Molecular Methodology for the Detection of the Leishmania Genus in Different Biological Samples Extracted from Dogs

Ana Júlia Miranda Ferreira de Sá, Lauren Laureanny Araújo Olimpo, Vanessa de Andrade Royo, Afraino Farias de Melo Júnior, Dario Alves de Oliveira, Hanna Carolina Campos Ferreira, Alcinei Mistico Azevedo, Elytania Veiga Menezes


Background: The leishmaniases are a group of parasitic diseases caused by trypanosomatids belonging to the genus Leishmania, members of the class Kinetoplastida, order Trypanosomatidae, family Trypanosomatidae. Despite innumerous wild species that are infected, the domestic dog is a potential reservoir of Leishmania infantum in urban areas, which expands the transmission pathway to humans. When infected, the dog becomes Visceral Canine Leishmaniasis (CVL), which is characterized by a diverse clinical picture that ranges from asymptomatic to non-specific signs, such as skin lesions, lymphadenomegaly, weight loss, splenomegaly, and/or ocular lesions, thus impairing accurate and rapid diagnosis.In Brazil, it is considered a public health problem since it is endemic in certain regions. Therefore, parasitological, serological, and molecular methods can be used for the detection of the disease. However, the possibility of serological cross-reaction and the occurrence of co-infection with other trypanosomatids decreases the specificity rate to below 100%, which suggests the use of more accurate diagnostic tools. Several molecular targets and starting samples for leishmaniasis diagnosis are already standardized, but there is lack of data allowing the evaluation of the target, as well as which biological material is more efficient for the molecular diagnosis of CVL. The sensitivity of PCR may vary with DNA quality, primer type, parasitemia level, and number of target copies per cell. The spleen, blood, liver, aspirate of bone marrow and lymph nodes are the most frequently used for molecular diagnosis of CVL. The present study aimed to evaluate and compare three protocols of the polymerase chain reaction (PCR) for the molecular diagnosis of CVL in different biological samples removed from animals with different clinical and anatomopathological signs.

Materials, Methods & Results: Fifty seropositive dogs for CVL were used, their clinical and anatomopathological signs were evaluated, and were classified as asymptomatic, oligosymptomatic, and polysymptomatic. The PCR was conducted with specific primers for each region of the smaller subunit of rRNA, ITS-1, and KDNA genes. The four types of biological samples (spleen, blood, lymph nodes, and liver) were analyzed. Among the 50 dogs studied, 19 (38%) were in the asymptomatic group; all the animals showed healthy appearance, 15/50 (30%) of the dogs presented up to two symptoms, being classified as oligosymptomatic. The polysymptomatic dogs [16/50 (32%)] presented with a compromised clinical status. The study showed that all dogs had a positive result in at least one analyzed PCR methodology. Comparing the results of the three types of tests in the four types of studied samples, the nested-PCR was the one which presented a greater frequency of amplifications. Of a total of 200 samples, 124 showed amplification, showing a 62% sensitivity.

Discussion: The results revealed that, when 50 dogs were analyzed, the spleen tissue samples had a better performance in all the tests, but the sensitivity of blood samples was also satisfactory in Nested SSU rRNA-PCR and MC-PCR. The blood samples can be easily accessed with minimal invasion. One of the limitations around the use of biopsy of the spleen or its aspirate is the risk of serious bleeding or even death of the animal. Taking into consideration the practicality and because it has a lower grade of invasiveness, the combination of peripheral blood with Nested SSU rRNA-PCR becomes the methodology of first choice.

Full Text:



Albuquerque A., Campino L., Cardoso L. & Cortes S. 2017. Evalution of four molecular methods to detect Leishmania infection in dogs. Parasites &Vectors. 10(57): 1-5.

Assis J., Queiroz N.M.G.P., Silveira R.C.V., Maroni N..C, Trícia O., Noronha Junior A.C.F., Neves M.F., Machado R.Z. & Buzetti W.A.S. 2010. Estudo comparativo dos métodos diagnósticos para Leishmaniose Visceral em cães oriundos de Ilha Solteira, SP. Revista Brasileira de Parasitologia Veterinária. 19(1): 17-25.

Barrouin-Melo S.M., Larangeira D.F., Trigo J., Aguiar P.H.P., dos-Santos W.L.C. & Pontes-de-Carvalho L. 2004. Comparison between splenic and lymph node aspirations as sampling methods for the parasitological detection of Leishmania chagasi infection in dogs. Memórias do Instituto Oswaldo Cruz. 99(2): 1957.

Cortes S., Rolão N., Ramada J. & Campino L. 2004. PCR as a rapid and sensitive tool in the diagnosis of human and canine leishmaniasis using Leishmania donovani s.l.-specific kinetoplastid primers. Transactions of the Royal Society of Tropical Medicine and Hygiene. 98(1): 12-17.

Cruz I., Canavate C., Rubio J.M., Morales M.A., Chicarro C., Laguna F., Jiménez-Mejías M., Sirera G., Videla S., Alvar J. & The Spanish HIV-Leishmania Study Group. 2002. A nested polymerase chain reaction (Ln-PCR) for diagnosing and monitoring Leishmania infantum infection in patients co-infected with human immunodeficiency virus. Transactions of the Royal Society of Tropical Medicine and Hygiene. 96(1): S185-S189.

D’Avila-Levy C.M., Boucinha C., Kostygov A., Santos H.L., Morelli K.A., Grybchuk-Ieremenko A., Duval L., Votýpka J., Yurchenko V., Grellier P. & Lukeš J. 2015. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Memórias do Instituto Oswaldo Cruz. 110(8): 956-965.

Dourado Z.F., Silva H.D., Silveira-Lacerda E.P. & Garcia-Zapata M.T.A. 2008. Panorama histórico do diagnóstico laboratorial da leishmaniose visceral até o surgimento dos testes imunocromatográficos (rK39). Revista de Patologia Tropical. 36: 205-214.

Eys G.J.V., Schoone G.J., Kroon N.C. & Ebeling S.B. 1992. Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Molecular and Biochemical Parasitology. 51(1): 133-42.

Lima A.M.V., Santos A.S., Faleiro M.B.R., Moura V.M.B.D, Brito F.L.C. & Brito L.A.B. 2015. Hystopathology and Leishmania sp. immunostaining in third eyelid of Leishmania (Leishmania) chagasi naturally infected dogs. Ciência Animal Brasileira. 16(4): 538-547.

Ministério da Saúde. 2006. Manual de Vigilância e Controle da Leishmaniose Visceral. Brasília: Ministério da Saúde, 122p.

Moraes P.H.G., Rufino C.P., Reis T., Aguiar D.C.F., Meneses A.M.C. & Gonçalves E.C. 2014. Optimization of a molecular method for the diagnosis of canine babesiosis. Brazilian Journal of Veterinary Parasitology. 23(1): 105-108.

Oliveira M.D.S., Regitano L.D.A., Roese A.D., Anthonisen D.G., Patrocinio E.D., Parma M.M. & Belicuas S. 2007. Fundamentos teóricos-práticos e protocolos de extração e de amplificação de DNA por meio da técnica de reação em cadeia de polimerase. São Carlos: Embrapa Pecuária Sudeste, 43p.

Ortiz R.C. & Anversa L. 2015. Epidemiologia da leishmaniose visceral em Bauru, São Paulo, no período de 2004 a 2012: um estudo descritivo. Epidemiologia e Serviços de Saúde. 24(1): 97-104.

Pimenta P.F.P., Freitas V.C. & Secundino N.F.C. 2012. A Interação do Protozoário Leishmania com seus Insetos Vetores. In: Tópicos avançados em entomologia molecular. Cap. 12. Rio de Janeiro: UFRJ, 1-45. [Fonte:].

Ramos R.A.N., Ramos C.A.N. & Santos E.M.S. 2013. Quantification of Leishmania infantum DNA in the bone marrow, lymph node and spleen of dogs. Revista Brasileira de Parasitologia Veterinária. 22(3): 346-350.

Reis L.E., Coura-Vital W., Roatt B.M., Bouillet L.E.M., Ker H.G., Brito R.C.F., Resende D.M., Carneiro M., Giunchetti R.C., Marques M.J., Carneiro C.M. & Reis A.B. 2013. Molecular diagnosis of canine visceral leishmaniasis: a comparative study of three methods using skin and spleen from dogs with natural Leishmania infantum infection. Veterinary Parasitology. 197(3-4): 498-503.

Silva D.A., Madeira M.F., Teixeira A.C., Souza C.M. & Figueiredo F.B. 2011. Laboratory tests performed on Leishmania seroreactive dogs euthanized by the leishmaniasis control program. Veterinary Parasitology. 179(1-3): 257-261.

Silva M.A.L., Medeiros R.A., Brandão-Filho S., Melo F.L. & Medeiros Z. 2010. Alvos Moleculares usados em PCR para o diagnóstico de Leishmaniose Visceral. Revista Eletrônica de Farmácia. 7(3): 1-15.

Silveira A.P.S., Vieira V.B.D., Batalini L.S., Carmo S.B., Friozi E., Arruda E.J., Lima Junior M.S.C. & Neitzke-Abreu H.C. 2018. PCR sensitivity of peripheral blood of dogs co-infected with Leishmania spp. and Ehrlichia spp. in endemic area of Brazil. Revista da Sociedade Brasileira de Medicina Tropical. 51(6): 843-847.

Solcá M.S., Guedes C.E.S., Nascimento E.G., Oliveira G.G.S, Santos W.L.C., Fraga D.B.M. & Veras P.S. 2012. Qualitative and quantitative polymerase chain reaction (PCR) for detection of Leishmania in spleen samples from naturally infected dogs. Veterinary Parasitology. 184(2-4): 133-140.

Tai N.O.E., Osman O.F., Fari M.E., Presber W. & Schönian G. 2000. Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing. Transactions of the Royal Society of Tropical Medicine and Hygiene. 94(5): 575-579.

Teixeira A.I.P., Silva D.M., Vital T., Nitz N., Carvalho B.C., Hecht M., Oliveira D., Rabello A. & Romero G.A.S. 2019. Improving the reference standard for the diagnosis of canine visceral leishmaniasis: a challenge for current and future tests. Memórias do Instituto Oswaldo Cruz. 114(e180452): 1-9.


Copyright (c) 2019 Ana Júlia Miranda Ferreira de Sá, Lauren Laureanny Araújo Olimpo, Vanessa de Andrade Royo, Afraino Farias de Melo Júnior, Dario Alves de Oliveira, Hanna Carolina Campos Ferreira, Alcinei Mistico Azevedo, Elytania Veiga Menezes

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.