Sperm Cell Capacitation Status of Ram Semen after Cooling

Authors

DOI:

https://doi.org/10.22456/1679-9216.128811

Abstract

Background: The use of conventional artificial insemination (AI) in sheep production is usually associated with lower fertility rates when frozen semen is used. Cooled ram semen has been an alternative over frozen semen due to the higher viability, seminal quality and fertility rates following AI. The semen preservation process promotes sperm cell modifications similar to capacitation (capacitation-like) that causes cell damage affecting viability and seminal quality, but such effects are unclear for cooled semen. The aim of this study was to determine the status of sperm cell capacitation (CA) and acrosome reaction (AR) during ram semen processing and cooling under different extenders, dilution factors, and aerobiosis conditions as a function of storage time at 5oC.
Materials, Methods & Results: Two consecutive ejaculates per day per male were collected from 2 adult rams by artificial vagina at 48-72 h intervals, in three replications. After macro- and microscopic evaluations, semen was segregated into groups under 3 extenders (Tris-egg yolk or TY, citrate-egg yolk or CY, skimmed milk or SM), 2 dilution factors (1x 109 or Bi, 100 x 106 or Mi cells/mL), and 2 aerobiosis conditions (aerobic or A, semi-anaerobic or SA). Diluted semen was cooled to 5ºC and stored for up to 72 h, with evaluations every 24 h. Aliquots of fresh ejaculates and of each cooled diluted subgroup, according to extender, dilution, and aerobiosis, were collected at times T0 and T72 for determination of
acrosome status and membrane integrity by the chlortetracycline (CTC) and trypan blue-Giemsa stainings, respectively. No differences were detected in sperm cell motility (M) and motility vigor (V) between fresh and diluted semen. After cooling, a significant decrease in M was observed after 48 h in CY and SM compared with fresh semen and 0 h of cooling, while V started to decrease after 24 h in CY compared with TY. Likewise, M/V from different dilutions and aerobic conditions decreased more significantly after 48 and 24 h of cooling, respectively. The sperm capacitation status did not show differences in the proportion of non-capacitated (NCA), CA and AR sperm cells between TY, CY, and SM extenders (NCA: 75.0%, 71.3%, 74.0%; CA: 15.7%, 17.2%, 15.9%; AR: 9.3%, 11.5%, 10.2%) or between Bi and Mi dilutions (NCA: 74.0%, 72.9%; CA: 15.9%, 16.6%; AR: 10.1%, 10.5%), respectively. However, differences (P < 0.05) were observed between A and SA aerobic conditions, with CA (17.0% vs. 15.5%) and AR (11.9% vs. 8.7%) rates being higher in A than SA, respectively, with no differences in NCA (71.1% vs. 75.8%), irrespective of the storage time. Sperm cell viability decreased after 48 h, especially in CY (P < 0.05).

Discussion: Ram sperm cells can suffer irreversible damage due to thermal shock during cooling. Egg yolk-based extenders provide phospholipids and cholesterol to protect the sperm cell membrane during the thermal shock caused by the change in temperature. In this study, sperm cells had irreversible decreases in M/V, with increase in acrosome and plasma membrane damage after cooling to 5ºC. The largest and smallest decreases in M and V over time were observed in the CY
and TY extenders, respectively. In addition to the extender type, the semen preservation method and storage time promoted changes in the capacitation status, AR and in sperm cell viability, which per se were associated with a decrease in semen fertility. In fact, the proportions of CA and/or AR sperm cells gradually increased over time after dilution and storage at 5ºC, with a negative correlation between sperm cell viability and M/V over time. In summary, extender and cooling time affected mostly M/V, while aerobiosis condition and dilution factor were more associated with acrosome status and sperm
survival, with the extender having less impact on the acrosome status as a function of time.


Keywords: sperm cell viability, acrosome status, cooled semen, extenders, dilution factor, aerobiosis, sheep.

Downloads

Download data is not yet available.

References

Aitken R.J. 2017. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular Reproduction and Development. 84(10): 1039-1052.

Aitken R.J. & Baker H.G. 1995. Seminal leukocytes: passengers, terrorists or good samaritans? Human Reproduction.10(7): 1736-1736.

Aitken R.J. & Clarkson J.S. 1987. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. Reproduction. 81(2): 459-469.

Alberts B., Johnson A., Lewis J., Morgan D., Raff M., Roberts K. & Walter P. 2015. The innate and adaptive immune systems. In: Alberts B., Johnson A., Lewis J., Morgan D., Raff M., Roberts K. & Walter P. (Eds). Molecular Biology of The Cell. 6th edn. New York: Garland Publishing, pp.1297-1342.

Al-Mutary M.G., Al-Ghadi M.Q., Ammari A.A., Al-Himadi A.R., Al-Jolimeed A.H., Arafah M.W. & Swelum A.A.A. 2020. Effect of different concentrations of resveratrol on the quality and in vitro fertilizing ability of ram semen stored at 5°C for up to 168 h. Theriogenology.152: 139-146.

Andrade A.F.C.D. 2009. Efeito da adição do plasma seminal nas mudanças semelhantes à capacitação (Criocapacitação) em espermatozoides criopreservados de equinos. 133f. São Paulo. SP. Tese (Doutorado em Reprodução Animal) - Universidade de São Paulo (USP), Faculdade de Medicina Veterinária e Zootecnia (FMVZ/SBD).

Anel L., Alvarez M., Martinez-Pastor F., Garcia-Macias V., Anel E. & Paz P. 2006. Improvement strategies in ovine artificial insemination. Reproduction in Domestic Animals. 41: 30-42.

Bailey J.L., Bilodeau J.F. & Cormier N. 2000. Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. Journal of Andrology. 21(1): 1-7.

Ball B.A. 2008. Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Animal Reproduction Science. 107(3-4): 257-267.

Barrios B., Fernández-Juan M., Muiño-Blanco T. & Cebrián-Pérez J.A. 2005. Immunocytochemical localization and biochemical characterization of two seminal plasma proteins that protect ram spermatozoa against cold shock. Journal of Andrology. 26(4): 539-549.

Bergeron A. & Manjunath P. 2006. New insights towards understanding the mechanisms of sperm protection by egg yolk and milk. Molecular Reproduction and Development. 73(10): 1338-1344.

Bittencourt R.F., Oba E., Ribeiro Filho A.D.L., Chalhoub M., Azevedo H.C. & Bicudo S.D. 2013. Advances in cryopreservation of ram semen I: extenders and cryoprotectants. Ciência Animal Brasileira. 14(4): 522-536.

Blackshaw A.W., Salisbury G.W. & Van Demark N.L. 1957. Factors influencing metabolic activity of bull spermatozoa. I. 37, 21, and 5ºC. Journal of Dairy Science. 40(9): 1093-1098.

Brummer M., Hayes S., Dawson K.A. & Lawrence L.M. 2013. Interrelationships among selenium status, antioxidant capacity and oxidative stress in the horse. Journal of Equine Veterinary Science. 5(33): 332. DOI: 10.1016/j.jevs.2013.03.035

Burnaugh L., Sabeur K. & Ball B.A. 2007. Generation of superoxide anion by equine spermatozoa as detected by dihydroethidium. Theriogenology. 67(3): 580-589.

CRBA - Colégio Brasileiro de Reprodução Animal. 2013. Manual para exame andrológico e avaliação de sêmen animal. 3.ed. Belo Horizonte: CBRA, 104p.

Colas G. 1975. Effect of initial freezing temperature, addition of glycerol and dilution on the survival and fertilizing ability of deep-frozen ram semen. Reproduction. 42(2): 277-285.

Cormier N., Sirard M.A. & Bailey J.L. 1997. Premature capacitation of bovine spermatozoa is initiated by cryopreservation. Journal of Andrology. 18(4): 461-468.

Cunha I.C.N.D. 2002. Criopreservação do sêmen de cães. 149f. Botucatu. SP. Tese (Doutorado em Reprodução Animal) - Faculdade de Medicina Veterinária e Zootecnia da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Universidade Estadual Paulista.

De Souza Castelo T., Rodrigues Frota T. & Rodrigues Silva A. 2008. Considerations on goat semen cryopreservation. Acta Veterinaria Brasilica. 2(3): 67-75.

Evans G. & Maxwell W.M. 1990. Inseminación Artificial de Ovejas y Cabras. Zaragoza: Acribia, 192p.

Falchi L., Galleri G., Zedda M.T., Pau S., Bogliolo L., Ariu F. & Ledda S. 2018. Liquid storage of ram semen for 96 h: Effects on kinematic parameters, membranes and DNA integrity, and ROS production. Livestock Science. 207: 1-6. DOI: 10.1016/j.livsci.2017.11.001

Fuller S.J. & Whittingham D.G. 1996. Effect of cooling mouse spermatozoa to 4ºC on fertilization and embryonic development. Reproduction. 108(1): 139-145.

Gao D., Mazur P. & Critser J.K. 1997. Fundamental cryobiology of mammalian spermatozoa. In: Armand M. & Karow J.K.C. (Eds). Reproductive Tissue Banking. London: Academic Press, pp.282-331.

Gillan L., Evans G. & Maxwell W.M.C. 1997. Capacitation status and fertility of fresh and frozen–thawed ram spermatozoa. Reproduction, Fertility and Development. 9(5): 481-488.

Gündoğan M. 2009. Short term preservation of ram semen with different extenders. Kafkas Universitesi Veteriner Fakultesi Dergisi. 15(3): 429-435.

Hammerstedt R.H., Graham J.K. & Nolan J.P. 1990. Cryopreservation of mammalian sperm: what we ask them to survive. Journal of Andrology. 11(1): 73-88.

Holt W.V. 2000. Basic aspects of frozen storage of semen. Animal Reproduction Science. 62(1-3): 3-22.

Jimenez T., Sánchez G. & Blanco G. 2012. Activity of the Na,K‐ATPase α4 isoform is regulated during sperm capacitation to support sperm motility. Journal of Andrology. 33(5): 1047-1057.

Kadirvel G., Kumar S. & Kumaresan A. 2009. Lipid peroxidation, mitochondrial membrane potential and DNA integrity of spermatozoa in relation to intracellular reactive oxygen species in liquid and frozen-thawed buffalo semen. Animal Reproduction Science. 114(1-3): 125-134.

Kovacs A. & Foote R.H. 1992. Viability and acrosome staining of bull, boar and rabbit spermatozoa. Biotechnic & Histochemistry. 67(3): 119-124.

Kulaksız R., Bucak M.N., Akcay E., Sakin F., Daşkın A. & Ateşşahin A. 2011. The effects of different extenders and myo-inositol on post-thaw quality of ram semen. Kafkas Universitesi Veteriner Fakultesi Dergisi. 17(2): 217- 222.

Lamirande E., Jiang H., Zini A., Kodama H. & Gagnon C. 1997. Reactive oxygen species and sperm physiology. Reviews of Reproduction. 2(1): 48-54.

Leahy T. & Gadella B.M. 2011. Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction. 142(6): 759. DOI: 10.1530/REP-11-0310

Leboeuf B., Guillouet P., Batellier F., Bernelas D., Bonne J.L., Forgerit Y., Renaud G. & Magistrini M. 2003. Effect of native phosphocaseinate on the in vitro preservation of fresh semen. Theriogenology. 60(5): 867-877.

Lopez Saez A., Ortiz N., Gallego L. & Garde J.J. 2000. Liquid storage (5ºC) of ram semen in different diluents. Archives of Andrology. 44(2): 155-164.

Machado G.M., Carvalho J.O., Siqueira Filho E., Caixeta E.S., Franco M.M., Rumpf R. & Dode M.A.N. 2009. Effect of Percoll® volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos. Theriogenology. 71(8): 1289-1297.

Makler A., Makler-Shiran E., Stoller J., Lissaak A., Abramovici H. & Blumenfeld Z. 1992. Use of a sealed minichamber to investigate human sperm motility in real time under aerobic and anaerobic conditions. Archives of Andrology. 29(3): 255-261.

Martins C.F., Dode M.A.N. & Silva A.E.D.F. 2016. Atlas de Morfologia Espermática Bovina. Brasília: Embrapa Cerrados-Livro Científico (ALICE), pp.30-31.

Mata-Campuzano M., Álvarez-Rodríguez M., Alvarez M., Anel L., Paz P., Garde J.J. & Martínez-Pastor F. 2012. Effect of several antioxidants on thawed ram spermatozoa submitted to 37oC up to four hours. Reproduction in Domestic Animals. 47(6): 907-914.

Maxwell W.M. & Salamon S. 1993. Liquid storage of ram semen: a review. Reproduction, Fertility and Development. 5(6): 613-638.

Medeiros C.M.O., Forell F., Oliveira A.T.D. & Rodrigues J.L. 2002. Current status of sperm cryopreservation: why isn't it better? Theriogenology. 57(1): 327-344.

Mies Filho A. 1987. Reprodução dos Animais e Inseminação Artificial. v.2. 6.ed. Porto Alegre: Sulina, 423p.

O’Hara L., Hanrahan J.P., Richardson L., Donovan A., Fair S., Evans A.C.O. & Lonergan P. 2010. Effect of storage duration, storage temperature, and diluent on the viability and fertility of fresh ram sperm. Theriogenology. 73(4): 541-549.

O'shea T. & Wales R.G. 1966. Effect of casein, lecithin, glycerol, and storage at 5ºC on diluted ram and bull semen. Australian Journal of Biological Sciences. 19(5): 871-882.

Paulenz H., Söderquist L., Ådnøy T., Fossen O.H. & Berg K.A. 2003. Effect of milk- and TRIS-based extenders on the fertility of sheep inseminated vaginally once or twice with liquid semen. Theriogenology. 60(4): 759-766.

Paulenz H., Söderquist L., Pérez-Pé R. & Berg K.A. 2002. Effect of different extenders and storage temperatures on sperm viability of liquid ram semen. Theriogenology. 57(2): 823-836.

Pérez L.J., Valcarcel A., Las Heras M.A., Moses D.F. & Baldassarre H. 1996. In vitro capacitation and induction of acrosomal exocytosis in ram spermatozoa as assessed by the chlortetracycline assay. Theriogenology. 45(5): 1037-1046.

Pérez-Pé R., Cebrián-Pérez J.A. & Muiño-Blanco T. 2001. Semen plasma proteins prevent cold-shock membrane damage to ram spermatozoa. Theriogenology. 56(3): 425-434.

Purdy P.H. 2006. A review on goat sperm cryopreservation. Small Ruminant Research. 63(3): 215-225.

Ricker J.V., Linfor J.J., Delfino W.J., Kysar P., Scholtz E.L., Tablin F., Crowe J.H., Ball B.A. & Meyers S.A. 2006. Equine sperm membrane phase behavior: the effects of lipid-based cryoprotectants. Biology of Reproduction. 74(2): 359-365.

Rodrigues B.A. 1997. Efeito do diluidor à base de albumina sérica bovina (BSA) sobre a viabilidade in vitro do sêmen canino criopreservado. 176f. Porto Alegre. RS. Dissertação (Mestrado em Ciências Veterinárias) - Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul.

Saalu L.C. 2010. The incriminating role of reactive oxygen species in idiopathic male infertility: an evidence-based evaluation. Pakistan Journal of Biological Sciences. 13(9): 413-422.

Salamon S. & Maxwell W.M.C. 1995. Frozen storage of ram semen II. Causes of low fertility after cervical insemination and methods of improvement. Animal Reproduction Science. 38(1-2): 1-36.

Salamon S. & Maxwell W.M.C. 2000. Storage of ram semen. Animal Reproduction Science. 62(1-3): 77-111.

Salamon S. & Visser D. 1972. Effect of composition of Tris-based diluent and of thawing solution on survival of ram spermatozoa frozen by the pellet method. Australian Journal of Biological Sciences. 25(3): 605-618.

Samo M.U., Axford R.F.E., Qureshi T.A., Memon A.A. & Memon M.M. 2006. Effects of aerobic and anaerobic incubation on the quality of ram semen. Pakistan Journal of Biological Sciences. 9(1): 123-127.

Samper J.C., McKinnon A.O. & Pycock J. 2007. Current Therapy in Equine Reproduction. St. Louis: Saunders Elsevier, 492p.

Santos I.W. 2004. Albumina sérica bovina como fonte proteica do diluidor Tris (hidroximetil amino metano) para congelação do sêmen canino. 63f. Jaboticabal. SP. Tese (Doutorado em Medicina Veterinária) - Programa de Pós-Graduação em Medicina Veterinária na Área de Reprodução Animal, Universidade Estadual Paulista.

Squires E.L., Carnevale E.M., McCue P.M. & Bruemmer J.E. 2003. Embryo technologies in the horse. Theriogenology. 59(1): 151-170.

Storey K.B. & Storey J.M. 2017. Molecular physiology of freeze tolerance in vertebrates. Physiological Reviews. 97(2): 623-665.

Ubah S.A., Sule M., Chibuogwu I.C., Columbus P.K., Abah K.O., Agbonu O.A., Ejiofor C.E., Mshelbwala P.P. & Bankole S.A. 2019. Comparative study of chicken egg yolk and quail egg yolk in two chilled canine semen extenders. Sokoto Journal of Veterinary Sciences. 17(4): 62-69.

Valença R.M.B. & Guerra M.M.P. 2007. Espécies reativas ao oxigênio (ROS) e a utilização de antioxidantes na criopreservação do sêmen suíno. Revista Brasileira de Reprodução Animal. 31(1): 47-53.

Verstegen J.P., Onclin K. & Iguer-Ouada M. 2005. Long-term motility and fertility conservation of chilled canine semen using egg yolk added Tris–glucose extender: in vitro and in vivo studies. Theriogenology. 64(3): 720-733.

Watson P.F. 1995. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reproduction, Fertility and Development. 7(4): 871-891.

Watson P.F. 2000. The causes of reduced fertility with cryopreserved semen. Animal Reproduction Science. 60: 481-492.

White I.G. 1993. Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reproduction, Fertility and Development. 5(6): 639-658.

Yanagimachi R. 1970. The movement of golden hamster spermatozoa before and after capacitation. Reproduction. 23(1): 193-196.

Yániz J., Marti J.I., Silvestre M.A., Folch J., Santolaria P., Alabart J.L. & López-Gatius F. 2005. Effects of solid storage of sheep spermatozoa at 15 degrees C on their survival and penetrating capacity. Theriogenology. 64(8): 1844- 1851.

Additional Files

Published

2022-12-28

How to Cite

Bartmer, M. E., Sanguinet, E. de O., Pinzón-Osorio, C. A., Cunha, T. K., Ferreira, H. da S., Kohler, L. F., … Bertolini, M. (2022). Sperm Cell Capacitation Status of Ram Semen after Cooling. Acta Scientiae Veterinariae, 50. https://doi.org/10.22456/1679-9216.128811

Issue

Section

Articles