Acurácia dos Métodos Oscilométrico (Petmap®) e Doppler para Aferição Indireta da Pressão Arterial em Cordeiros. Ciência Animal Brasileira. 17(4): 593-600. DOI:10.1590/1089-6891v17i437301. DOI: https://doi.org/10.1590/1089-6891v17i437301
Valtonen M.H. & Eriksson L.M. 1970. The Effect of Cuff Width on Accuracy of Indirect Measurement of Blood Pressure in Dogs. Research in Veterinary Science. 11(4): 358-364. DOI:10.1016/S0034-5288(18)34303-0. DOI: https://doi.org/10.1016/S0034-5288(18)34303-0
Valverde A., Morey T.E., Hernández J. & Davies W. 2003. Validation of several types of noxious stimuli for use in determining the minimum alveolar concentration for inhalation anesthetics in dogs and rabbits. American Journal of Veterinary Research. 64(8): 957-962. DOI:10.2460/ajvr.2003.64.957. DOI: https://doi.org/10.2460/ajvr.2003.64.957
Verona C.E. & Pissinatti A. 2017. Primates - Primatas do Novo Mundo (Sagui, Macaco-prego, Macaco-aranha, Bugio e Muriqui). In: Cubas Z.S., Silva J.C.R. & Catão-Dias J.L. (Eds). Tratado de Animais Selvagens: Medicina Veterinária. 2.ed. São Paulo: Roca, pp.723-743.
Vilani R.G.D. de C. 2017. Anestesia Injetável e Inalatória. In: Cubas Z.S., Silva J.C.R. & Catão-Dias J.L. (Eds). Tratado de Animais Selvagens: Medicina Veterinária. 2.ed. São Paulo: Roca, pp.1827-1859.
Wouters P., Doursout M.F., Merin R.G. & Chelly J.E. 1990. Influence of hypertension on MAC of halothane in rats. Anesthesiology. 72(5): 843-845. DOI:10.1097/00000542-199005000-00013. DOI: https://doi.org/10.1097/00000542-199005000-00013
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Wendel Dietze, Samuel Jorge Ronchi, William Oliveira Vasques, Leonardo Henrique Hasckel da Silva Pereira, Mônica Buoso de Souza, Ádson Ádson Costa, Aury Nunes de Moraes

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides open access to all of its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project and Directory of Open Access Journals.
We define open access journals as journals that use a funding model that does not charge readers or their institutions for access. From the BOAI definition of "open access" we take the right of users to "read, download, copy, distribute, print, search, or link to the full texts of these articles" as mandatory for a journal to be included in the directory.
La Red y Portal Iberoamericano de Revistas Científicas de Veterinaria de Libre Acceso reúne a las principales publicaciones científicas editadas en España, Portugal, Latino América y otros países del ámbito latino