Proteinogram of Immunized Sheep with Detoxified Tiyus serrulatus Scorpion Venom


  • Marina Guimarães Ferreira Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brasil
  • Ana Flávia Ribeiro Michel Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brasil
  • Lílian de Paula Gonçalves Reis Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brasil
  • Ana Flávia Machado Botelho Departamento de Medicina Veterinária, Universidade Federal de Goiás (UFG), Goiânia, Brasil
  • Clara Guerra Duarte Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brasil
  • Carlos Delfin Chávez-Olórtegui Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brasil
  • Marília Martins Melo Universidade Federal de Minas Gerais Escola de Veterinária



Background: Scorpionism is a worldwide medical issue, especially relevant in the tropical and subtropical countries. Tityus serrulatus is the species responsible for most cases in Brazil. Antivenom administration to victims is the sole specific therapy obtained from donor animals. Most of these donors suffer with symptoms of the poisoning, debilitating their health and reducing their life expectancy. The aim of the present research was to evaluate whether the immunogens prepared from the crude and detoxified venom of T. serrulatus promoted different changes in fractionated sheep plasma proteins, during a scorpion antivenom serum production.

Materials, Methods & Results: Twelve sheep, healthy, mean weight of 30 kg, were distributed into 3 groups (n = 4): G1 (control), G2 (crude venom) and G3 (detoxified venom). The adopted immunization protocol (first cycle) had 6 doses, 3 using Freund's adjuvant, with a 21-day interval between each one (day 0, 22 and 43), and 3 doses with no adjuvant (booster) and 0.2 mg of antigen (reinforcement), spaced 3 days between each other (day 50, 53 and 56). Group control (G1) received 6 immunizations with phosphate buffered saline (PBS) associated with Freund's adjuvant (1:1), while the other 2 groups received 0.5 mg of venom (G2) and detoxified venom (G3), respectively, diluted in PBS, associated with the Freund adjuvant. The boosters were 1/3 of the initial dose, diluted only PBS. At baseline (T0) and at 24 and 48 h after immunization, all animals underwent clinical examinations. Blood samples were collected at day 0, 22, 43, 53 and 56 for proteinogram analysis. Total protein, albumin and globulins fractions were measured. Plasma albumin concentration at T0 ranged from 3.41-4.86 g/dL, with a mean value of 4.12 g/dL. There was no statistical difference between the 3 experimental groups. The normal values determined for α-globulin range from 0.14 to 0.54 g/dL, with a mean of 0.31 g/dL (T0). There was a significant increase in the 3rd immunization and its respective interval (24-48 h), with values above normal in all groups: G1 (0.66 g/dL), G2 (0.62 g/dL) and G3 (0.65g/dL). The β-globulin was subdivided into β1 and β2 globulin. At T0, the normal values of β1 ranged from 0.45 to 1.05 g/dL, with a mean of 0.664 g/dL, and no significant change was observed in this classification. On the other hand, there was an abrupt increase in β2 in all groups after the first immunization, compared to the baseline value in T0 (0.37 g/dL mean value). From the third to the 6th immunization, there was an important reduction in β2 fraction when compared with baseline value. The γ-globulins fraction ranged from 0.80 g/dL to 76 g/dL. In the 6th immunization, there was a significant difference between G1 and the groups that received venom (G2 and G3). Therefore, all animals presented an acute inflammatory response, evidenced by the significant reduction of plasma albumin and an increase in α-globulin and β2-globulin. It is important to point out that T. serrulatus detoxified venom did not cause alterations in ovine proteinogram during the first cycle of immunization.

Discussion: The fact that both groups (G2 and G3) presented acute inflammatory response, indicates that this alteration is caused by the adjuvant present in the immunization protocol. Tityus serrulatus venom detoxified with glutaraldehyde did not ~cause significant alterations in ovine proteinogram in the early stages, suggesting that itmay be used as an alternative antigen for the production of antivenom, improving clinical conditions of donor animals.

Keywords: scorpion, clinical pathology, ruminants, inflammation, antiserum.

Título: Proteinograma de ovelhas imunizadas com veneno detoxificado do escorpião Tityus serrulatus

Descritores: escorpião, patologia clínica, ruminantes, inflamação, antisoro.


Download data is not yet available.

Author Biography

Marília Martins Melo, Universidade Federal de Minas Gerais Escola de Veterinária

Escola de Veterinária da Universidade Federal de Minas Gerais (EV/UFMG), Departamento de Clínica e Cirurgia Veterinárias.


Allison R. W. 2012. Laboratory Evaluation of Plasma and Serum Proteins. In: Thrall M.A., Weiser G., Allison R.W. & Campbell T.W. (Eds). Veterinary Hematology and Clinical Chemistry. 2nd edn. Philadelphia: John Wiley & Sons, pp.460-475.

Almeida F.M., Pimenta A.M., Figueiredo S.G., Santoro M.M., Martin-Eauclaire M.F., Diniz C.R. & Lima M.E. 2002. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon. 40(7): 1041-1045.

Becerril B., Marangoni S. & Possani L.D. 1997. Toxins and genes isolated from scorpions of the genus Tityus. Toxicon. 5(6): 821-835.

Bertazzi D.T., Assis-Pandochi A.I., Azzolini A.E., Talhaferro V.L., Lazzarini M. &Arantes E.C. 2003. Effects of Tityus serrulatus scorpion venom and its major toxin, TsTX-I, on the complement system in vivo. Toxicon. 41(4): 501-508.

Broderson J.R. 1989. A retrospective review of lesions associated with the use of Freund’s adjuvant. Laboratory Animal Science. 39(5): 426- 434.

Campolina D., Guerra C.M.N., Guerra S.D., Dias M.B. & Andrade Filho A. 2013. Escorpionismo. In: Andrade Filho A., Campolina D. & Dias M.B. (Eds). Toxicologia na Prática Clínica. 2.ed. Belo Horizonte: Folium, pp.295-303.

Casella-Martins A., Ayres L.R., Burin S.M., Morais F.R., Pereira J.C., Faccioli L.H., Sampaio S.V., Arantes E.C., Castro F.A. & Pereira-Crott L.S. 2015. Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes. Journal of Venomous Animals and Toxins including Tropical Diseases. 21(46): 1-8.

Chávez-Olortegui C., Kalapothakis E., Ferreira A.M.B.M., Ferreira A.P. & Diniz C.R. 1997. Neutralizing capacity of antibodies elicited by a non-toxic protein purified from the venom of the scorpion Tityus serrulatus. Toxicon. 35(2): 213-221.

Chippaux J.P. & Goyffon M. 1998. Venoms, antivenoms and immunotherapy. Toxicon. 36(6): 823-846.

Eckersall P.D. 2008. Acute phase proteins as markers of inflammatory lesions. Comparative Haematology International. 5: 93-97.

Eckersall D. 2008. Proteins, Proteomics, and the Dysproteinemias. In: Kaneko J.J., Harvey J.W. & Bruss M.L. (Eds). Clinical Biochemistry of Domestic Animals. 5th edn. San Diego: Academic Press, pp.117-148.

Ferreira M.G., Duarte C.G., Oliveira M.S., Castro K.L.P., Teixeira M.S., Reis L.P.G., Zambrano J.A., Kalapothakis E., Michel A.F.R.M., Soto-Blanco B., Chavez-Olortegui C. & Melo M.M. 2016. Toxicity of crude and detoxified Tityus serrulatus venom in anti-venom-producing sheep. Journal of Veterinary Science. 17(4): 467-477.

Gazarian K.G., Gazarian T., Hernández R. & Possani L.D. 2005. Immunology of scorpion toxins and perspectives for generation of anti-venom vaccines. Vaccine. 23(26): 3357-3368.

Gonzalez F.H.D., Martínez-Subiela S. & Cerón J.J. 2007. Haptoglobina em rumiantes: generalidades y posibles aplicaciones clinicas. Anales de Veterinaria de Murcia. 23: 5-17.

Gwee M.C.E., Gopalakrishnakone P., Cheah L.S., Wong P.T.H., Gong J.P. & Kini R.M. 1996. Studies on venom from the Black scorpion Heterometrus longimanus and some other Scorpions species. Journal of Toxicology. 15: 37-57.

Ingenbleek M. & Young V. 1994. Transthyretin (prealbumin) inhealth and disease: nutritional implications. Annual Review of Nutrition. 14: 495-533.

Machado R.A.A., Alvarenga L.M., Tavares C.A.P., Molina F. & Chávez-Olortegui C. 2004. Molecular characterization of protective antibodies raised in mice by Tityus serrulatus scorpion venom toxins conjugated to bovine serum albumin. Toxicon. 44(3): 233-241.

Marcussi S., Arantes E.C. & Soares A.M. 2011. Escorpiões - Biologia, Envenenamento e Mecanismos de Ação de suas Toxinas. São Paulo: FUNPEC Editora, pp.33-107.

Meki A.R.M.A. & El-Dean Z.M.M. 1998. Serum interleukin-1β, interleukin-6, nitric oxide and α1-antitrypsinin scorpion envenomed children. Toxicon. 36(12): 1851-1859.

Mendes T.M., Dias F., Horta C.C.R., Pena I.F., Arantes E.C. & Kalapothakis E. 2008. Effective Tityus serrulatus anti-venom produced using the Ts1 component. Toxicon. 52(7): 787-793.

Murata H., Shimada N. & Yoshioka M. 2004. Current research on acute phase proteins in veterinary diagnosis: an overview. The Veterinary Journal. 168(1): 28-40.

Pessini A.C., Souza A.M., Faccioli L.H., Gregório Z.M.O. & Arantes E.C. 2003. Time course of acute phase reaction induced by Tityus serrulatus venom and TsTX-I in mice. International Immunopharmacology. 3(5): 765-774.

Pessini A.C., Santos D.R., Arantes E.C. & Souza G.E.P. 2006. Mediators involved in the febrile response induced by Tityus serrulatus scorpion venom in rats. Toxicon. 48(5): 556-566.

Petricevich V.L., Hernández C.A., Coronas F.I.V & Possani L.D. 2007. Toxin gamma from Tityus serrulatus scorpion venom plays an essential role in immunomodulation of macrophages. Toxicon. 50(5): 666-675.

Petricevich V.L. 2010. Scorpion venom and the inflammatory response. Mediators of Inflammation. 2010: 903295. Doi: 10.1155/2010/903295.

Piccione G., Alberghina D., Marafioti S., Giannetto C., Casella S., Assenza A. & Fazio F. 2012. Electrophoretic serum protein fraction profile during the different physiological phases in Comisana ewes. Reproduction in Domestic Animals. 47(4): 591-595.

Pinto M.C.L., Borboleta L.R., Melo M.B. & Melo M.M. 2010. Tityus fasciolatus envenomation induced cardio-respiratory alterations in rats. Toxicon. 55(6): 1132-1137.

Possani L.D, Becerril B., Delepierre M. & Tytgat J. 1999. Scorpion toxins specific for Na+ channels. European Journal of Biochemistry. 264 (2): 287-300.

Possani L.D., Merino E., Corona M., Bolivar F. & Becerril B. 2000. Peptides and genes coding for scorpion toxins that affect íon-channels. Biochimie. 82(9-10): 861-868.

Ribeiro E.L. & Melo M.M. 2012. Proteínas do soro sanguíneo de cães inoculados com veneno de Tityus serrulatus. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 64(1): 217-220.

Sampaio I.B.M. 2002. Estatística Aplicada à Experimentação Animal. 2.ed. Belo Horizonte: Fundação de ensino e pesquisa em medicina veterinária e zootecnia, pp.189-202.

Silva D.F.M., Costa J.N., Araújo A.L. & Costa Neto A.O. 2010. Proteinograma sérico de cordeiros mestiços (Santa Inês x Dorper) do nascimento até o desmame: efeito do desenvolvimento etário e do monitoramento da ingestão de colostro. Ciência Animal Brasileira. 11(4): 794-805.

Zoccal K.F., Bitencourt C.S., Secatto A., Sorgi C.A., Bordon K.C.F., Sampaio S.V., Arantes E.C. & Faccioli L.H. 2011. Tityus serrulatus venom and toxins Ts1, Ts2 and Ts6 induce macrophage activation and production of imune mediators. Toxicon. 57(7-8): 1101-1108.



How to Cite

Ferreira, M. G., Michel, A. F. R., Reis, L. de P. G., Botelho, A. F. M., Duarte, C. G., Chávez-Olórtegui, C. D., & Melo, M. M. (2022). Proteinogram of Immunized Sheep with Detoxified Tiyus serrulatus Scorpion Venom. Acta Scientiae Veterinariae, 50.




Most read articles by the same author(s)