Sheep Corneal Endothelium Morphology - Evaluation with Trypan Blue and Alizarin Red

Authors

  • Anita Marchionatti Pigatto Universidade Federal de Santa Maria - UFSM https://orcid.org/0000-0002-0521-7984
  • Jankerle Neves Boeloni Universidade Federal do Espírito Santo (UFES), Alegre, ES, Brazil. https://orcid.org/0000-0003-0049-6854
  • Maiara Poersch Seibel Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil. https://orcid.org/0000-0002-5295-4979
  • Alessandra Fernandez da Silva Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil. https://orcid.org/0000-0001-8858-5207
  • Eduarda Valim Borges de Vargas Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
  • Mariane Gallicchio Azevedo Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil. https://orcid.org/0000-0002-8912-1436
  • Guilherme Rech Cassanego Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
  • Gabriella De Nardin Peixoto Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil https://orcid.org/0000-0001-8340-4438
  • Natália Karianne Brandenburg Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
  • João Antonio Tadeu Pigatto Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.

DOI:

https://doi.org/10.22456/1679-9216.123885

Abstract

Background: The endothelium is a layer fundamental to maintaining corneal transparency. In ophthalmology, sheep eyes have been used as a model in research related to corneal transplantation. Different techniques have been used to evaluate the corneal endothelium. Concerning vital dyes, corneal endothelial cell analyses have not yet been studied in ovines. The purpose of the present study was to evaluate the morphology of endothelial cells from different regions of the cornea of sheep after staining with alizarin red and trypan blue using an optical microscope.

Materials, Methods & Results: Twenty healthy eyes of 10 male sheep obtained from a licensed commercial slaughterhouse were studied. The study was approved by the Research Committee of the Faculty of Veterinary at UFRGS and followed the ethical standards of the Association for Research in Vision and Ophthalmology (ARVO). Immediately after the slaughter, the eyes were enucleated and underwent eye examination. The corneal endothelium was stained with trypan blue and alizarin red and examined and photographed using an optical microscope. The central, superior, inferior, nasal and temporal areas of the cornea were evaluated for cell morphology. Data were compared by t-tests. Differences were considered statistically significant at P < 0.05. Immediately after staining the corneal endothelium, it was possible to examine with an optical microscope, obtain images and analyse the shape of endothelial cells from all regions of the sheep cornea. Polygonal, uniform and continuous cells were observed in all samples studied. Considering all the corneas analysed, cells with 6 sides (75.11%), 5 sides (12.76%) and 4 sides (12.12%) were found. In the central region of the cornea 75.91% of cells with 6 sides, 12.6% of cells with 5 sides and 11.48% with 7 sides were found. In the superior region of the cornea 76.07% of cells with 6 sides, 13.25% with 5 sides and 10.68% with 7 sides were found. In the lower region were found 74.72% of cells with 6 sides, 13% with 5 sides and 12.27% with 7 sides. In the temporal region, 74.14% were 6-sided cells, 11.42% had 5 sides, and 14.43% had 7 sides. Furthermore, in the nasal region, 74.72% of the cells had 6 sides, 13.54% had 5 sides, and 11.73% had 7 sides. No significant differences were found between cell morphology in all corneal regions evaluated. In addition, no significant difference was found when comparing the right eye with the left eye.

Discussion: Different methods are used for the analysis of corneal endothelium. For ex vivo research optical microscopy after endothelial staining is an alternative low-cost technique that allows the analysis of all regions of the cornea. Quantitative analyses must characterise the endothelial parameters of the different species. The analysis of the morphology of corneal endothelium with an optic microscope after staining with alizarin red has been described as an effective, rapid and cost-efficient method, since this dye blends with the borated cells, allowing identification. In the present study, using optical microscopy and coloration with alizarin red it was possible to explore and obtain images of the ovine endothelium of all regions of the cornea. In the current study, the endothelium had a predominance of cells will 6 sides in all regions studied. This study allowed us to obtain images of the endothelium as well as quantitative data on the morphology of the different regions of the sheep cornea. This study demonstrated that morphology did not differ between the central and peripheral regions. The findings of this study represent a further source of reproducible data that should be considered when using sheep cornea as ex vivo model for experimental research.

Keywords: ovine, endothelial cells, ex vivo model, vital staining, hexagonality.

Downloads

Download data is not yet available.

Author Biographies

Anita Marchionatti Pigatto, Universidade Federal de Santa Maria - UFSM

Programa de Pós-Graduação em Medicina Veterinária (PPGMV), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.

Jankerle Neves Boeloni, Universidade Federal do Espírito Santo (UFES), Alegre, ES, Brazil.

Departamento de Medicina Veterinária, Universidade Federal do Espírito Santo (UFES), Alegre, ES, Brasil.

Maiara Poersch Seibel, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.

Faculdade de Veterinária (Favet), Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.

Alessandra Fernandez da Silva, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.

Faculdade de Veterinária (Favet), Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil

Eduarda Valim Borges de Vargas, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.

Faculdade de Veterinária (Favet), Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil

Mariane Gallicchio Azevedo, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.

Faculdade de Veterinária (Favet), Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil

Guilherme Rech Cassanego, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil

Programa de Pós-Graduação em Medicina Veterinária (PPGMV), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil

Gabriella De Nardin Peixoto, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil

Faculdade de Medicina Veterinária, UFSM, Santa Maria, RS, Brazil

Natália Karianne Brandenburg, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil

Faculdade de Medicina Veterinária, UFSM, Santa Maria, RS, Brazil

João Antonio Tadeu Pigatto, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.

Faculdade de Veterinária (Favet), Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil

References

Al Abdulsalam N.K., Barnett N.L., Harkin D.G. & Walshe J. 2018. Cultivation of corneal endothelial cells from sheep. Experimental Eye Research. 173: 24-31. DOI: https://doi.org/10.1016/j.exer.2018.04.011

Albuquerque L., Freitas L.V.R.P. & Pigatto J.A.T. 2015. Analysis of the corneal endothelium in eyes of chickens using contact specular microscopy. Semina: Ciências Agrárias. 36(6): 4199-4206. DOI: https://doi.org/10.5433/1679-0359.2015v36n6Supl2p4199

Albuquerque L., Pigatto A.M. & Pigatto J.A.T. 2020. Evaluation of equine (Equus cabbalus) corneal endothelium stored in EUSOL-C® preservation medium. Semina: Ciências Agrárias. 41(6): 3155-3164. DOI: https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3155

Andrew S.E., Willis A.M. & Anderson D.E. 2002. Density of corneal endothelial cells, corneal thickness, and corneal diameters in normal eyes of llamas and alpacas. American Journal of Veterinary Research. 63(3): 326-329. DOI: https://doi.org/10.2460/ajvr.2002.63.326

Andrew S.E., Ramsey D.R., Hauptman J.G. & Brooks D.E. 2001. Density of corneal endothelial cells and corneal thickness in eyes of euthanatized horses. American Journal of Veterinary Research. 62(4): 479-482. DOI: https://doi.org/10.2460/ajvr.2001.62.479

Bercht B.S., Albuquerque L., Araújo A.C.P. & Pigatto J.A.T. 2015. Specular microscopy to determine corneal endothelial cell morphology and morphometry in chinchillas (Chinchilla lanigera) in vivo. Veterinary Ophthamology. 18(1): 137-142. DOI: https://doi.org/10.1111/vop.12236

Cafaro T.A., Suárez M.F., Maldonado C., Croxatto J.O., Insfrán C., Urrets-Zavalía J.A. & Serra H.M. 2014. On the cornea of healthy Merino sheep: a detailed ex vivo confocal, histological and ultrastructural study. Anatomia, Histologia, Embryologia. 44(4): 247-254. DOI: https://doi.org/10.1111/ahe.12131

Claesson M., Elder M.J. & Larkin D.F.P. 1997. A method for separation and staining of flat mounts of human corneal endothelium. Acta Ophthalmologica Scandinavica. 75(2): 131-133. DOI: https://doi.org/10.1111/j.1600-0420.1997.tb00107.x

Clerot L.L., Hünning P.S., Bettio M., Torikachvili M., Petersen M.B., Silva A.F., Carissimi A.S. & Pigatto J.A.T. 2019. Morphology of endothelial cells from different regions of the swine cornea. Acta Scientiae Veterinariae. 47(1): 1623. 6p. DOI: 10.22456/1679-9216.89436 DOI: https://doi.org/10.22456/1679-9216.89436

Collin S.P. & Collin H.B. 1998. A comparative study of the corneal endothelium in vertebrates. Clinical and Experimental Optometry. 81(6): 245-254. DOI: https://doi.org/10.1111/j.1444-0938.1998.tb06744.x

Coyo N., Leiva M., Costa D., Rios J. & Pena T. 2018. Corneal thickness, endothelial cell density, and morphological and morphometric features of corneal endothelial cells in goats. American Journal of Veterinary Research. 79(10): 1087-1092. DOI: https://doi.org/10.2460/ajvr.79.10.1087

Coyo N., Pena M.T., Costa D., Rios J., Lacerda R. & Leiva M. 2015. Effects of age and breed on corneal thickness, density, and morphology of corneal endothelial cells in enucleated sheep eyes. Veterinary Ophthalmology. 19(5): 367-372. DOI: https://doi.org/10.1111/vop.12308

Doughty M.J. 2017. Further analysis of the predictability of corneal endothelial cell density estimates when polymegethism is present. Cornea. 36(8): 973-979. DOI: https://doi.org/10.1097/ICO.0000000000001218

Faganello C.S., Silva V.R.M., Andrade M.C.C., Carissimi A.S. & Pigatto J.A.T. 2016. Morphology of endothelial cells from different regions of the equine cornea. Ciência Rural. 46(12): 2223-2228. DOI: https://doi.org/10.1590/0103-8478cr20160216

Farias R.J.M., Kubokawa K.M., Schirmer M. & Sousa L.B. 2007. Evaluation of corneal tissue by slit lamp and specular microscopy during the preservation period. Arquivos Brasileiros de Oftalmologia. 70(1): 79-83. DOI: https://doi.org/10.1590/S0004-27492007000100015

Franzen A.A., Pigatto J.A.T., Abib F.C., Albuquerque L. & Laus J.L. 2010. Use of microscope specular to determine corneal endothelial cell morphology and morphometry in enucleated cats. Veterinary Ophthalmology. 13(4): 222-226. DOI: https://doi.org/10.1111/j.1463-5224.2010.00787.x

Greene C.A., Misra S.L., Lee H., McKelvie J., Kapadia K., McFarlane R., McGhee C.N.J., Green C.R. & Sherwin T. 2018. The sheep cornea: structural and clinical characteristics. Current Eye Research. 43(12): 1432-1438. DOI: https://doi.org/10.1080/02713683.2018.1510970

Hünning P.S., Andrade M.C.C., Carissimi A. & Pigatto J. 2018. Morphology of endothelial cells from different regions of the cornea of dogs. Ciência Rural. 48(10): DOI: 10.1590/0103-8478cr20180596. DOI: https://doi.org/10.1590/0103-8478cr20180596

Laing R.A., Sandstrom M.M. & Leibowitz H.M. 1979. Clinical specular microscopy. I. Optical principles. Archives of Ophthalmology. 97(9): 1714-1719. DOI: https://doi.org/10.1001/archopht.1979.01020020282021

Ledbetter E.C. & Scarlett J.M. 2009. In vivo confocal microscopy of the normal equine cornea and limbus. Veterinary Ophthalmology. 12(Suppl 1): 57-64. DOI: https://doi.org/10.1111/j.1463-5224.2009.00730.x

Pigatto J.A.T., Abib F.C., Pizzeti J.C., Laus J.L., Santos J.M. & Barros P.S.M. 2005. Análise morfométrica do endotélio corneano de coelhos à microscopia eletrônica de varredura. Acta Scientiae Veterinariae. 33(1): 41-45. DOI: https://doi.org/10.22456/1679-9216.14441

Pigatto J.A.T., Andrade M.C., Laus J.L., Santos J.M., Brooks D.E., Guedes P.M. & Barros P.S.M. 2004. Morphometric analysis of the corneal endothelium of Yacare caiman (Caiman yacare) using scanning electron microscopy. Veterinary Ophthalmology. 7(3): 205-208. DOI: https://doi.org/10.1111/j.1463-5224.2004.04025.x

Pigatto J.A.T., Cerva C., Freire C.D., Abib F.C., Bellini L.P., Barros P.S.M. & Laus J.L. 2008. Morphological analysis of the corneal endothelium in eyes of dogs using specular microscopy. Pesquisa Veterinária Brasileira. 28(9): 427-430. DOI: https://doi.org/10.1590/S0100-736X2008000900006

Pigatto J.A.T., Franzen A.A., Pereira F.Q., Almeida A.C.V.R., Laus J.L., Santos, J.M., Guedes P.M. & Barros P.S.M. 2009. Scanning electron microscopy of the corneal endothelium of ostrich. Ciência Rural. 39(3): 926-929. DOI: https://doi.org/10.1590/S0103-84782009005000001

Pigatto J.A.T., Laus J.L., Santos J.M., Cerva C., Cunha L.S., Ruoppolo V. & Barros P.S.M. 2005. Corneal endothelium of Magellanic Penguin (Spheniscus magellanicus) by scanning electron microscopy. Journal of Zoo and Wildlife Medicine. 36(4): 702-705. DOI: https://doi.org/10.1638/05017.1

Reichard M., Hovakimyan M., Wree A., Meyer-Lindenberg A., Nolte I., Junghans C., Guthoff R. & Stachs O. 2010. Comparative in vivo confocal microscopical study of the cornea anatomy of different laboratory animals. Current Eye Research. 35(12): 1072-1080. DOI: https://doi.org/10.3109/02713683.2010.513796

Rodrigues E.B., Costa E., Penha F.M., Melo G.B., Bottos J., Dib E., Furlani B., Lima V.C., Maia M., Meyer C.H., Höfling-Lima A.L. & Farah M.E. 2009. The use of vital dyes in ocular surgery. Survey of Ophthalmology. 54(5): 576-617. DOI: https://doi.org/10.1016/j.survophthal.2009.04.011

Ruggeri A., Scarpa F., Massimo L., Meltendorf C. & Schroeter J. 2010. System for the automatic estimation of morphometric parameters of corneal endothelium in alizarine red-stained images. British Journal of Ophthalmology. 94(5): 643-647. DOI: https://doi.org/10.1136/bjo.2009.166561

Saad H.A., Terry M.A., Shamie N., Chen E.S., Amigo D.F., Holiman J.D. & Stoeger C. 2008. An easy and inexpensive method for quantitative analysis of endothelial damage by using vital dye staining and adobe photoshop software. Cornea. 27(7): 818-824. DOI: https://doi.org/10.1097/ICO.0b013e3181705ca2

Selig B., Vermeer K.A., Rieger B., Hillenaar T. & Hendriks C.L.L. 2015. Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy. BMC Medical Imaging. 15(13). DOI: doi: 10.1186/s12880-015-0054-3. DOI: https://doi.org/10.1186/s12880-015-0054-3

Spence D.J. & Peiman G.A. 1976. A new technique for the vital staining of corneal endothelium. Investigative Ophthalmology & Visual Science. 15(7): 1000-1002.

Tamayo-Arango L.J., Baraldi-Artoni S.M., Laus J.L., Vicenti F.A.M., Pigatto J.A. & Abib F.C. 2009. Ultrastructural morphology and morphometry of the normal corneal endothelium of adult crossbred pig. Ciência Rural. 39(1): 117-122. DOI: https://doi.org/10.1590/S0103-84782009000100018

Taylor M.J. & Hunt C.J. 1981. Dual staining of corneal endothelium with trypan blue and alizarin red S: importance of pH for the dye-lake reaction. British Journal of Ophthalmology. 65(12): 815-819. DOI: https://doi.org/10.1136/bjo.65.12.815

Williams K.A. 1999. A new model of orthotopic penetrating corneal transplantation in the sheep: Graft survival, phenotypes of graft-infiltrating cells and local cytokine production. Australian and New Zealand Journal of Ophthalmology. 27(2): 127-135. DOI: https://doi.org/10.1046/j.1440-1606.1999.00171.x

Additional Files

Published

2022-06-20

How to Cite

Marchionatti Pigatto, A., Neves Boeloni, J. ., Poersch Seibel, M. . . ., Fernandez da Silva, A. ., Valim Borges de Vargas, E., Gallicchio Azevedo, M., … Antonio Tadeu Pigatto, J. (2022). Sheep Corneal Endothelium Morphology - Evaluation with Trypan Blue and Alizarin Red. Acta Scientiae Veterinariae, 50. https://doi.org/10.22456/1679-9216.123885

Issue

Section

Articles