Alguns aspectos do uso do hipoclorito de sódio em Endodontia

Nicolau F. Milano* Vera Girardi** Ana Maria Bergold*** Lea Gusmão Chiapini****

RESUMO

Os autores estudaram soluções de NaOCl de uso endodôntico, em diferentes concentrações de cloro, buscando esclarecer os seguintes tópicos:

a) Velocidade de "envelhecimento" (perda do teor de cloro) nas diferentes concentrações - 5%, 2,5% - 1% - 0,5%
 b) Tempo de dissolução de uma polpa dentária (in vitro) das diferentes concentrações.
 c) Procura de um estabilizador para o NaOCI.

SUMMARY

This paper studied the NaOCI solution in endodontic use, acording diferent concentrations some properties was studied:

a) The lost of CI in diferent concentrations (5% - 2,5% - 1% - 0,5%)

b) Measure the time of proteolitic efect over dental pulp in diferent concentrations

c) Find way to stabilized the NaOCI solution

DESCRITORES

ENDODONTIA · AUXILIARES QUÍMICOS EM ENDODONTIA · TRATAMENTO DE CANAIS · FARMACOLOGIA

INTRODUÇÃO

Apesar de ser citado na literatura desde 1792, o Hipoclorito de sódio - NaOCI - foi introduzido na endodontia em 1942 por Grossman e Meimann. Desde então vem sendo usado na irrigação de canais radiculares, especialmente nos infectados.

Sua importância é devida a certas propriedades que apresenta como, poder germicida, dissolvente de tecido pulpar, ação anti-tóxica, ação branqueadora dos dentes, desodorizante e é pouco irritante aos tecidos vivos, quando em baixas concentrações de cloro.

As soluções usadas em endodontia variam de 0,5% a 5%. Os preparados comerciais encontrados no comércio são, o líquido de Dakin (0,5%), a solução Miltom (1%) e a soda clorada (5%).

As soluções de NaOCI são inestáveis. Elas perdem, de forma considerável, sua efetividade com o passar do tempo, com excessão da solução Miltom a qual possui um estabilizador.

Este fato é muito importante na medida em que as soluções permanecem estocadas no comércio. Assim sendo, em verdade, quase nunca se sabe a concentração de CI do NaOCI que está sendo usado, fato indesejável para um bom desempenho da endodontia.

Uma tentativa de controlar esse problema é o objetivo do presente trabalho.

PROPOSIÇÃO

- 1. Estabelecer uma cronologia do envelhecimento dos NaOCI que permita ter-se uma idéia da perda de concentração de CI ao longo do tempo.
- 2. Determinar o tempo médio em que uma polpa é dissolvida "in vitro" sob a ação do NaOCI em diferentes concen-

rações.

3. Pesquisar um estabilizador para os NaOCl.

REVISÃO BIBLIOGRÁFICA

Raros foram os autores que pesquisaram o uso endodôntico dos NaOCI. A maioria cita trabalhos de Grossman, Grossman e Meimann, os quais, sem dúvida, foram os autores que mais se dedicaram ao tema

Todas as obras consultadas são unânimes quanto à grande instabilidade dos NaOCI. Ela decorre da liberação de cloro,

- * Prof. Titular de Endodontia da F.O./UFRGS ** C.D. Cirurgiã Dentista
- *** Profa. Adjunta de Química Farmacêutica da F.F./UFRGS
- **** Profa. Assistente de Química Farmacêutica da F.F./UFRGS

	R. Fac. Odontol.	Porto Alegre	V. 32	N. 1	p.7-10	JULHO	1991
--	------------------	--------------	-------	------	--------	-------	------

fato que, aliás, contribui para a limpeza e desinfecção do canal.

Da instabilidade decorre a impossibilidade de se estocar o produto. Segundo Bazerque (2), Berbert e cols. (3), Leonardo e cols. (18), Grossman (11) e Maisto (19), o tempo de estocagem máximo seria de 3 meses, devendo ser guardado em vidro de cor âmbar ao abrigo da luz e calor. Filgueiras e Mello (10) recomendam preparar-se soluções frescas a cada 2 meses mais ou menos. Soler e Schocron (28) sugerem a renovação a cada mês. Quanto ao líquido de Dakin especificamente, Coolidge (7) e Sales Cunha (26) afirmam que poderia ser guardado apenas por uma semana sem decomposicão.

Das soluções de NaOCI encontráveis no mercado, a única estável é a solução de Miltom, descrita por De Deus (8) como sendo uma solução estável de NaOCI com 1% de cloro ativo e cloreto de sódio a 16,5% com pH tamponado.

ADA (1) e Bazerque (2) afirmam que um meio fortemente alcalino estabiliza o hipoclorito. Redish (24) comenta que a alcalinidade aumenta a estabilidade mas diminui o poder germicida e aumenta a irritabilidade da solução.

Há concordância quanto à capacidade de dissolver a polpa e tecidos necróticos encontrados no interior do canal. Grossman (10, 11) citado também por Leonardo e cols. (18), Paiva e Alvares (21) e Soler e Schocron (28) afirmam que uma polpa pode ser totalmente dissolvida pela soda clorada em tempo que varia de 20 minutos a 02 horas.

Autores como Berbert e cols. (3), Hizatugo e Valdrighi (13), Holland (14) e Leonardo e cols. (18) afirmam que o poder dissolvente é diretamente proporcional à concentração da solução de NaOCI. Assim sendo, a soda clorada dissolveria uma polpa mais rapidamente do que o líquido de Dakin.

Leonardo e cols. (18) e Pucci (23) citam observações de Klein comprovando que a histólise, pela ação do cloro sobre os tecidos necrosados produz-se muito mais rapidamente quando os tecidos afetados não foram submetidos à ação de outros medicamentos. Isto significa que uma polpa é dissolvida com maior rapidez se submetida à ação do NaOCI, sem o uso anterior de outros medicamentos tais como fenol, creosoto, tri cresol formalina, etc..

MATERIAL E MÉTODO DE TRABALHO

1. Envelhecimento do NaOCI

Houve, de início, extrema dificuldade em se conseguir amostras de NaOCI em diferentes concentrações dada à enorme disparidade entre as concentrações anunciadas e as verdadeiramente existentes

Vencidos esses obstáculos, foi finalmente obtido material para o estudo proposto.

As soluções utilizadas foram:

- a. Líquido de Dakin a 0,4% (Lab. Catarinense).
- b. Solução de Miltom a 1% (em pleno período de validade).
- c. Solução Milton a 1% (ao final do período de validade).
- d. Solução de Labarraque a 2,5%.
- e. Soda clorada a 5%.

Estas soluções foram tituladas a cada 30 dias para verificação da percentagem de cloro ativo na solução.

No caso da solução Miltom, utilizamos dois frascos contendo a solução, com prazos de validade diferentes, com o objetivo de verificar-se a estabilidade efetiva.

2. Tempo de dissolução de polpa

Para a verificação "in vitro" do tempo de dissolução de uma polpa, utilizaram-se as mesmas soluções citadas anteriormente

Logo após ter sido feita uma pulpectomia, a polpa foi colocada em vidro transparente contendo uma das soluções em estudo, passando a ser observada até a dissolução completa da polpa. Anotou-se o tempo levado desde o primeiro contato da polpa com o NaOCI até a total dissolução da mesma.

Tomou-se o cuidado para que a polpa não entrasse em contato com nenhuma outra solução que não fosse o NaOCI.

3. Estabilização

Na busca da estabilização utilizaram-se substâncias potencialmente estabilizadoras do NaOCI ao qual foram adicionadas.

Tituladas tais soluções, foram comparados os resultados aos das soluções que não continham nenhuma outra substância (item 1).

A escolha das substâncias experimentadas baseou-se nas informações da literatura e em comunicações pessoais.

Na primeira tentativa usou-se uma solução com concentração em torno de 5%. À metade do volume acrescentou-se 16,5% de NaCl, e à outra metade foi mantida como controle. A estabilização neste caso, baseia-se no ion comum. O NaCl foi a primeira substância testada, por ser componente da solução Miltom, a qual é estável.

Além disso tentou-se tamponar a solução após verificarmos que o produto comercial estabilizado (sol. Miltom) tinha o pH em torno de 10.

Procurou-se obter o mesmo preparando-se um tampão pH 10 (USP XXI pag. 1420). Para isso utilizaram-se 50ml de ácido bórico e cloreto de potássio 0,2M e 43,7ml de hidróxido de sódio 0,2M. Completando o volume para 200ml obtém-se um pH 10.

Afim de trabalhar-se com menor número possível de constituintes estranhos, procurou-se substituir a solução de cloreto de potássio 0,2M por solução de cloreto de sódio 0,2M, mantendo os demais componentes.

Estas soluções foram acrescentadas a um volume conhecido de solução de NaOCI com aproximadamente 2,5% de cloro ativo até obtenção de pH 10.

RESULTADOS

Os resultados serão apresentados em função dos grupos do trabalho:

- a. Envelhecimento do NaOCI.
- b. Tempo para dissolução de uma polpa.
- c. Estabilidade dos NaOCI.

a. Envelhecimento dos NaOCI

Com as titulações, obtivemos uma relação cronológica da perda de cloro, conforme mostram a seguir a tabela e o gráfi-

Solução Titulação	LIQ. DAKIN (0,4%)	SOL. MILTON (1%)	SOL. LABARRA- QUE (2,5%)	SODA CLORADA INODON (5%)	SODA CLORADA HOMEODERM (5%9	SODA CLORADA HCPA (5,25%)
1:	0,21%	1,071%	2,26%	2,96%	4,09%	5,14%
2:	0,22%	1,07%	2,2%	2,94%	3,97%	4,64%
3:	0,199%	-	2,261%	2,86%	3,905%	4,26%
4:	0,209%	-	2,22%	2,838%	3,54%	4,013%
5:	0,212%	-	2,26%	2,663%	3,386%	3,80%
6:	0,21%	1,075%	2,259%	2,645%	2,985%	3,822%
7:	0,213%	1,024%	2,213%	2,624%	2,794%	3,18%
8:	-	-	2,186%	2,663%	2,51%	2,971%
9:	-	0,987%	2,159%	2,593%	2,266%	2,698%
10:	-	-	2,169%	-	2,07%	1,918%
11:	-	0,982%	2,182%	(-)	1,876%	1,716%
12:	-	0,978%	2,143%		1,741%	1,383%

TABELA 1: Perda de cloro ativo nas diversas soluções de Hipoclorito de Sódio (titulações mensais)

R. Fac. Odontol. Port	to Alegre V. 32	N.1	p.8-10	JULHO	1991
-----------------------	-----------------	-----	--------	-------	------

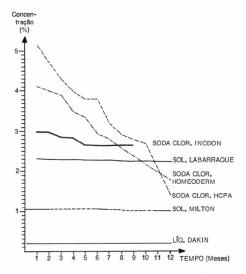
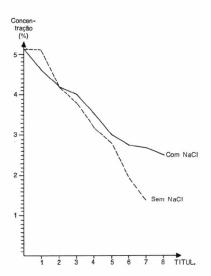


GRÁFICO 1: Perda de cloro ativo nas diversas soluções de Hipoclorito de Sódio.

Tempo para dissolução de uma polpa

Os tempos de dissolução da polpa obtidos foram os seguintes:

% Amostra	0,5%	1%	2,5%	5%
1	1h48min	2h05min	1h20min	32min
2	2h09min	2h45min	1h35min	52min
3	3h40min	2h50min	1h01min	55min
4	2h30min	2h30min	2h50min	1h44min
5	2h25min	2h00min	1h12min	1h10min
6	2h45min	2h10min	28min	1h33min
7	3h30min	1 h50min	35min	50min
8	3h10min	2h44min	1h11min	55min
9	-	1h40min	1h35min	-
10	-	-	1h30min	-
Média	2h44min	2h17min	1h20min	1h04min


TABELA 2: Tempo de dissolução de polpa, nas diversas soluções.

c. Estabilização

Foram obtidos os seguintes resultados na tentativa de estabilização.

Solução Titulação	5,25% - Com NaCI	5,25% - Sem NaCI
1:	4,63%	5,14%
2:	4,26%	4,26%
3:	4,05%	3,80%
4:	3,62%	3,18%
5:	3,02%	2,82%
6:	2,78%	1,92%
7:	2,70%	1,38%
8:	2,58%	_

TABELA 3: Perda de cloro ativo na solução de Hipoclorito de Sódio com e sem NaCl (Intervalo entre as titulações: 2 meses).

 $\ensuremath{\mathsf{GR\-A}}\xspace$ FICO 2: Comportamento da perda de cloro ativo em soluções com e sem NaCl.

DISCUSSÃO

a. Envelhecimento dos NaOCI

- 1. Não existe aumento de concentração das soluções; é apenas artefato.
- 2. As sucessivas titulações da Solução Miltom demonstram que ela realmente é estável, dentro do prazo de validade (2 anos). Após o vencimento observa-se queda considerável na concentração.
- 3. Quanto maior a concentração inicial dos NaOCI, mais rápida a perda, ou maior a perda mensal. Este fato foi observado também em trabalho semelhante.
- 4. Soluções frescas são praticamente estáveis, como o líquido de Dakin.
- Observa-se maior queda na concentração nos meses de verão, devido ao calor.
- No presente trabalho o líquido de Dakin já iniciou com 0,21%, o que significa que ficou muito tempo estocado na farmácia.

b. Tempo de dissolução da polpa

Encontramos variações nos tempos de dissolução em uma mesma concentração, provavelmente relacionados com certos fatores como:

- · Quantidade de líquido usado
- Tamanho da polpa
- Agitação ou não do recipiente
- Constituição da polpa (mais ou menos fibrosa)
- · Temperatura ambiente

c. Estabilização

 O NaCl n\u00e3o se mostrou eficaz como estabilizante.

É importante observar-se que, com a adição de NaCl à solução, houve maior queda inicial na concentração de cloro ativo. No entanto, a perda de cloro na solução com NaCl a 16,5% é menor do que na solução sem o NaCl, no mesmo

período de tempo.

2. Feito o doseamento do cloro ativo na solução obtida, encontrou-se um teor de 0,35%. Ao se verificar o pH das soluções uma semana após, notou-se que não houvera estabilização e que o mesmo estava muito diferente de 10. Assim não houve possibilidade de tamponamento dessa maneira. No entanto, tudo indica que o aumento do pH da solução é o caminho mais certo a seguir na procura da estabilização.

CONCLUSÕES

- 1. Há um "envelhecimento" (diminuição da concentração de cloro), dos Hipocloritos de sódio com o passar do tempo.
- 2. Quanto maior a concentração de cloro da solução, mais rapidamente dá-se a perda de cloro e, reciprocamente, quanto menor a concentração, menor é a perda de cloro.
- 3. As soluções com concentração em torno de 2,5% de cloro mostraram-se as mais estáveis naturalmente.
- 4. A solução Miltom (1% de cloro) é realmente estável dentro do prazo de validade (mais ou menos 2 anos).
- 5. As soluções de NaOCI têm capacidade de dissolução de polpa dental, na razão direta de suas concentrações.
- 6. O NaCl não se mostrou eficaz como estabilizante.
- 7. Tudo indica que o aumento do pH da solução seja o caminho certo para a estabilização.
- 8. Do que se expôs, é lícito considerarse a possibilidade de uso endodôntico de produtos (alguns) tipos "água sanitária" das marcas Q Boa e Virex, que são soluções de NaOCI a concentrações de 2% e 1% respectivamente.

REFERÊNCIAS BIBLIOGRÁFICAS

- AMERICAN DENTAL ASSOCIATION. Remédios dentários oficiais. 27. ed. Rio de Janeiro: USAID, 1963. p. 121: Antissépticos e germicidas de uso tópico.
- BAZERQUE, P. Farmacologia odontológica. Buenos Aires: Mundi, 1976. p. 535-536.
- BERBERT, A.; BRAMANTE, C.; BERNAR-DINELI, N. Endodontia prática. São Paulo: Sarvier, p. 53-59-62.
- BEVILACQUA, S. Elementos de farmacologia e terapêutica. Rio de Janeiro: Científica, 1964. p. 159-160.
- BUCKLEY, J.P. Matéria médica, farmacologia e terapêutica dentárias. 3. ed. Rio de Janeiro: Científica, 1956. p. 75-6.
- CAUDURO, H. Manual prático de endodontia. 2. ed. Porto Alegre: Ed. R.G.D., 1969. p. 89-90.
- COOLIDGE, E.D. Endodontia. Philadelphia: Lea & Febiger, 1950. p. 157-158.
- DE DEUS, Q.D. Endodontia. Belo Horizonte: Odontomédica & Jurídica, 1973. p. 407.

R. Fac. Odontol. Porto Alegre V. 32 N. 1 p.9-10 JOLHO 1991	R. Fac. Odontol.	Porto Alegre	V. 32	N. 1	p . 9-10	JULHO	1991
--	------------------	--------------	-------	------	-----------------	-------	------

- EUROPAISCHES ARZNEIBUCH, Komentar. Stutgart: Wissenschaftliche, 1976. p. 871.
- FILGUEIRAS, J.; MELLO, C.F. Patologia da polpa dentária. 3. ed. Rio de Janeiro: Científica, 1955. p. 84-85.
- GROSSMAN, L.I. Endodontia prática. 3. ed. Rio de Janeiro: Atheneu, 1963. p. 250.
- GROSSMAN, L.I. Tratamento de canais radiculares. 2. ed. Rio de Janeiro: Atheneu, 1956. p. 236-237.
- HIZATUGU, R. & VALDRIGHI, L. Endodontia. Piracicaba: Aloisi, 1974. p. 150-151.
- HOLLAND, R. Endodontia: Aracatuba: Faculdade de Odontologia, 1972. p. 44-45.
- INGLE, J.I.; BEVERIDGE, E.E. Endodontia.
 ed. Rio de Janeiro: Interamericana, 1979, p. 170.
- LASALA, A. Endodoncia. 2. ed. Carácas: Cromotip, 1971. p. 199.
- LIBEAU, P. & JANOT, M.M. Traité de pharmacie chimique. 4. ed. Paris: Masson, 1956. v. 1. p. 32-39.
- LEONARDO, M.; LEAL, J.M.; SIMÓES A.P. Endodontia: São Paulo: Panamericana, 1982. p. 189-193.
- MAISTO, O. Endodoncia. Buenos Aires: Mundi, 1967. p. 164.
- NEIDLE, E.A.; KROEGER, D.C.; YAGELA, J.A. Farmacologia e terapêutica para dentistas. Rio de Janeiro: Guanabara Koogan, 1983. p. 577.
- 21. PAIVA, J.G.; ALVARES, S. Endodontia. 2. ed. São Paulo. Atheneu, 1979. p. 165-166.
- PAIVA, J.G.; ANTONIAZZI, J.H. Endodontia. São Paulo, Artes Médicas, 1984. p. 308-309.
- PUCCI, F.M. Conductos Radiculares. Montevideo: Medico-Quirurgica, 1944. v. 2, p. 364.
- REDISH, G.F. Antisseptics, desinfectants, fungicids and chemical and physical sterilization.
 ed. Filadélfia: Lea & Febiger, 1961.
 p. 562-568.
- ROGERS, G.H. A text book of inorganics pharmaceutical chemistry. Philadelphia: Lea & Febiger, 1945. p. 199-201.
- SALLES CUNHA, G. Terapêutica. 2. ed. Rio de Janeiro: Scientífica, 1945. p. 45-46.
- SELTZER, S. Endodontology. Estados Unidos: Mc Graw Hill, 1971. p. 248-249.
- 28. SOLER; SHOCRON, Endodoncia. Argentina: La Médica, 1957. p. 217-218.
- 29. THE UNITED STATES PHARMACOPEA. Easton Mack, 1985. p. 1420.

R. Fac. Odontol.	Porto Alegre	V. 32	N.1	p .1 0-10	JULHO	1991
------------------	--------------	-------	-----	------------------	-------	------