Presumed Normal Hemodynamic Values of the Arteries in the Final Third Period of Gestation in Bitches
DOI:
https://doi.org/10.22456/1679-9216.119012Abstract
Background: Doppler ultrasonography enables the investigation of vascular blood flow indexes in gestational assessment, being able to detect vascular resistances that can affect fetal and maternal circulation, such as cases of placental insufficiency, associated with fetal cerebral oxygenation deficit and fetal distress. The study aims to assume hemodynamically normal values in the final third of gestation in bitches, of the umbilical, uteroplacental, middle cerebral and internal carotid arteries, correlating the obtained Doppler velocimetric indexes, for the assessment of the feto-placental circulation, and prediction of fetal viability indexes, fetal centralization and probable date of delivery.
Materials, Methods & Results: Thirty healthy bitches were examined in the final third of gestation (40-60 days). These were evaluated by Doppler ultrasonography at 2 times (T): T1: between 40-50 days; T2: between 51-60 of gestation. At each time point, the peak systolic velocities (PSV) and end-diastolic velocities (EDV) used to obtain the pulsatility (IP) and resistivity (IR) indexes of the umbilical, uteroplacental, middle cerebral and internal carotid arteries of fetuses were evaluated. Also, the systole/diastole (S/D) ratio of these vessels was evaluated. The data obtained were subjected to analysis of variance and Tukey test, using a P value equal to 5%. A significant difference was observed between velocities and Doppler velocimetric indexes between the 2 phases of the gestational final third in all studied vessels. There was an increase in the values of PSV and EDV and a decrease in the indexes, as the probable date of delivery approached. The analysis of the umbilical cord IR showed an increase from P1 to P2 (P < 0.05), while the IP decreased at the same time. For all studied variables there was a statistically significant difference (P < 0.05). In the uteroplacental artery, similarly to the umbilical artery, the PSV and EDV values showed an increase between P1 and P2, while the S/D ratio decreased up to 60 days of gestation (P2). The IR and IP of these vessels decreased during the study interval in pregnant bitches. The studied variables showed a statistically significant difference when analyzed comparatively between P1 and P2 (P < 0.05). As for the middle cerebral artery and internal carotid artery, the PSV and EDV values increased until the end of pregnancy. Likewise, the Doppler velocimetric values and the S/D ratio decreased until the end of pregnancy (P2).
Discussion: The hemodynamic values obtained for the umbilical artery and uterine artery were significantly different between 40 and 50 days of gestation (P1) and 50 and 60 days of gestation (P2), with a decrease in vascular resistance and an increase in velocities. It can be related to a greater association of maternal-fetal blood perfusion, due to the increased demand for the development of the fetus. The Middle Cerebral Artery (MCA) also showed changes between P1 and P2, with an increase in PSV and EDV in the final third of pregnancy, and the S/D ratio was reduced, differing significantly between P1 and P2. The systolic (PSV) and diastolic (EDV) flow velocities of the internal carotid artery increased progressively, while the IR, IP and the S/D ratio decreased, between the evaluated periods (P1 and P2), providing greater flow in canine fetuses, maintaining normal heart rate, indicating positive fetal viability.
Keywords: Doppler, gestational ultrasound, bitches, fetal circulation, umbilical artery, internal carotid, fetal middle cerebral artery.
Downloads
References
REFERENCES
Aardema M.W., Oosterhof H., Timmer A., van Rooy I. & Aarnoudse I.G. 2001. Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by preeclampsia and small for gestational age fetuses. Placenta. 22(5): 405-411.
Acharya G., Erkinaro T., Mäkikallio K., Lappalainen T. & Rasanen J. 2004. Relationships among Doppler-derived umbilical artery absolute velocities cardiac function, and placental volume blood flow and resistance in fetal sheep. American Journal of Physiology-Heart and Circulatory Physiology. 286(4): 1266-1272.
Acharya G., Wilsgaard T., Berntsen G.K., Maltau J.M. & Kiserud T. 2005. Reference ranges for serial measurements of umbilical artery Doppler indices in the second half of pregnancy. American Journal of Obstetrics Gynecology. 192(3): 937-944.
Anand S., Mehrotra S., Singh U., Solanki V. & Agarwal S. 2020. Study of Association of Fetal Cerebroplacental Ratio with Adverse Perinatal Outcome in Uncomplicated Term AGA Pregnancies. Journal Obstetrics & Gynecology India. 70(6): 485-489.
Ayala N.K., Lewkowitz A.K. & Rouse D.W.J. 2020. Delivery at 39 Weeks of Gestation: The Time Has Come. Obstetric Gynecology. 135(4): 949-952.
Beccaglia M., Alonge S., Trovo C. & Luvoni G.C. 2016. Determination of gestational time and prediction of parturition in dogs and cats: an update. Reproduction in Domestic Animals. 51(1): 12-17.
Blanco P.G., Arias D.O. & Gobello C. 2008. Doppler ultrasound in canine pregnancy. Journal Ultrasound. 27(12): 1745-1750.
Blanco P.G., Huk M., Lapuente C., Tórtora M., Rodriguez R., Arias D.O. & Gobello C. 2020. Uterine and umbilical resistance index and fetal heart rate in pregnant bitches of different body weight. Animal Reproduction Science. 12(1): 1-20
Blanco P.G., Rodriguez R., Rube A., Arias D.O., Tortora M., Díaz J.D. & Gobello C. 2011. Doppler ultrasonographic assessment of maternal and fetal blood flow in abnormal canine pregnancy. Animal Reproduction Science. 126(1-2): 130-135.
Bhide A., Acharya G.A., Baschat A., Bilardo C.M., Brezinka C., Cafici D., Ebbing C., Hernandez-Andrade E., Kalache K., Kingdom J., Kiserud T., Kumar S., Lee W., Lees C., Leung K.Y., Malinger G., Mari G., Prefumo F., Sepulveda W. & Trudinger B. 2013. Clinical Standards Committee. ISUOG practice guidelines: use of Doppler ultrasonography in obstetrics. Ultrasound Obstetric Gynecology. 41(2): 233-239.
Bonnevier A., Maršál, K., Brodszki J., Thuring A. & Källén K. 2021. Cerebroplacental ratio as predictor of adverse perinatal outcome in the third trimester. Acta Obstetricia et Gynecologica Scandinavica. 100(3): 497-503.
Castro V.M., Mamprim M.J., Lopes M.D. & Sartor R. 2011. Acompanhamento da gestação em cadelas pelo exame ultrassonográfico. Revisão de Literatura. Revista Veterinária e Zootecnia. 18(1): 9-18.
Dall'asta A., Ghi T., Rizzo G., Cancemi A., Aloisio F., Arduini D., Pedrazzi G., Figueras F. & Frusca T. 2019. Cerebroplacental ratio assessment in early labor in uncomplicated term pregnancy and prediction of adverse perinatal outcome: prospective multicenter study. Ultrasound Obstetrics & Gynecology. 53(4): 481-487.
Damhuis S.E., Ganzevoort W., Duijnhoven R.G., Groen H., Kumar., Heazell A.E.P., Khalil A. & Gordijn S.J. 2021. The Cerebro Placental RAtio as indicator for delivery following perception of reduced fetal movements, protocol for an international cluster randomised clinical trial; the CEPRA study. BMC Pregnancy Childbirth. 21(1): 285.
Deutinger J., Rudeistorfer R. & Bernaschek G. 1988. Vaginosonographic velocimetry of both main uterine arteries by visual vessel recognition and pulsed Doppler method during pregnancy. American Journal of Obstetrics and Gynecology. 159(5): 1072-1076
De Vore G.R. 2015. The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. American Journal Obstetrics & Gynecology. 213(1): 5-15.
Di Salvo P., Bocci F., Zelli R. & Polisca A. 2006. Doppler evaluation of maternal and fetal vessels during normal gestation in the bitch. Research in Veterinary Science. 81(3): 382-388.
Drysdale H., Ranasinha S., Kendall A., Knight M. & Wallace E.M. 2012. Ethnicity and the risk of late-pregnancy stillbirth. The Medical Journal of Australia. 197(5): 278-281.
Dunn L., Sherrell H. & Kumar S. 2017. Review: systematic review of the utility of the fetal cerebroplacental ratio measured at term for the prediction of adverse perinatal outcome. Placenta. 54(1): 68-75.
Feliciano M.A.R., Garcia P.H.S. & Vicente W.R.R. 2015. Introdução à ultrassonografia. In: Feliciano M.A.R., Canola J.C. & Vicente W.R.R. (Eds). Diagnóstico por Imagem em Cães e Gatos. São Paulo: Editora Medvet, pp.33-53.
Feliciano M.A., Nepomuceno A.C., Crivalero R.M., Oliveira M.E., Coutinho L.N. & Vicente W.R. 2013. Foetal echoencephalography and Doppler ultrasonography of the middle cerebral artery in canine foetuses. Journal Small Animale Practice. 54(3): 149-152.
Figueras F., Caradeux J., Crispi F., Eixarch E., Peguero A. & Gratacos E. 2018. Diagnosis and surveillance of late-onset fetal growth restriction. American Journal Obstetrics & Gynecology. 218(2): 790-802.
Forouzan I., Cohen A.W. & Arger P. 1991. Measurement of systolic– diastolic ratio in the umbilical artery by continuous-wave and pulsedwave Doppler ultrasound: comparison at different sites. Obstetrics and Gynecology. 7(2): 209-212.
Franzin C.M.M.O., Silva J.L.P., Marussi E.F. & Parmigiani S.V. 2001. Centralização do Fluxo Sanguíneo Fetal Diagnosticado pela Dopplervelocimetria em Cores: Resultados Perinatais. Revista Brasileira de Ginecologia e Obstétrica. 23(10): 659-665.
Giannico A.T., Gil E.M.U., Garcia D.A.A. & Froes T.R. 2015. The use of Doppler evaluation of the canine umbilical artery in prediction of delivery time and fetal distress. Animal Reproduction Science. 8(154): 105-112.
Gil E.M.U., Garcia D.A. & Froes T.R. 2014. Canine fetal heart rate: do accelerations or decelerations predict the parturition day in bitches? Theriogenology. 82(7): 933-941.
Gil E.M.U., Garcia D.A., Froes T.R. 2015. In utero development of the fetal intestine: Sonographic evaluation and correlation with gestational age and fetal maturity in dogs. Theriogenology. 84(5): 681-686.
Gil E.M.U., Garcia D.A.A., Giannico A.T. & Froes T.R. 2018. Early results on canine fetal kidney development: Ultrasonographic evaluation and value in prediction of delivery time. Theriogenology. 107: 180-187.
Gu¨Lmezoglu A.M., Crowther C.A., Middleton P. & Heatley E. 2012. Induction of labour for improving birth outcomes for women at or beyond term. Cochrane Database System Reviews. 5(5): 1-3.
Grüttner B., Ratiu J., Ratiu D., Gottschalk I., Morgenstern B., Abel J.S., Eichler C., Pahmeyer C., Ludwig S., Mallmann P. & Thangarajah F. 2019. Correlation of Cerebroplacental Ratio (CPR) With Adverse Perinatal Outcome in Singleton Pregnancies. In Vivo. 33(5): 1703-1706.
Kennedy A.M. & Woodward P.F. 2019. Radiologist’s Guide to the Performance and Interpretation of Obstetric Doppler US. RadioGraphics. 39(3): 893-910.
Kingdom J.C., Audette M.C., Hobson S.R., Windrim R.C. & Morgen E. 2018. A placenta clinic approach to the diagnosis and management of fetal growth restriction. American Journal Obstetrics & Gynecology. 218(2): 803-817.
Künzel W., Jovanovic V. & Grüssner S. 1991. Blood flow in the umbilical vein and artery in pregnancy. Geburtshilfe Frauenheilkd. 51(7): 513-522.
Macêdo A.E.G.S., Neto C.N. & Sousa A.S.R. 2011. Conduta obstétrica na centralização da circulação fetal: Obstetric management in fetal brain sparing effect. Femina. 39(5): 251-257.
Morales-Rosello J. & Khalil A. 2015. Fetal cerebral redistribution: a marker of compromise regardless of fetal size. Ultrasound Obstetric Gynecology of Journal Institute Society Ultrasound Obstetrics & Gynecology. 46(4): 385-388.
Morales-Rosello J., Khalil A., Morlando M., Bhide A., Papageorghiou A. & Thilaganathan B. 2015. Poor neonatal acid–base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstetrics & Gynecology of Journal International Society of Ultrasound in Obstetrics & Gynecology. 45(2): 156-161.
Moron A.F., Milani H.J.F., Barreto E.Q.S., Araujo Júnior E., Haratz K.K., Rolo L.C. & Nardozza L.M.M. 2010. Análise da reprodutibilidade do Doppler de amplitude tridimensional na avaliação da circulação do cérebro fetal. Radiologia Brasileira. Colégio Brasileiro de Radiologia e Diagnóstico por Imagem. 43(6): 369-374.
Muglu J., Rather H., Arroyo-Manzano D., Bhattacharya S., Balchin I., Khalil A., Thilaganatha B., Khan K. S., Zamora J. & Thangaratinam S. 2019. Risks of stillbirth and neonatal death with advancing gestation at term: a systematic review and metaanalysis of cohort studies of 15 million pregnancies. PLoS Medicine. 16(7):1-16.
Nautrup C.P. 1998. Doppler ultrasonography of canine maternal and fetal arteries during normal gestation. Journal Reproduction Fertility. 112(2): 301-314.
Nautrup C.P. 1996. Duplexsonographie. In: Atlas und Lehrbuch der Ultra-schalldiagnostik bei Hund und Katze. Hannover: Schlntersche, pp.314-322.
Nicolaides K.H., Rizzo G. & Hecher K. 2000. Methodology of Doppler assessment of the placental and fetal circulations. In: Nicolaides K. & Rizzo G. (Eds). Placental and Fetal Doppler. London: CRC Press, pp.35-66.
Silva L.D.M., Barbosa C.C. & Pereira B.S. 2011. O uso da ultrassonografia Doppler na reprodução de cadelas e gatas. Revista Brasileira de Reprodução Animal. 35(2): 198-201.
Simões C.R.B., Santos R.V., Silva C.L., Prestes N.C., Vulcano L.C. & Machado V.M.V. 2011. Ultrassonografia Doppler na avaliação da gestação em cadelas. Revista Medicina Veterinária. In: Simpósio Internacional de Diagnóstico por Imagem - 2011. Recife, PE, Brasil. Medicina Veterinária (UFRPE). 5(4 Supl. 1): 142-144.
Vieira C.A., Bittencourt R.F., Biscarde C.E.A., Fernandes M.P., Nascimento A.B., Romão E.A., Carneiro I.M.B., Silva M.A.A., Barreto R.O. & Loiola M.V.G. 2020. Estimated date of delivery in Chihuahua breed bitches, based on embryo-fetal biometry, assessed by ultrasonography. Animal Reproduction. 17(3): 1-9.
Wahed S.R.A. & Mustafa F.A. 2013. Patterns of spectral analysis of fetal middle cerebral artery associated with intrauterine growth retardation. Asian Academy of Management Journal. 11(3): 252-260.
Wladimiroff J.W., Wijngaard J.A., Degani S., Noordam M.J., Eyck J. & Tonge H.M. 1987. Cerebral and umbilical arterial blood flow velocity waveforms in normal and growth-retarded pregnancies. Obstetrics & Gynecology. 69(5): 705-709.
Published
How to Cite
Issue
Section
License
This journal provides open access to all of its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project and Directory of Open Access Journals.
We define open access journals as journals that use a funding model that does not charge readers or their institutions for access. From the BOAI definition of "open access" we take the right of users to "read, download, copy, distribute, print, search, or link to the full texts of these articles" as mandatory for a journal to be included in the directory.
La Red y Portal Iberoamericano de Revistas Científicas de Veterinaria de Libre Acceso reúne a las principales publicaciones científicas editadas en España, Portugal, Latino América y otros países del ámbito latino