Phenotypic and Genotypic Characteristics and Resistance Profile of Staphylococcus spp. from Bovine Mastitis


  • Érica Chaves Lucio School of Veterinary Medicine and Animal Science (EMVZ), Federal University of Bahia (UFBA), Salvador, BA, Brazil.
  • Gisele Veneroni Gouveia School of Veterinary Medicine and Animal Science (EMVZ), Federal University of Bahia (UFBA), Salvador, BA, Brazil.
  • Mateus Matiuzzi da Costa School of Veterinary Medicine and Animal Science (EMVZ), Federal University of Bahia (UFBA), Salvador, BA, Brazil.
  • Mário Baltazar de Oliveira School of Veterinary Medicine and Animal Science (EMVZ), Federal University of Bahia (UFBA), Salvador, BA, Brazil.
  • Rinaldo Aparecido Mota School of Veterinary Medicine and Animal Science (EMVZ), Federal University of Bahia (UFBA), Salvador, BA, Brazil.
  • José Wilton Pinheiro Junior School of Veterinary Medicine and Animal Science (EMVZ), Federal University of Bahia (UFBA), Salvador, BA, Brazil.



Background: Bovine mastitis remains one of the health problems that cause the most damage to milk producers. The negative impact of mastitis is due to reduced milk production, early slaughter of females, reduced commercial value of the affected animals, losses in the genetic potential of the herd, expenses with medicines and veterinary medical assistance. Staphylococcus spp. stands out as the cause of this disease and has been able to remain in the mammary gland, becoming resistant to several antimicrobials. The aims of the present study were to characterize the phenotypes, genotypes and resistance profiles of Staphylococcus spp. isolates from bovine mastitis cases in the state of Pernambuco, Brazil.

Materials, Methods & Results: These isolates were classified according to biochemical tests and the presence of the nuc gene.  The polymerase chain reaction (PCR) for amplification of the mecA and blaZ genes was used to analyze the genetic potentials of antimicrobial resistance. Isolates were also phenotypically tested for resistance to nine antimicrobials (ampicillin, doxicillin, erythromycin, gentamicin, rifampicin, cephalothin, amoxicillin, nalidixic acid and oxacillin). The genetic potentials for biofilm production were evaluated by the amplifications of the icaD, icaA and bap genes. The phenotypic test of gentian violet was used for biofilm formation analyzes. Ninety-three (93.0%) of the isolates among the Staphylococcus spp. samples were classified as Staphylococcus aureus. The lowest percentage of sensitivity observed was for amoxicillin (28.0%). All of the isolates were sensitive to erythromycin and gentamicin, and 15 (15%) exhibited sensitivity to all of the drugs tested. All of the isolates were negative for the mecA gene, and 36 (36%) were positive for blaZ. In the adhesion microplate tests, 44 (44%) of the isolates were capable of biofilm formation. Of these, seven (15.9%) were strong formers, whereas 16 (36.3%) and 21 (47.8%) were moderate and weak formers, respectively. The icaD gene was confirmed in 89 (89%) of the isolates. The icaA gene was confirmed in 61 (61%) samples, and the bap gene in 52 (52%) samples. One of the samples did not possess icaA, icaD or bap and exhibited moderate biofilm formation according to the microplate adherence test. Sixteen isolates simultaneously exhibited the three genes tested for biofilm production (icaA, icaD and bap) and were negative according to the microplate adherence test.

Discussion:  The indiscriminate use of antibiotics to treat mastitis is a common practice in the study area, which may have contributed to the high proportion of herds (88.23%; 15/17) with multi-resistant isolates, constituting a selection factor for the dissemination of resistant bacteria among herds.  The absence of the mecA gene in the present study may be associated with the development of resistant bacteria through another mechanism, such as the overproduction of beta-lactamases. The results demonstrate that antimicrobial resistance occurs in Staphylococcus spp. that cause bovine mastitis in herds of Pernambuco and that these isolates have the a great capacity for biofilm formation. It is necessary to sensitize the professionals involved in the milk production chain of Brazil regarding the importance of the adequate use of antimicrobials for the treatment and control of mastitis, since studies in the country indicate the dissemination of resistant bacterial strains.


Download data is not yet available.



Aarestrup F.M., Seyfarth A.M., Emborg H.D., Pedersen K., Hendriksen R.S. & Bager F. 2001. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal Enterococci from food animals in Denmark. Antimicrobial Agents and Chemotherapy. 45(7): 2054-2059.

Alba P., Feltrin F., Cordaro G., Porrero M.C., Kraushaar B., Argudín M.A., Nykäsenoja S., Monaco M., Stegger M., Aarestrup F.M., Butaye P., Franco A. & Battisti A. 2015. Livestock-associated methicillin resistant and methicillin susceptible Staphylococcus aureus sequence type (CC) 1 in European farmed animals: high genetic relatedness of isolates from Italian cattle herds and humans. PloS ONE. 10(8): 1-10.

Arciola C.R., Campoccia D., Gamberini S., Cervellati M., Donati M.E. & Montanaro L. 2002. Detection of slime production by means of an optimized Congo red agar plate based on a colorimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials. 23(21): 4233-4239.

Arciola C.R., Campoccia D., Speziale P., Montanaro L. & Costerton J.W. 2012. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 33(26): 5967-5982.

Ariza-Miguel J., Hernández M., Fernández-Natal I. & Rodríguez-Lázaro D. 2014. Methicillin-resistant Staphylococcus aureus harboring mecC in livestock in Spain. Journal of Clinical Microbiology. 52(11): 4067-4069.

Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A. & Struhl K. 1989. Current Protocols in Molecular Biology. New York: John Wiley & Sons, pp.16.1-16.8.

Ba X., Harrison E.M., Edwards G.F., Holden M.T., Larsen A.R., Petersen A., Skov R.L., Peacock S.J., Parkhill J., Paterson G.K. & Holmes M.A. 2013. Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. Journal of Antimicrobial Chemotherapy. 69(3): 594-597.

Bradley A.J. 2002. Bovine mastitis: an evolving disease. The Veterinary Journal. 164(2): 116-128.

Castelani L., Pilon L.E., Martins T., Pozzi C.R. & Arcaro J.R.P. 2014. Investigation of biofilm production and icaA and icaD genes in Staphylococcus aureus isolated from heifers and cows with mastitis. Animal science journal. 86(3): 340-344.

Clinical Laboratory Standards Institute (CLSI). 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. 7th edn. Wayne, PA. (CLSI; 2006). CLSI Document No.:M7-A7.

Coelho S.M.O., Pereira I.A., Soares L.C., Pribul B.R. & Souza M.M.S. 2011. Short communication: profile of virulence factors of Staphylococcus aureus isolated from subclinical bovine mastitis in the state of Rio de Janeiro, Brazil. Journal of Dairy Science. 94(7): 3305-3310.

Coelho S.M.O., Reinoso E., Pereira I.A., Soares L.C., Demo M., Bogni C. & Souza M. 2009. Virulence factors and antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis in Rio de Janeiro. Pesquisa Veterinária Brasileira. 29(5): 369-374.

Costerton J.W., Stewart P.S. & Greenberg E.P. 1999. Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 284(5418): 1318-1322.

Cucarella C., Solano C., Valle J., Amorena B., Lasa I. & Penades J.R. 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of bacteriology. 183(9): 2888-2896.

Cucarella C., Tormo M.A., Ubeda C., Trotonda M.P., Monzon M., Peris C., Amorena B., Lasa I. & Penades J.R. 2004. Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infection and Immunity. 72(4): 2177-2185.

Dalton H.M. & March P.E. 1998. Molecular genetics of bacterial attachment and biofouling. Current Opinion in Biotechnology. 9(3): 252-255.

Freitas M.F.L., Pinheiro Júnior J.W., Stamford T.L.M., Rabelo S.D.A., Silva D.D., Silveira Filho V.D., Santos F.G.B., Sena M.J. & Mota R.A. 2005. Perfil de sensibilidade antimicrobiana in vitro de Staphylococcus coagulase positivos isolados do leite de vacas com mastite no Agreste do estado de Pernambuco. Arquivos do Institutito Biológico. 72(2): 171-177.

García-Álvarez L., Holden M.T., Lindsay H., Webb C.R., Brown D.F., Curran M.D., Walpole E., Brooks K., Pickard D.J., Teale C., Parkhill J., Bentley S.D., Edwards G.F., Girvan E.K., Kearns A.M., Pichon B., Hill R.L.R., Larsen A.R., Skov R.L., Peacock S.J., Maskell D.J. & Holmes M.A. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. The Lancet Infectious Diseases. 11(8): 595-603.

Geha D.J., Uhl J.R., Gustaferro C.A. & Persing D.H. 1994. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. Journal of Clinical Microbiology. 32(7): 1768-1772.

Guérin Faublée V., Carret G. & Houffschmitt P. 2003. In vitro activity of 10 antimicrobial agents against bacteria isolated from cows with clinical mastitis. Veterinary Record. 152(15): 466-471.

Guimarães G., França C.A. & Krug F.D.S. 2012. Caracterização fenotípica, produção de biofilme e resistência aos antimicrobianos em isolados de Staphylococcus spp. obtidos de casos de mastite em bovinos e bubalinos. Pesquisa Veterinária Brasileira. 32(12): 1219-1224.

Haenni M., Châtre P., Tasse J., Nowak N., Bes M., Madec J.Y. & Laurent F. 2014. Geographical clustering of mecC-positive Staphylococcus aureus from bovine mastitis in France. Journal of Antimicrobial Chemotherapy. 69(8): 2292-2293.

Kateete D.P., Kimani C.N., Katabazi F.A., Okeng A., Okee M.S., Nanteza A., Joloba M.L. & Najjuca F.C. 2010. Identification of Staphylococcus aureus: DNAse and mannitol salt agar improve the efficiency of the tube coagulase test. Annals of Clinical Microbiology and Antimicrobials. 9(1): 23.

Krewer C.C., Lacerda I.P.S., Amanso E.S., Cavalcante N.B., Peixoto R.M., Pinheiro Júnior J.W., Costa M.M. & Mota R.A. 2013. Etiology, antimicrobial susceptibility profile of Staphylococcus spp. and risk factors associated with bovine mastitis in the states of Bahia and Pernambuco. Pesquisa Veterinária Brasileira. 33(5): 601-606.

Kumar R., Yadav B.R. & Singh R.S. 2010. Genetic determinants of antibiotic resistance in Staphylococcus aureus isolates from milk of mastitic crossbred cattle. Current Microbiology. 60(5): 379-386.

Landis J.R. & Koch G.G. 1977. The measurement of observer agreement for categorical data. Biometrics. 33: 159-74.

Leblank S.J., Lissemore K.D., Kelton D.F., Duffield T.F. & Leslie K.E. 2006. Major advances in diseases prevention in dairy cattle. Journal of dairy science. 89(4):1267-1279.

Lee J.H. 2006. Occurrence of methicillin-resistant Staphylococcus aureus strains from cattle and chicken, and analyses of their mecA, mecR1 and mecI genes. Veterinary Microbiology. 114(1-2): 155-159.

Li X.Z., Mehrotra M., Ghimire S. & Adewoye L. 2007. β-Lactam resistance and β-lactamases in bacteria of animal origin. Veterinary Microbiology. 121(3-4): 197-214.

Medeiros E.S., França C.A, Krewer C.C., Peixoto R.M., Souza Júnior A.F.S., Cavalcante M.B., Costa M.M. & Mota R.A. 2011. Antimicrobial resistance of Staphylococcus spp. isolates from cases of mastitis in Buffalo in Brazil. Journal of Veterinary Diagnostic Investigation. 23(4): 793-796.

Melchior M.B., Van Osch M.H.J., Graat R.M., Van Duijkeren E., Mevius D.J., Nielen M., Gaastra W. & Fink-Gremmels J. 2009. Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr-type II strains. Veterinary Microbiology. 137(1-2): 83-89.

Melchior M.B., Van Osch M.H.J., Lam T.J.G.M., Vernooij J.C.M., Gaastra W. & Fink-Gremmels J. 2011. Extended biofilm susceptibility assay for Staphylococcus aureus bovine mastitis isolates: evidence for association between genetic makeup and biofilm susceptibility. Journal of dairy science. 94(12): 5926-5937.

Melo P.D.C., Ferreira L.M., Nader-Filho A., Zafalon L.F. & Vicente H.I.G. 2012. Phenotypic and molecular analysis of biofilm production by Staphylococcus aureus strains isolated of bovine. Bioscience Journal. 28(1): 94-99.

Mendonça E.C., Marques V.F., Melo D.A., Alencar T.A., Coelho I.D.S., Coelho S.M. & Souza M. 2012. Caracterização fenogenotípica da resistência antimicrobiana em Staphylococcus spp. isolados de mastite bovina. Pesquisa Veterinária Brasileira. 32(9): 859-864.

Merino N., Toledo-Arana A., Vergara-Irigaray M., Valle J., Solano C., Calvo E., Lopez J.A., Foster T.J., Penades J.R. & Lasa I. 2009. Protein A-mediated multicellular behavior in Staphylococcus aureus. Journal of Bacteriology. 191(3): 832-843.

Mota R.A., Silva K.P.C., Freitas M.F.L., Porto W.J.N. & Silva L.B.G. 2005. Utilização indiscriminada de antimicrobianos e sua contribuição a multirresistência bacteriana. Brazilian Journal of Veterinary Research and Animal Science. 42(6): 465-470.

Murakami K., Minamide W., Wada K., Nakamura E., Teraoka H. & Watanabe S. 1991. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. Journal of Clinical Microbiology. 29(10): 2240-2244.

Nader Filho A., Ferreira L.M., Amaral L.A., Rossi Junior O.D. & Oliveira R.P. 2007. Sensibilidade antimicrobiana dos Staphylococcus aureus isolados no leite de vacas com mastite. Arquivos do Instituto Biológico. 74(1): 1-4.

O’gara J.P. 2007. Ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiology Letters. 270(2): 179-188.

Oliveira A.A.F., Mota R.A., Souza M.I. & Sá M.E.P. 2002. Perfil de Sensibilidade Antimicrobiana in vitro frente a amostras de Staphylococcus spp. isoladas de mastite subclínica bovina, no Agreste meridional de Pernambuco. Hora Veterinária. 127(22): 8-10.

Oliveira M., Bexiga R., Nunes S.F., Carneiro C., Cavaco L.M., Bernardo F. & Vilela C.L. 2006. Biofilm-forming ability profiling of Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Veterinary Microbiology. 118(1-2): 133-140.

Paterson G.K., Morgan F.J.E., Harrison E.M., Peacock S.J., Parkhill J., Zadoks R.N. & Holmes M.A. 2014. Prevalence and properties of mecC methicillin-resistant Staphylococcus aureus (MRSA) in bovine bulk tank milk in Great Britain. Journal of Antimicrobial Chemotherapy. 69(3): 598-602.

Pribul B.R., Pereira I.A., Soares L.C., Coelho S.M.O., Barberis I.L., Pascual L. & Souza M.M.S. 2011. Resistência bacteriana e ação das bacteriocinas de Lactobacillus spp. em Staphylococcus aureus isolados de mastite bovina. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 63(3): 744-748.

Pu W., Su Y., Li J., Li C., Yang Z., Deng H. & Ni C. 2014. High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PLoS One. 9(2): 1-9.

Quinn P.J., Carter M.E., Markey B. & Carter G.R. 1994. Clinical Veterinary Microbiology. London: Wolfe, 648p.

Rabello R.F., Souza C.R.V.M., Duarte R.S., Lopes R.M.M., Teixeira L.M. & Castro A.C.D. 2005. Characterization of Staphylococcus aureus isolates recovered from bovine mastitis in Rio de Janeiro, Brazil. Journal of Dairy Science. 88(9): 3211-3219.

Salimena A.P., Lange C.C., Camussone C., Signorini M., Calvinho L.F., Brito M.A., Borges C.A.V., Guimarães A.S., Ribeiro J.B., Mendonça L.C. & Piccoli R.H. 2016. Genotypic and phenotypic detection of capsular polysaccharide and biofilm formation in Staphylococcus aureus isolated from bovine milk collected from Brazilian dairy farms. Veterinary research communications. 40(3-4): 97-106.

Santiago-Neto W., Machado G., Paim D.S., Campos T., Brito M.A., Cardoso M.R. & Corbellini L.G. 2014. Age related to the presence of antimicrobial resistant bacteria in twenty one dairy herds in Rio Grande do Sul, Brazil. Pesquisa Veterinária Brasileira. 34(7): 613-620.

Sawant A.A., Gillespie S.P. & Oliver S.P. 2009. Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Veterinary Microbiology. 134(1-2): 73-81.

Stepanovic S., Vukovic D., Dakic I., Savic B. & Vlahovic M.S. 2000. A modified microtiter-plate test for quantification of Staphylococcus biofilm formation. Journal of Microbiological Methods. 40(2): 175-179.

Tormo M.A., Knecht E., Gotz F., Lasa I. & Penades J.R. 2005. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology. 151(7): 2465-2475.

Vasudevan P., Nair M.K., Annamalai T. & Venkitanarayanan K.S. 2003. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Veterinary Microbiology. 92(1-2): 179-185.

Vintov J., Aarestrup F.M., Zinn C.E. & Olsen J.E. 2003. Association between phage types and antimicrobial resistance among bovine Staphylococcus aureus from 10 countries. Veterinary microbiology. 95(1-2): 133-147.

Vuong C., Saenz H.L., Gotz F. & Otto M. 2000. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. The Journal of infectious diseases. 182(6): 1688-1693.

Wade K.A., Pounder J.I., Cloud J.L. & Woods G.L. 2005. Comparison of six methods of extracting Mycobacterium tuberculosis DNA from processed Sputum for testing by quantitative real-time PCR. Journal of clinical microbiology. 43(5): 2461-2473.



How to Cite

Lucio, Érica C., Gouveia, G. V., da Costa, M. M., de Oliveira, M. B., Mota, R. A., & Pinheiro Junior, J. W. (2020). Phenotypic and Genotypic Characteristics and Resistance Profile of Staphylococcus spp. from Bovine Mastitis. Acta Scientiae Veterinariae, 48.




Most read articles by the same author(s)

1 2 > >>