Pseudomonas aeruginosa Isolated from the Environment of a Veterinary Academic Hospital in Brazil - Resistance Profile

Authors

  • Micael Siegert Schimmunech Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO http://orcid.org/0000-0001-8610-8052
  • Emanuelle Azambuja Lima Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO http://orcid.org/0000-0003-4896-2711
  • Ângela Vitalina Barbosa de Assis Silveira Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO http://orcid.org/0000-0001-5400-1197
  • Angélica Franco de Oliveira Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO http://orcid.org/0000-0002-7636-1457
  • Cecília Nunes Moreira Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO http://orcid.org/0000-0001-7629-3290
  • Cleusely Matias de Souza Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO http://orcid.org/0000-0002-6238-456X
  • Eric Mateus Nascimento de Paula Unifimes - Rua 22 esq. c/ Av. 21 - St. Aeroporto, Mineiros - GO, 75833-130, Mineiros, GO. http://orcid.org/0000-0002-5948-1860
  • Ariel Eurides Stella Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO http://orcid.org/0000-0002-0435-4901

DOI:

https://doi.org/10.22456/1679-9216.119471

Abstract

Background: The presence of resistant and potentially virulent bacterial strains in a veterinary hospital environment is a neglected problem.  Pseudomonas aeruginosa is an opportunistic microorganism present and circulating in the veterinary hospital environment, of clinical importance and zooanthroponotic transmission of P. aeruginosa has also been reported. The aim of this study was to characterize the population of P. aeruginosa present in a veterinary hospital environment by evaluating their resistance profile and biofilm production.

Materials, Methods & Results: A total of 306 samples were collected from the veterinary hospital environment (swabs from consultation tables, surgical tables, door handles, hospitalization cages, stethoscopes, thermometers, and muzzles). The isolates were biochemically identified as belonging to the species Pseudomonas aeruginosa through nitrate to nitrite reduction, motility and oxidase test, growth at 42°C, pigment production, and alkalinization of acetamide. Antimicrobial resistance was tested using the minimum inhibitory concentration (MIC) test. Twenty seven isolates of P. aeruginosa were obtained, with a frequency of 8.8%. The detection of beta-lactamase production and biofilm formation genes by polymerase chain reaction (PCR). Two multidrug resistant (MDR) and 3 single-drug resistant (SDR) strains of P. aeruginosa were identified. Furthermore, it was observed that the strains carried genes related to beta-lactamase production (TEM and CTX-M group 25) and biofilm production (pelA, pslA, ppyR).

Discussion: Pseudomonas aeruginosa is considered a major cause of opportunistic hospital infections, as it causes significant morbidity and mortality in immunosuppressed individuals, both in animals and in humans. Veterinary hospitals can harbor microorganisms that cause infections, as well as multiresistant agents. Normally, these environments have a large circulation of people and animals, which particularly enables a facilitated dissemination of these resistant microorganisms. Recently, the World Health Organization (WHO) listed carbapenem-resistant P. aeruginosa as one of 3 bacterial species in critical need for the development of new antibiotics to treat their infections. The data found in this work strengthen the knowledge on the antimicrobial resistance capacity that P. aeruginosa exhibits. The presence of 3 multiresistant strains further highlights the advanced stage of resistance of this bacterial species. The characterization of strains of this species in a veterinary hospital environment is crucial for the control of this population circulating in this environment, and the consequent adoption of more effective measures aimed at controlling its proliferation. The study of this bacterial species in a veterinary hospital environment has a direct impact on human health, due to the mechanisms of resistance and genetic variability that can occur between infections in different animal species and in humans. In view of that, professionals working in veterinary hospitals should be aware of the importance of controlling these microorganisms. Correct measures must be taken to sanitize the environment and utensils between animal care sessions, besides frequent hand washing by all employees and the use of protective equipment such as masks and gloves. The presence of potentially biofilm-producing MDR and SDR strains indicates the free circulation of these bacteria in the veterinary hospital environment. Thus, as a potentially pathogenic microorganism to humans and animals, containment measures must be taken to prevent this possible transmission.

Keywords: bacteria, antimicrobial resistance, multidrug resistant, beta-lactamase, biofilm, veterinary care.

Downloads

Download data is not yet available.

Author Biographies

Micael Siegert Schimmunech, Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO

CIAGRA-UFJ

Emanuelle Azambuja Lima, Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO

CIAGRA UFJ

Ângela Vitalina Barbosa de Assis Silveira, Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO

CIAGRA UFJ

Angélica Franco de Oliveira, Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO

CIAGRA UFJ

Cecília Nunes Moreira, Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO

CIAGRA UFJ

Cleusely Matias de Souza, Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO

CIAGRA UFJ

Eric Mateus Nascimento de Paula, Unifimes - Rua 22 esq. c/ Av. 21 - St. Aeroporto, Mineiros - GO, 75833-130, Mineiros, GO.

Medicina Veterinária, UNIFIMES

Ariel Eurides Stella, Unidade Acadêmica de Ciências Agrárias da Universidade Federal de Jataí ˗ BR 364, Km 195, n.3800, CEP 75801-615, Jataí, GO

CIAGRA-UFJ

References

Amsalu A., Sapula S.A., De Barros Lopes M., Hart B.J., Nguyen A.H., Drigo B., Turnidge J., Leong L. & Venter H. 2020. Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches: A case study in the development of multidrug resistance in environmental hotspots. Microorganisms. 8: 1647.

Bajpai T., Pandey M., Varma M. & Bhatambare G.S. 2017. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna Journal of Medicine. 7: 12.

Betts J.W., Hornsey M., Higgins P.G., Lucassen K., Wille J., Salguero F.J., Seifert H. & La Ragione R.M. 2019. Restoring the activity of the antibiotic aztreonam using the polyphenol epigallocatechin gallate (EGCG) against multidrug-resistant clinical isolates of Pseudomonas aeruginosa. Journal of Medical Microbiology. 68: 1552-1559.

Brock M.T., Fedderly G.C., Borlee G.I., Russell M.M., Filipowska L.K., Hyatt D.R., Ferris R.A. & Borlee B.R. 2017. Pseudomonas aeruginosa variants obtained from veterinary clinical samples reveal a role for cyclic di-GMP in biofilm formation and colony morphology. Microbiology. 163(11): 1613-1625.

Dégi J., Moțco O.A., Dégi D.M., Suici T., Mareș M., Imre K. & Cristina R.T. 2021. Antibiotic susceptibility profile of Pseudomonas aeruginosa canine isolates from a multicentric study in Romania. Antibiotics. 10(7): 846.

Fernandes M.R., Sellera F.P., Moura Q., Carvalho M.P., Rosato P.N., Cerdeira L. & Lincopan N. 2018. Zooanthroponotic transmission of drug-resistant Pseudomonas aeruginosa, Brazil. Emerging Infectious Diseases. 24(6): 1160.

Ferris R.A., McCue P.M., Borlee G.I., Loncar K.D., Hennet M.L. & Borlee B.R. 2016. In vitro efficacy of nonantibiotic treatments on biofilm disruption of Gram-negative pathogens and an in vivo model of infectious endometritis utilizing isolates from the equine uterus. Journal of Clinical Microbiology. 54(3): 631-639.

Gonçalves I.R., Dantas R.C.C., Ferreira M.L., Batistão D.W.D.F., Gontijo-Filho P. P. & Ribas R.M. 2017. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Brazilian Journal of Microbiology. 48: 211-217.

Hameed H., Hussain I., Mahmood M.S., Deeba F. & Riaz K. 2017. Higher Order Occurrence of Virulent Isolates of Pseudomonas aeruginosa in Hospital Environments Initiate One Health Concerns Irrespective of the Biological Association. Pakistan Veterinary Journal. 37(1): 7-12.

Haenni M., Hocquet D., Ponsin C., Cholley P., Guyeux C., Madec J.Y. & Bertrand X. 2015. Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Veterinary Research. 11(1): 1-5.

Haenni M., Bour M., Châtre P., Madec J.Y., Plésiat P. & Jeannot K. 2017. Resistance of animal strains of Pseudomonas aeruginosa to carbapenems. Frontiers in Microbiology. 8: 1847.

Hyun J.E., Chung T.H. & Hwang C.Y. 2018. Identification of VIM‐2 metallo‐β‐lactamase‐producing Pseudomonas aeruginosa isolated from dogs with pyoderma and otitis in Korea. Veterinary Dermatology. 29(3): 186-e68.

Mekić S., Matanović K. & Šeol B. 2011. Antimicrobial susceptibility of Pseudomonas aeruginosa isolates from dogs with otitis externa. Veterinary Record. 169(5): 125-125.

Menezes M.P., Facin A.C., Cardozo M.V., Costa M.T. & Moraes P.C. 2021. Evaluation of the resistance profile of bacteria obtained from infected sites of dogs in a veterinary teaching hospital in Brazil: A retrospective study. Topics in Companion Animal Medicine. 42: 100489.

Mohanty S., Baliyarsingh B. & Nayak S.K. 2020. Antimicrobial Resistance in Pseudomonas aeruginosa: A Concise Review. 10.5772/intechopen.88706.

Moradali M.F., Ghods S. & Rehm B.H. 2017. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology. 7: 39.

Peleg A.Y. & Hooper D.C. 2010. Hospital-acquired infections due to gram-negative bacteria. New England Journal of Medicine. 362(19): 1804-1813.

Pournajaf A., Razavi S., Irajian G., Ardebili A., Erfani Y., Solgi S., Yaghoubi S., Rasaeian A., Yahyapour Y., Kafshgari R., Shoja S. & Rajabnia R. 2018. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Le Infezioni in Medicina. 26(3): 226-236.

Ruiz-Roldán L., Rojo-Bezares B., De Toro M., López M., Toledano P., Lozano C., Chichon G., Alvarez-Erviti L., Torres C. & Sáenz Y. 2020. Antimicrobial resistance and virulence of Pseudomonas spp. among healthy animals: Concern about exolysin ExlA detection. Scientific Reports. 10(1):1-11.

Sebola D., Eliasi U.L., Oguttu J.W. & Qekwana D.N. 2020. Antimicrobial resistance patterns of Pseudomonas aeruginosa isolated from canine clinical cases at a veterinary academic hospital in South Africa. Journal of the South African Veterinary Association. 91(1): 1-6.

Serrano I., De Vos D., Santos J.P., Bilocq F., Leitão A., Tavares L., Pirnay J.P. & Oliveira M. 2016. Antimicrobial resistance and genomic rep-PCR fingerprints of Pseudomonas aeruginosa strains from animals on the background of the global population structure. BMC Veterinary Research. 13(1): 1-8.

Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., Ouellette M., Outterson K., Patel J., Cavaleri M., Cox E.M., Houchens C.R., Grayson M.L., Hansen P., Singh N., Theuretzbacher U., Magrini N., Aboderin A.O., Al-Abri S.S., Jalil N.A., Benzonana N., Bhattacharya S., Brink A.J., Burkert F.R., Cars O., Cornaglia G., Dyar O.J., Friedrich A.W., Gales A.C., Gandra S., Giske C.G., Goff D.A., Goossens H., Gottlieb T., Blanco M.G., Hryniewicz W., Kattula D., Jinks T., Kanj S.S., Kerr L., Kieny M.P., Kim Y.S., Kozlov R.S., Labarca J., Laxminarayan R., Leder K., Leibovici L., Levy-Hara G., Littman J., Malhotra-Kumar S., Manchanda V., Moja L., Ndoye B., Pan A., Paterson D.L., Paul M., Qiu H., Ramon-Pardo P., Rodríguez-Baño J., Sanguinetti M., Sengupta S., Sharland M., Si-Mehand M., Silver L.L., Song W., Steinbakk M., Thomsen J., Thwaites G.E., Van der Meer J.W.M., Kinh N.V., Vega S., Villegas M.V., Wechsler-Fördös A., Wertheim H.F.L., Wesangula E., Woodford N., Yilmaz F.O. & Zorzet A. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases. 18(3): 318-327.

Tsuyuki Y., Kurita G., Murata Y. & Takahashi T. 2018. Bacteria isolated from companion animals in Japan (2014–2016) by blood culture. Journal of Infection and Chemotherapy. 24(7):583-587.

Vingopoulou E.I., Delis G.A., Batzias G.C., Kaltsogianni F., Koutinas A., Kristo I., Pournaras S., Saridomichelakis M.N. & Siarkou V.I. 2018. Prevalence and mechanisms of resistance to fluoroquinolones in Pseudomonas aeruginosa and Escherichia coli isolates recovered from dogs suffering from otitis in Greece. Veterinary Microbiology. 213: 102-107.

Woodford N., Fagan E.J. & Ellington M.J. 2006. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. Journal of Antimicrobial Chemotherapy. 57(1): 154-155.

Yukawa S., Tsuyuki Y., Sato T., Fukuda A., Usui M. & Tamura Y. 2017. Antimicrobial resistance of Pseudomonas aeruginosa isolated from dogs and cats in primary veterinary hospitals in Japan. Japanese Journal of Infectious Diseases. 70: 461-463.

Published

2022-01-24

How to Cite

Schimmunech, M. S., Lima, E. A., Silveira, Ângela V. B. de A., Oliveira, A. F. de, Moreira, C. N., Souza, C. M. de, Paula, E. M. N. de, & Stella, A. E. (2022). Pseudomonas aeruginosa Isolated from the Environment of a Veterinary Academic Hospital in Brazil - Resistance Profile. Acta Scientiae Veterinariae, 50. https://doi.org/10.22456/1679-9216.119471

Issue

Section

Articles

Most read articles by the same author(s)