Lactic Acid Bacteria against Listeria monocytogenes




Background: Listeria monocytogenes is a pathogenic bacterium that can contaminate food and cause public health problems due its ability to form biofilms and resistance to sanitizers, it is responsible for sanitary and economic losses in food producing establishments. The difficulties in controlling biofilms and increasing resistance to traditional antibacterial agents is motivating studies of alternative potential biological agents for the control of pathogenic biofilms, among which lactic acid bacteria (LABs) are included. The objective of this work was to evaluate the activity of LABs against Listeria monocytogenes biofilm formation on polystyrene plates, a surface commonly used in the food industry.

Materials, Methods & Results: Lyophilized commercial strains of Bifidobacterium animalis, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivaris and Lactobacillus acidophilus were used. The strain of Listeria monocytogenes (L4) was isolated from polystyrene mats from a poultry slaughterhouse cutting room and demonstrated the ability to attach to microplates and resistance to sanitizers (sodium hypochlorite and hydrogen peroxide) at all times, temperatures and tested surfaces. The antimicrobial activity of LABs was evaluated by the agar diffusion method. The LABs that presented action on Listeria monocytogenes were selected for the inhibition and/or removal of biofilms in microplates, and all experiments were carried out in triplicate. Only Bifidobacterium animalis and Lactobacillus plantarum demonstrated action against Listeria. monocytogenes in the agar diffusion assays and were selected for inhibition and competition assays. Furthermore, competition of LABs against Listeria monocytogenes adhesion was evaluated. There was no significant difference between LABs and Listeria monocytogenes, alone or in combination, at temperatures of 30ºC and 37ºC in the Listeria monocytogenes inhibition assays on polystyrene surface. The lactic acid bacteria evaluated did not demonstrate inhibition of Listeria monocytogenes adhesin testes with optical density visualization, however, it was possible to identify a reduction in Listeria monocytogenes counts with the application of Bifidobacterium animals and Lactobacillus plantarum in the testes of competition against biofilm formation. In competition tests Bifidobacterium animalis and Lactobacillus plantarum have an injunction in Listeria monocytogenes, indicating that these lactic acid bacteria can retard Listeria biofilm formation on polystyrene surfaces and thus help control the pathogen in the food industry.

Discussion: A potential mechanism to control biofilm adhesion and formation of pathogens for nutrients and fixation on surfaces, multiplication factors and surfaces are a challenge in controlling biofilms of pathogenic microorganisms, alternative measures to traditional methods for inactivating pathogens and biofilm formers bacteria are necessary. In this sense, lactic acid bacteria generate high levels of bacteriocin and are effective in inhibiting the biofilm of pathogenic bacteria, however, our study did not reveal this. We verified that Bifidobacterium animalis and Lactobacillus plantarum have an inhibitory action on Listeria monocytogenes, indicating that these lactic acid bacteria can be used to delay the formation of biofilms by Listeria on polystyrene surfaces, helping to control this pathogen in food industry.

Keywords: control of biofilm, pathogenic bacteria, food industry, polystyrene surface, FTDs.


Download data is not yet available.

Author Biography

Luciana Ruschel dos Santos, Universidade de Passo Fundo

Faculdade de Agronomia e Medicina Veterinária


Allen K.J., Wałecka-Zacharska E., Chen J.C., Katarzyna K.P., Devlieghere F., Van Meervenne E., Osek J., Wieczorek K. & Bania J. 2016. Listeria monocytogenes - An examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiology. 54: 178-189. DOI: 10.1016/

Aoudiaa N., Rieua A., Briandet R., Deschamps J., Chluba J., Jego G., Garrido C. & Guzzo J. 2016. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiology. 53: 51-59. DOI: 10.1016/

Balouiri M., Sadiki M. & Ibnsouda S.A. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 6(2): 71-79. DOI: 10.1016/j.jpha.2015.11.005

Bridier A., Sanchez-Vizuete P., Guilbaud M., Piard J.C., Naïtali M. & Briandet R. 2015. Biofilm-associated persistence of food-borne pathogens. Food Microbiology. 45: 167-178. DOI: 10.1016/

Buchanan R.L., Gorris L.G.M., Hayman M.M., Jackson T.C. & Whiting R.C. 2017. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 75: 1-13. DOI: 10.1016/j.foodcont.2016.12.016

Camargo A.C., Todorov S.D., Chihib N.E., Drider D. & Nero L.A. 2018. Lactic acid bacteria (LAB) and their bacteriocins as alternative biotechnological tools to control Listeria monocytogenes biofilms in food processing facilities. Molecular Biotechnology. 60: 712-726. DOI:10.1007/s12033-018-0108-1

Caruso M., Fraccalvieri R., Pasquali F., Santagada G., Latorre L.M., Difato L.M., Miccolupo A., Normanno G. & Parisi A. 2020. Antimicrobial susceptibility and multilocus sequence typing of Listeria monocytogenes isolated over 11 years from food, humans, and the environment in Italy. Foodborne Pathogens and Disease. 17: 284-294. DOI: 10.1089/fpd.2019.2723

Collado M.C., Meriluoto J. & Salminen S. 2008. Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology. 226: 1065-1073. DOI: 10.1007/s00217-007-0632

Dygico L.K., Gahan C., Grogan H. & Burgess C. 2019. The ability of Listeria monocytogenes to form biofilm on surfaces relevant to the mushroom production environment. International Journal of Food Microbiology. 317: 108385. DOI: 10.1016/j.ijfoodmicro.2019.108385

Falagas M.E. & Makris G.C. 2009. Probiotic bacteria and biosurfactants for nosocomial infection control: a hypothesis. Journal of Hospital Infection. 71(4): 301-306. DOI: 10.1016/j.jhin.2008.12.008

Gao Z., Zhong W., Chen K., Tang P. & Guo J. 2020. Chemical composition and anti-biofilm activity of essential oil from Citrus medica L. var. sarcodactylis Swingle against Listeria monocytogenes. Industrial Crops and Products. 144: 112036. DOI: 10.1016/j.indcrop.2019.112036

Gómez N.C., Ramiro J.M.P., Quecan B.X.V. & Melo Franco B.D.G. 2016. Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli O157:H7 biofilms formation. Frontiers in Microbiology. 7(863): 1-15. DOI: 10.3389/fmicb.2016.00863

Gong C. & Jiang X. 2017. Application of bacteriophages to reduce Salmonella attachment and biofilms on hard surfaces. Poultry Science. 96(6): 1838-1848. DOI: 10.3382/ps/pew463

Grosu-Tudor S., Stancu M., Pelinescu D. & Zamfir M. 2014. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods. World Journal of Microbiology and Biotechnology. 30: 2459-2469. DOI: 10.1007/s11274-014-1671-7

Gücükoğlu A., Çadirci Ö., Terzi Gülel G., Uyanik T. & Kanat S. 2020. Serotyping and antibiotic resistance profile of Listeria monocytogenes isolated from organic chicken meat. Kafkas Universitesi Veteriner Fakultesi Dergisi. 26: 499-505. DOI: 10.9775/kvfd.2019.23638

Hansen L.T. & Vogel B.F. 2011. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products. International Journal of Food Microbiology. 146(1): 88-93. DOI: 10.1016/j.ijfoodmicro.2011.01.032

Hibbing M.E., Fuqua C., Parsek M.R. & Peterson S.B. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology. 8: 15-25. DOI: 10.1038/nrmicro2259

Hossain M. I., Sadekuzzaman M. & Ha S.D. 2017. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Research International. 100: 63-73. DOI: 10.1016/j.foodres.2017.07.077

Hossain M.I., Mizan M.F.R., Ashrafudoulla M., Nahar S., Joo H.J., Jahid I.K., Park S.H., Kim K.S. & Ha S.D. 2020. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. LWT-Food Science and Technology. 118: 108864. DOI: 10.1016/j.lwt.2019.108864

Kocot A.M. & Olszewska M.A. 2017. Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context. LWT - Food Science & Technology. 84: 47-57. DOI: 10.1016/j.lwt.2017.05.042.

Leong D., NicAogáin K., Luque-Sastre L., McManamon O., Hunt K., Alvarez-Ordóñez A., Scollard J., Schmalenberger A., Fanning S. & O’Byrne C. 2017. A 3-year multi-food study of the presence and persistence of Listeria monocytogenes in 54 small food businesses in Ireland. International Journal of Food Microbiology. 249: 18-26. DOI: 10.1016/j.ijfoodmicro.2017.02.015

Martín B., Perich A., Gómez D., Yangüela J., Rodríguez A., Garriga M. & Aymerich T. 2014. Diversity and distribution of Listeria monocytogenes in meat processing plants. Food Microbiology. 44: 119-127. DOI: 10.1016/

Olaimat A.N., Al-Holy M.A., Shahbaz H.M., Al-Nabulsi A.A., Abu Ghoush M.H., Osaili T.M., Ayyash M.M. & Holley R.A. 2018. Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety. 17: 1277-1292. DOI: 10.1111/1541-4337.12387

Pérez-Ibarreche M., Castellano P. & Vignolo G. 2014. Evaluation of anti-Listeria meat borne Lactobacillus for biofilm formation on selected abiotic surfaces. Meat Science. 96(1): 295-303. DOI: 10.1016/j.meatsci.2013.07.010

Pérez-Ibarreche M., Castellano P., Leclercq A. & Vignolo G. 2016. Control of Listeria monocytogenes biofilms on industrial surfaces by the bacteriocin-producing Lactobacillus sakei CRL1862. FEMS Microbiology Letters. 363(12): 1-6. DOI: 10.1093/femsle/fnw118

Piras F., Fois F., Consulti S.G., Mazza R. & Mazzette R. 2015. Influence of temperature, source, and serotype on biofilm formation of Salmonella enterica isolates from pig slaughterhouses. Journal of Food Protection. 78(10): 1875-1878. DOI: 10.4315/0362-028X.JFP-15-085

Puga C.H., SanJose C. & Orgaz B. 2016. Biofilm development at low temperatures enhances Listeria monocytogenes resistance to chitosan. Food Control. 65: 143-151. DOI: 10.1016/j.foodcont.2016.01.012

Rodrigues L.B., Santos L.R., Rizzo N.N., Tagliari V.Z., Trenhago G., Oliveira A.P., Ferreira D., Pilotto F. & Nascimento V.P. 2013. Salmonella and Listeria from stainless steel, polyurethane and polyethylene surfaces in the cutting room of a poultry slaughterhouse. Acta Scientiae Veterinariae. 41: 1-7.

Rugna G., Carra E., Bergamini F., Franzini G., Faccini S., Gattuso A., Morganti M., Baldi D., Naldi S., Serraino A., Piva S., Merialdi G. & Giacometti F. 2021. Distribution, virulence, genotypic characteristics and antibiotic resistance of Listeria monocytogenes isolated over one-year monitoring from two pig slaughterhouses and processing plants and their fresh hams. International Journal of Food Microbiology. 336: 108912. DOI: 10.1016/j.ijfoodmicro.2020.108912

Salomskiene J., Jonkuviene D., Macioniene I., Abraitiene A., Zeime J., Repeckiene J. & Vaiciulyte-Funk L. 2019. Differences in the occurrence and efficiency of antimicrobial compounds produced by lactic acid bacteria. European Food Research and Technology. 245: 569-579. DOI: 10.1007/s00217-018-03227-3

Silva C.C.G, Silva S.P.M. & Ribeiro S.C. 2018. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology. 9: 594. DOI: 10.3389/fmicb.2018.00594

Speranza B., Liso A. & Corbo M.R. 2018. Use of design of experiments to optimize the production of microbial probiotic biofilms. Peer J. 6: e4826. DOI: 10.7717/peerj.4826

Srey S., Jahid I.K. & Ha S.D. 2013. Biofilm formation in food industries: A food safety concern. Food Control. 31(2): 572-585. DOI: 10.1016/j.foodcont.2012.12.001

Todorov S.D., Paula O.A.L., Camargo A.C., Lopes D.A. & Nero L.A. 2018. Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes. Revista Argentina de Microbiología. 50(1): 48-55. DOI: 10.1016/j.ram.2017.04.011

Webber B., Oliveira A.P., Pottker E.S., Daroit L., Levandowski R., Santos L.R., Nascimento V.P. & Rodrigues L.B. 2019. Salmonella Enteritidis forms biofilm under low temperatures on different food industry surfaces. Ciência Rural. 49(7): 1-9. DOI: 10.1590/0103-8478cr20181022.

Winkelströter L.K., Gomes B.C., Thomaz M.R.S., Souza V.M. & Martinis E.C.P. 2011. Lactobacillus sakei and its bacteriocin influence adhesion of Listeria monocytogenes on stainless steel surface. Food Control. 22: 1404-1407. DOI: 10.1016/j.foodcont.2011.02.021

Winkelströter L.K., Reis F.B., Silva E.P., Alves V. & De Martinis E.C.P.

Unraveling microbial biofilms of importance for food microbiology. Microbial Ecology. 68(1): 35-46. DOI: 10.1007/s00248-013-0347-4

Winkelströter L.K, Tulini F.L. & De Martinis E.C.P. 2015. Identification of the bacteriocin produced by cheese isolate Lactobacillus paraplantarum FT259 and its potential influence on Listeria monocytogenes biofilm formation. LWT-Food Science and Technology. 64(2): 586-592. DOI: 10.1016/j.lwt.2015.06.014

Woo J. & Ahn J. 2013. Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens. Letters in Applied Microbiology. 56(4): 307-331. DOI: 10.1111/lam.12051

Zafar N., Nawaz Z., Qadeer A., Anam S., Kanwar R., Ali A., Mudassar M., Javid M.T., Zafar A. & Tariq A. 2020. Prevalence, molecular characterization and antibiogram study of Listeria monocytogenes isolated from raw milk and milk products. Pure and Applied Biology. 9(3): 1982-1987. DOI: 10.19045/bspab.2020.90211

Zhao T., Podtburg T.C., Zhao P., Chen D., Baker D.A., Cords B. & Doyle M.P. 2013. Reduction by competitive bacteria of Listeria monocytogenes in biofilms and Listeria in floor drains in a ready-to-eat poultry processing plant. Journal of Food Protection. 76(4): 601-607. DOI: 10.4315/0362-028X.JFP-12-323.

Zoz F., Grandvalet C., Lang E., Iaconelli C., Gervais P., Firmesse O., Guyot S. & Beney L. 2017. Listeria monocytogenes ability to survive desiccation: influence of serotype, origin, virulence, and genotype. International Journal of Food Microbiology. 248: 82-89. DOI: 10.1016/j.ijfoodmicro.2017.02.010



How to Cite

Bogea, J. S., Manto, L., dos Santos, J. S., dos Santos, L. F., Gotardo, F. M., Rodrigues, L. B., & dos Santos, L. R. (2021). Lactic Acid Bacteria against Listeria monocytogenes. Acta Scientiae Veterinariae, 49.




Most read articles by the same author(s)