Control of Redox Homeostasis in Tick Blood Feeding

Gabriela Alves Sabadin, Marina Amaral Xavier, Itabajara da Silva Vaz Jr.


Introduction: Ticks are hematophagous ectoparasites that cause significate economical losses. Acaricide application is the main method to tick control. However, it causes environmental contamination and selects resistant ticks. The immunological control represents a suitable method to replace or complement acaricide application. During its life cycle, female ticks ingest large amounts of blood, which contains toxic components able to damage biomolecules. Understanding which molecular mechanisms and proteins are involved in avoid damages caused by blood intake in ticks and other hematophagous arthropods could help to found potential candidate antigens to compose an anti-tick vaccine. 

Review: Hemoglobin comprises almost 20% of mammalian blood proteins, its hydrolysis during tick digestion increases total free heme that can potentially generate reactive oxygen species (ROS), which easily oxidize lipids, proteins and DNA, modifying they structure and function. Lipids are more susceptible to high ROS levels. It can lead to membrane instability and cell death. Protein modifications caused by ROS can promote the protein loss of function and cell disturbance, however, it can also work as post-translational modifications, acting in cell signaling processes. DNA presents more efficient protective mechanisms against ROS, but damages can lead to double helix rupture. Oxidative stress is defined as a disturbance in the balance between the production and elimination of ROS, in favor of ROS production, leading to a disruption in redox homeostasis and/or molecular damage. Despite the well-recognized heme oxidative power and its already demonstrated cytotoxicity, ticks are able to feed on blood, controlling the redox homeostasis without causing oxidative stress. This occurs because ticks developed physiological adaptations to transport, store, metabolize and secrete toxic components from the diet. The strategies, such as heme compartmentalization in specialized organelles, and heme and iron carrying proteins are shared with most of other hematophagous. Interesting, heme degradation, a mechanism commonly described in hematophagous arthropods, showed to be absent in ticks. Moreover, there is a lack of key enzymes from the heme degradation pathway in tick genomes. As expected, antioxidant enzymes are often involved in homeostasis redox control. They act in a convenient way, eliminating physiological and non-physiological produced ROS. Despite their essential role in non-hematophagous organisms, antioxidant enzymes were associated with blood ingestion during arthropod hematophagous process, demonstrating their role in avoiding oxidative stress caused by blood intake. Catalase showed to be essential to heme detoxification in Rhipicephalus microplus tick, and diverse antioxidant enzymes are up-regulated after blood intake in a variety of hematophagous parasites. If in one hand ROS is responsible to cell damage and oxidative stress, on the other hand, several works revealed the fundamental role of ROS in cell signaling and function, demonstrating the sophisticated regulation that is necessary to redox homeostasis control.

Conclusions: In the course of arthropods evolution, blood-feeding life style represent a special strategy to acquire energy and biosynthetic precursors. Together with this advantage, hematophagous organisms needed to develop molecular mechanisms to control toxic components ingested with blood. In this context, several works reviewed here identified the role of proteins and enzymes in the control of free heme released during hematophagy and in redox homeostasis, in order to avoid oxidative stress caused by blood intake. This knowledge represents an important contribution in the search for new candidate targets to develop efficient tick control methods.

Full Text:



Aft R.L. & Mueller G.C. 1983. Hemin-mediated DNA strand scission. The Journal of Biological Chemistry. 258(19): 12069-12072.

Aft R.L. & Mueller G.C. 1984. Hemin-mediated oxidative degradation of proteins. The Journal of Biological Chemistry. 259(1): 301-305.

Al-Mehdi A.B., Pastukh V.M., Swiger B.M., Reed D.J., Patel M.R., Bardwell G.C., Pastukh V.V., Alexeyev M.F. & Gillespie M.N. 2012. Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Science Signaling. 5(231): 47-67.

Allen J.R. 1994. Host resistance to ectoparasites. Revue Scientifique et Technique. 13(4): 1287-1303.

Angelucci F., Baiocco P., Brunori M., Gourlay L., Morea V. & Bellelli A. 2005. Insights into the catalytic mechanism of glutathione S-transferase: the lesson from Schistosoma haematobium. Structure. 13(9): 1241-1246.

Awasthi Y.C., Sharma R., Cheng J.Z., Yang Y., Sharma A., Singhal S.S. & Awasthi S. 2003. Role of 4-hydroxynonenal in stress-mediated apoptosis signaling. Molecular Aspects of Medicine. 24(4-5): 219-230.

Bottino-Rojas V., Talyuli O.A., Jupatanakul N., Sim S., Dimopoulos G., Venancio T.M., Bahia A.C., Sorgine M.H., Oliveira P.L. & Paiva-Silva G.O. 2015. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti. PLoS One. 10(8): e0135985.

Braz G.R., Coelho H.S., Masuda H. & Oliveira P.L. 1999. A missing metabolic pathway in the cattle tick Boophilus microplus. Current Biology. 9(13): 703-706.

Breen A.P. & Murphy J.A. 1995. Reactions of oxyl radicals with DNA. Free Radical Biology & Medicine. 18(6): 1033-1077.

Breitzig M., Bhimineni C., Lockey R. & Kolliputi N. 2016. 4-Hydroxy-2-nonenal: a critical target in oxidative stress? American Journal of Physiology. Cell physiology. 311(4): 537-543.

Case A.J. 2017. On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants. 6(4): 82.

Cavas L. & Tarhan L. 2003. Glutathione redox system, GSH-Px activity and lipid peroxidation (LPO) levels in tadpoles of R.r.ridibunda and B.viridis. Cell Biochemistry and Function. 21(1): 75-79.

Chen M.M., Shi L. & Sullivan Jr. D.J. 2001. Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and beta-hematin. Molecular and Biochemical Parasitology. 113(1): 1-8.

Chen Y., Azad M.B. & Gibson S.B. 2009. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death and Differentiation. 16(7): 1040-1052.

Citelli M., Lara F.A., da Silva Vaz Jr. I. & Oliveira P.L. 2007. Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. Molecular and Biochemical Parasitology. 151(1): 81-88.

Cozza G., Rossetto M., Bosello-Travain V., Maiorino M., Roveri A., Toppo S., Zaccarin M., Zennaro L. & Ursini F. 2017. Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: The polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center. Free Radical Biology & Medicine. 112: 1-11.

Cramaro W.J., Revets D., Hunewald O.E., Sinner R., Reye A.L. & Muller C.P. 2015. Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naive midgut. BMC Genomics. 16: 871.

Cui L., Yoshioka Y., Suyari O., Kohno Y., Zhang X., Adachi Y., Ikehara S., Yoshida T., Yamaguchi M. & Taketani S. 2008. Relevant expression of Drosophila heme oxygenase is necessary for the normal development of insect tissues. Biochemical and Biophysical Research Communications. 377(4): 1156-1161.

da Silva Vaz Jr. I., Logullo C., Sorgine M., Velloso F.F., Rosa de Lima M.F., Gonzales J.C., Masuda H., Oliveira P.L. & Masuda A. 1998. Immunization of bovines with an aspartic proteinase precursor isolated from Boophilus microplus eggs. Veterinary Immunology and Immunopathology. 66(3-4): 331-341.

Dansa-Petretski M., Ribeiro J.M., Atella G.C., Masuda H. & Oliveira P.L. 1995. Antioxidant role of Rhodnius prolixus heme-binding protein. Protection against heme-induced lipid peroxidation. The Journal of biological chemistry. 270(18): 10893-10896.

Dizdaroglu M. & Jaruga P. 2012. Mechanisms of free radical-induced damage to DNA. Free Radical Research. 46(4): 382-419.

Dong D., Ako R. & Wu B. 2012. Crystal structures of human sulfotransferases: insights into the mechanisms of action and substrate selectivity. Expert Opinion on Drug Metabolism & Toxicology. 8(6): 635-646.

Donohue K.V., Khalil S.M., Sonenshine D.E. & Roe R.M. 2009. Heme-binding storage proteins in the Chelicerata. Journal of Insect Physiology. 55(4): 287-296.

Dreher-Lesnick S.M., Mulenga A., Simser J.A. & Azad A.F. 2006. Differential expression of two glutathione S-transferases identified from the American dog tick, Dermacentor variabilis. Insect Molecular Biology. 15(4): 445-453.

Espinosa-Diez C., Miguel V., Mennerich D., Kietzmann T., Sanchez-Perez P., Cadenas S. & Lamas S. 2015. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology. 6: 183-197.

Flohe L. & Ursini F. 2008. Peroxidase: a term of many meanings. Antioxid Redox Signal. 10(9): 1485-1490.

Fransen M., Lismont C. & Walton P. 2017. The Peroxisome-Mitochondria Connection: How and Why? International journal of molecular sciences. 18(6):1126-1150.

Freitas D.R., Rosa R.M., Moraes J., Campos E., Logullo C., Da Silva Vaz Jr. I. & Masuda A. 2007. Relationship between glutathione S-transferase, catalase, oxygen consumption, lipid peroxidation and oxidative stress in eggs and larvae of Boophilus microplus (Acarina: Ixodidae). Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 146(4): 688-694.

Gasselhuber B., Carpena X., Graf M.M., Pirker K.F., Nicolussi A., Sundermann A., Hofbauer S., Zamocky M., Furtmuller P.G., Jakopitsch C., Oostenbrink C., Fita I. & Obinger C. 2015. Eukaryotic Catalase-Peroxidase: The Role of the Trp-Tyr-Met Adduct in Protein Stability, Substrate Accessibility, and Catalysis of Hydrogen Peroxide Dismutation. Biochemistry. 54(35): 5425-5438.

Goyal M.M. & Basak A. 2010. Human catalase: looking for complete identity. Protein Cell. 1(10): 888-897.

Graca-Souza A.V., Maya-Monteiro C., Paiva-Silva G.O., Braz G.R., Paes M.C., Sorgine M.H., Oliveira M.F. & Oliveira P.L. 2006. Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochemistry and Molecular Biology. 36(4): 322-335.

Grisi L., Leite R.C., Martins J.R., Barros A.T., Andreotti R., Cancado P.H., Leon A.A., Pereira J.B. & Villela H.S. 2014. Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinaria. 23(2): 150-156.

Gutteridge J.M. & Smith A. 1988. Antioxidant protection by haemopexin of haem-stimulated lipid peroxidation. Biochemical Journal. 256(3): 861-865.

Hirrlinger J., Konig J., Keppler D., Lindenau J., Schulz J.B. & Dringen R. 2001. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. Journal of Neurochemistry. 76(2): 627-636.

Hocking B. 1971. Blood-sucking behavior of terrestrial arthropods. Annual Review of Entomology. 16: 1-26.

Inoue M., Sato E.F., Nishikawa M., Park A.M., Kira Y., Imada I. & Utsumi K. 2003. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Current Medicinal Chemistry. 10(23): 2495-2505.

Jung T., Hohn A. & Grune T. 2014. The proteasome and the degradation of oxidized proteins: Part II - protein oxidation and proteasomal degradation. Redox Biology. 2: 99-104.

Kaludercic N., Deshwal S. & Di Lisa F. 2014. Reactive oxygen species and redox compartmentalization. Frontiers in Physiology. 5: 285.

Kehrer J.P. 2000. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 149(1): 43-50.

Kikuchi G., Yoshida T. & Noguchi M. 2005. Heme oxygenase and heme degradation. Biochemical and Biophysical Research Communications. 338(1): 558-567.

Lara F.A., Lins U., Paiva-Silva G., Almeida I.C., Braga C.M., Miguens F.C., Oliveira P.L. & Dansa-Petretski M. 2003. A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: aggregation inside a specialized organelle, the hemosome. Journal of Experimental Biology. 206(Pt 10): 1707-1715.

Lara F.A., Pohl P.C., Gandara A.C., Ferreira J. da S., Nascimento-Silva M.C., Bechara G.H., Sorgine M.H., Almeida I.C., Vaz Jr. I. da S. & Oliveira P.L. 2015. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells. PLoS One. 10(8): e0134779.

Le Bras M., Clement M.V., Pervaiz S. & Brenner C. 2005. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histology and Histopathology. 20(1): 205-219.

Machado E.A., Oliveira P.L., Moreira M.F., de Souza W. & Masuda H. 1998. Uptake of Rhodnius heme-binding protein (RHBP) by the ovary of Rhodnius prolixus. Arch Insect Biochem Physiol. 39(4): 133-143.

Mans B.J., Louw A.I. & Neitz A.W. 2002. Evolution of hematophagy in ticks: common origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the genus Ornithodoros. Molecular Biology and Evolution. 19(10): 1695-1705.

Marnett L.J. 1999. Lipid peroxidation-DNA damage by malondialdehyde. Mutation Research. 424(1-2): 83-95.

Martin K.R. & Barrett J.C. 2002. Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Human & Experimental Toxicology. 21(2): 71-75.

Maya-Monteiro C.M., Daffre S., Logullo C., Lara F.A., Alves E.W., Capurro M.L., Zingali R., Almeida I.C. & Oliveira P.L. 2000. HeLp, a heme lipoprotein from the hemolymph of the cattle tick, Boophilus microplus. The Journal of Biological Chemistry. 275(47): 36584-36589.

Mehlhorn H. 2016. Encyclopedia of Parasitology. 3rd edn. New York:Springer, 3084p.

Mense S.M. & Zhang L. 2006. Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Research. 16(8): 681-692.

Miller A.F. 2012. Superoxide dismutases: ancient enzymes and new insights. FEBS Letters. 586(5): 585-595.

Morrow C.S. & Cowan K.H. 1990. Glutathione S-transferases and drug resistance. Cancer Cells. 2(1): 15-22.

Mueller J.W., Gilligan L.C., Idkowiak J., Arlt W. & Foster P.A. 2015. The Regulation of Steroid Action by Sulfation and Desulfation. Endocrine Reviews. 36(5): 526-563.

Muse K.E., Oberley T.D., Sempf J.M. & Oberley L.W. 1994. Immunolocalization of antioxidant enzymes in adult hamster kidney. The Histochemical journal. 26(9): 734-753.

Ndawula Jr. C., Sabadin G.A., Parizi L.F. & da Silva Vaz Jr. I. 2019. Constituting a glutathione S-transferase-cocktail vaccine against tick infestation. Vaccine. 37(14): 1918-1927.

Oliveira J.H.M., Talyuli O.A.C., Gonçalves R.L.S., Paiva-Silva G.O., Sorgine M.H.F., Alvarenga P.H. & Oliveira P.L. 2017. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLOS Neglected Tropical Diseases. 11(4): 1-13.

Oliveira M.F., Silva J.R., Dansa-Petretski M., de Souza W., Lins U., Braga C.M., Masuda H. & Oliveira P.L. 1999. Haem detoxification by an insect. Nature. 400(6744): 517-518.

Oliveira M.F., Timm B.L., Machado E.A., Miranda K., Attias M., Silva J.R., Dansa-Petretski M., de Oliveira M.A., de Souza W., Pinhal N.M., Sousa J.J., Vugman N.V. & Oliveira P.L. 2002. On the pro-oxidant effects of haemozoin. FEBS Letters. 512(1-3): 139-144.

Oliveira P.L., Kawooya J.K., Ribeiro J.M., Meyer T., Poorman R., Alves E.W., Walker F.A., Machado E.A., Nussenzveig R.H., Padovan G.J. & Masuda H. 1995. A heme-binding protein from hemolymph and oocytes of the blood-sucking insect, Rhodnius prolixus. Isolation and characterization. The Journal of Biological Chemistry. 270(18): 10897-10901.

Orjih A.U., Banyal H.S., Chevli R. & Fitch C.D. 1981. Hemin lyses malaria parasites. Science 214(4521): 667-669.

Ortelli F., Rossiter L.C., Vontas J., Ranson H. & Hemingway J. 2003. Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. The Biochemical journal. 373(Pt 3): 957-963.

Paes M.C., Oliveira M.B. & Oliveira P.L. 2001. Hydrogen peroxide detoxification in the midgut of the blood-sucking insect, Rhodnius prolixus. Archives of Insect Biochemistry and Physiology. 48(2): 63-71.

Pagola S., Stephens P.W., Bohle D.S., Kosar A.D. & Madsen S.K. 2000. The structure of malaria pigment beta-haematin. Nature. 404(6775): 307-310.

Parizi L.F., Reck Jr. J. , Oldiges D.P., Guizzo M.G., Seixas A., Logullo C., de Oliveira P.L., Termignoni C., Martins J.R. & Vaz Jr. I.S. 2012. Multi-antigenic vaccine against the cattle tick Rhipicephalus (Boophilus) microplus: a field evaluation. Vaccine. 30(48): 6912-6917.

Parizi L.F., Utiumi K.U., Imamura S., Onuma M., Ohashi K., Masuda A. & da Silva Vaz Jr. I. 2011. Cross immunity with Haemaphysalis longicornis glutathione S-transferase reduces an experimental Rhipicephalus (Boophilus) microplus infestation. Experimental Parasitology. 127(1): 113-118.

Pascoa V., Oliveira P.L., Dansa-Petretski M., Silva J.R., Alvarenga P.H., Jacobs-Lorena M. & Lemos F.J. 2002. Aedes aegypti peritrophic matrix and its interaction with heme during blood digestion. Insect Biochemistry and Molecular Biology. 32(5): 517-523.

Perner J., Provaznik J., Schrenkova J., Urbanova V., Ribeiro J.M. & Kopacek P. 2016. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Scientific Reports. 6: 36695.

Perner J., Sobotka R., Sima R., Konvickova J., Sojka D., Oliveira P.L., Hajdusek O. & Kopacek P. 2016. Acquisition of exogenous haem is essential for tick reproduction. Elife. 5: e12318.

Pisoschi A.M., Pop A., Cimpeanu C. & Predoi G. 2016. Antioxidant Capacity Determination in Plants and Plant-Derived Products: A Review. Oxidative Medicine and Cellular Longevity. 2016: 1-13.

Poulos T.L. 2014. Heme enzyme structure and function. Chemical Reviews. 114(7): 3919-3962.

Ribeiro J.M. 1987. Role of saliva in blood-feeding by arthropods. Annual Review of Entomology. 32: 463-478.

Ryter S.W. & Tyrrell R.M. 2000. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radical Biology & Medicine. 28(2): 289-309.

Sabadin G.A., Parizi L.F., Kiio I., Xavier M.A., da Silva Matos R., Camargo-Mathias M.I., Githaka N.W., Nene V. & da Silva Vaz Jr. I. 2017. Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation. Vaccine. 35(48 Pt B): 6649-6656.

Sanders H.R., Evans A.M., Ross L.S. & Gill S.S. 2003. Blood meal induces global changes in midgut gene expression in the disease vector, Aedes aegypti. Insect Biochemistry and Molecular Biology. 33(11): 1105-1122.

Schieber M. & Chandel N.S. 2014. ROS function in redox signaling and oxidative stress. Current Biology. 24(10): 453-462.

Schmitt T.H., Frezzatti Jr. W.A. & Schreier S. 1993. Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis. Archives of Biochemistry and Biophysics. 307(1): 96-103.

Seery V.L. & Muller-Eberhard U. 1973. Binding of porphyrins to rabbit hemopexin and albumin. The Journal of Biological Chemistry. 248(11): 3796-3800.

Seiler A., Schneider M., Forster H., Roth S., Wirth E.K., Culmsee C., Plesnila N., Kremmer E., Radmark O., Wurst W., Bornkamm G.W., Schweizer U. & Conrad M. 2008. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metabolism. 8(3): 237-248.

Seixas A., Oliveira P., Termignoni C., Logullo C., Masuda A. & da Silva Vaz Jr. I. 2012. Rhipicephalus (Boophilus) microplus embryo proteins as target for tick vaccine. Veterinary Immunology and Immunopathology. 148(1-2): 149-156.

Sen C.K. 2001. Antioxidant and redox regulation of cellular signaling: introduction. Medicine & Science in Sports & Exercise. 33(3): 368-370.

Singh S.P., Coronella J.A., Benes H., Cochrane B.J. & Zimniak P. 2001. Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. European Journal of Biochemistry. 268(10): 2912-2923.

Sojka D., Pytelkova J., Perner J., Horn M., Konvickova J., Schrenkova J., Mares M. & Kopacek P. 2016. Multienzyme degradation of host serum albumin in ticks. Ticks Ticks and Tick-borne Diseases. 7(4): 604-613.

Spencer C.S., Yunta C., de Lima G.P.G., Hemmings K., Lian L.Y., Lycett G. & Paine M.J.I. 2018. Characterisation of Anopheles gambiae heme oxygenase and metalloporphyrin feeding suggests a potential role in reproduction. Insect Biochemistry and Molecular Biology. 98: 25-33.

Suzuki-Anekoji M., Suzuki A., Wu S.W., Angata K., Murai K.K., Sugihara K., Akama T.O., Khoo K.H., Nakayama J., Fukuda M.N. & Fukuda M. 2013. In vivo regulation of steroid hormones by the Chst10 sulfotransferase in mouse. The Journal of Biological Chemistry. 288(7): 5007-5016.

Tappel A.L. 1955. Unsaturated lipide oxidation catalyzed by hematin compounds. The Journal of Biological Chemistry. 217(2): 721-733.

Thompson D.M., Khalil S.M., Jeffers L.A., Sonenshine D.E., Mitchell R.D., Osgood C.J. & Michael Roe R. 2007. Sequence and the developmental and tissue-specific regulation of the first complete vitellogenin messenger RNA from ticks responsible for heme sequestration. Insect Biochemistry and Molecular Biology. 37(4): 363-374.

Trachootham D., Lu W., Ogasawara M.A., Nilsa R.D. & Huang P. 2008. Redox regulation of cell survival. Antioxid Redox Signal. 10(8): 1343-1374.

Ursini F., Maiorino M., Valente M., Ferri L. & Gregolin C. 1982. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochimica et Biophysica Acta. 710(2): 197-211.

Utsunomiya H., Komatsu N., Yoshimura S., Tsutsumi Y. & Watanabe K. 1991. Exact ultrastructural localization of glutathione peroxidase in normal rat hepatocytes: advantages of microwave fixation. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 39(9): 1167-1174.

Vaz Junior I.S., Martinez R.H., Oliveira A., Heck A., Logullo C., Gonzales J.C., Dewes H. & Masuda A. 1996. Functional bovine immunoglobulins in Boophilus microplus hemolymph. Veterinary Parasitology. 62(1-2): 155-160.

Weisiger R.A. & Fridovich I. 1973. Superoxide dismutase. Organelle specificity. The Journal of biological chemistry. 248(10): 3582-3592.

Wigglesworth V.B. 1943. The Fate of Haemoglobin in Rhodnius prolixus (Hemiptera) and other Blood-Sucking Arthropods Proceedings of the Royal Society. 131 (6): 313-339

Xavier M.A., Tirloni L., Pinto A.F.M., Diedrich J.K., Yates 3rd J.R., Gonzales S., Farber M., da Silva Vaz Jr. I. & Termignoni C. 2019. Tick Gene's organ engagement in lipid metabolism revealed by a combined transcriptomic and proteomic approach. Ticks and Tick Borne Diseases. 10(4): 787-797.

Xavier M.A., Tirloni L., Pinto A.F.M., Diedrich J.K., Yates J.R., 3rd, Mulenga A., Logullo C., da Silva Vaz Jr. I., Seixas A. & Termignoni C. 2018. A proteomic insight into vitellogenesis during tick ovary maturation. Scientific Reports. 8(1): 4698-4712.

Zamocky M., Furtmuller P.G. & Obinger C. 2008. Evolution of catalases from bacteria to humans. Antioxidants & redox signaling. 10(9): 1527-1548.

Ziegler R. & Ibrahim M.M. 2001. Formation of lipid reserves in fat body and eggs of the yellow fever mosquito, Aedes aegypti. Journal of Insect Physiology. 47(6): 623-627.


Copyright (c) 2019 Gabriela Alves Sabadin, Marina Amaral Xavier, Itabajara da Silva Vaz Jr.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.