Klebsiella oxytoca Multiresistant as an Agent of Disseminated Dermatitis in a Dog

Authors

  • Simone Aquino Departamento de Saude II. Laboratório de Microbiologia, Universidade Nove de Julho (UNINOVE).
  • Karin Herzig Clínica Veterinária Água Fria, São Paulo, SP, Brazil.

DOI:

https://doi.org/10.22456/1679-9216.87486

Abstract

Background: During the last years, there is a global concern about the increasing levels of antimicrobial resistance in human and veterinary medicine. Klebsiella oxytoca isolates are ubiquitous in nature, including surface water, soils, sewage, and plants. Klebsiella oxytoca is a nosocomial pathogen in humans but few studies reported as a pathogen in dogs and cats. Antimicrobial resistance represents a serious problem due to the increasing prevalence of extended-spectrum β-lactamaseproducing K. oxytoca isolates. The aim of the present study is describe the first clinical case of disseminated dermatitis in a dog caused by K. oxytoca multidrug resistant and the importance of correct protocol treatment.

Case: A 4 year-old dog, Shih-tzu, female showed a disseminated dermatitis displayed generalized alopecia, with seborrheic aspect and pruritus, in non-nosocomial conditions in the city of São Paulo. Skin samples were collected and sent to a veterinary microbiology laboratory for bacterial identification and antimicrobial susceptibility testing (AST). The tests demonstrated a Gram negative bacilli, oxidase negative, catalase positive, non motile, DNase negative, glicose fermentative, lactose positive in MacConkey agar. In all biochemical complementary tests the results were indole positive. The strain of K. oxytoca was tested for resistance to the following antibiotics: amikacin, amoxicillin-clavulanic acid, ampicillin, cephalexin, cephalosporin, chloramphenicol, ciprofloxacin, doxycycline, enrofloxacin, gentamicin, imipenem, levofloxacin, marbofloxacin, meropenem, neomycin, sulfamethoxazole/trimethoprim and tetracycline. The AST result demonstrated a resistant Klebsiella oxytoca for 76,4% of tested antibiotics and sensitivity to few antibiotics such as meropenem, imipenem, neomycin, amikacin, sulfamethoxazole and trimethoprim. The initial treatment was performed with meropenem, once the in vitro susceptibility to this antibiotic was demonstrated. However, resistance was observed at 6 days of treatment at a dose of 24 mg/kg /day. After the protocol was changed up to 40 mg/kg/day and maintenance of the dose of 30 mg/kg/day in combination with amikacin (20 mg/kg/day) by continuous administration, the dog had complete remission of symptoms.

Discussion: As in human medicine, some microorganisms are becoming multiresistant and emerging pathogens, such as K. oxytoca will be a major challenge for veterinarians, because while at the same time committed to the judicious use of antibiotics, antimicrobial resistance can make infections difficult to treat. The hospitalization of the animal was fundamental for the therapeutic success in the adjustment of doses and the monitoring of the clinical conditions, with remission of the symptoms after 23 days of associated amikacin and meropenem therapy. The cases of K. oxytoca are few discussed or unknown in the routine of veterinary medicine. This scenario should be analyzed in the search for best practices and treatment protocols based on the susceptibility profile of the pathogen. This means prescribing the right antibiotic in the appropriate dose for the target microorganism. Pet owners can help prevent antimicrobial resistance by supporting their veterinarian’s decision to perform tests such as bacterial culture and sensitivity testing as well as hospitalization of the animal for treatment under biosecurity conditions as an important decision-making to avoid cross-contamination between animals and owners, since K. oxytoca is of great importance in animal and human public health.

Downloads

Download data is not yet available.

References

Arias M.V.B., Padilha F.N. & Perugini M.R.E. 2017. Deep tissue culture and hemoculture in dogs with wounds and sepsis. Pesquisa Veterinária Brasileira. 37(12): 1483-1490.

Berrazeg M., Diene S.M., Drissi M., Kempf M., Richet H., Landraud L. & Rolain J.M. 2013. Biotyping of multidrug-resistant

Klebsiella pneumoniae clinical isolates from France and Algeria using MALDI-TOF MS. Plos ONE. 8(4): e61428.

Buffé C., Araujo B.V. & Dalla C.T. 2001. Parâmetros farmacocinéticos e farmacodinâmicos na otimização de terapias

antimicrobianas. Caderno de Farmácia. 17(2): 97-109.

Daikos, G.L., Tsaousi, S.,Tzouvelekis, L.S., Anyfantis I., Psichogiou M., Argyropoulou A., Stefanou I., Sypsa V., Miriagou V., Nepka M., Georgiadou S., Markogiannakis A., Goukos D. & Skoutelis A. 2014. Carbapenemaseproducing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrobial Agents and Chemotherapy. 58: 2322-2328.

Dromigny J.A., Nabeth P. & Perrier G.C.J.D. 2002. Distribution and susceptibility of bacterial urinary tract infections in Dakar, Senegal. International Journal of Antimicrobial Agents. 20: 339-347.

Dulman O.M., Anton A. & Solcan G. 2015. Variations in Standard Blood Count and Biochemical Parameters in Dogs with Atopic Dermatitis. Bulletin UASVM Veterinary Medicine. 72(1): 86-89.

Farrar E.T., Washabau R.J. & Saunders H.M. 1996. Hepatic abscesses in dogs: 14 cases (1982-1994). Journal of the American Veterinary Medical Association. 208: 243-247.

Gajul S.V., Mohite S.T., Mangalgi S.S., Wavare S.M. & Kakade S.V. 2015. Klebsiella pneumoniae in septicemic neonates with special reference to extended spectrum b-lactamase, AmpC, metallo b-lactamase production and multiple drug resistance in tertiary care hospital. Journal of Laboratory Physicians. 7: 32-37.

Gniadkowski M. 1991. Evolution and epidemiology of extended spectrum β-lactamases (ESBLs) and ESBL producing

microorganisms. Clinical Microbiology and Infection. 7: 597-608.

Guardabassi L., Jensen L.B. & Kruse H. 2010. Guia de Antimicrobianos em Veterinária. Porto Alegre: Artmed, 267 p.

Gupta K., Hooton T.M. & Stamm W.E. 2001. Increasing antimicrobial resistance and the management of uncomplicated

community acquired urinary tract infections. Annals of Internal Medicine. 135: 41-50.

Hori K., Yasoshima H., Yamada A., Sakurai K., Ohkubo E., Kubota A., Uematsu K., Sasio H., Mizokami Y. & Shimoyama T. 1998. Adrenal hemorrhage associated with Klebsiella oxytoca bacteremia. Internal Medicine Journal. 37: 990-994.

Jaruratanasirikul S., Jaruratanasirikul S., Limapichat T., Jullangkoon M., Aeinlang N., Ingviya N. & Wongpoowarak

W. 2011. Pharmacodynamics of meropenem in critically ill patients with febrile neutropenia and bacteremia. International Journal of Antimicrobial Agents. 38: 231-236.

Karagöz A., Acar S. & Körkoca H. 2015. Characterization of Klebsiella isolates by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS) and determination of antimicrobial resistance with VITEK 2 advanced expert system (AES). Turkish Journal of Medical Sciences. 45: 1335-1344.

Knöbl P.V., Viveiros J.F., Franco L.S., Davies Y.M., Cunha M.P.V., Menão M.C., Sato M.I.Z., Gomes V.T.M., Moreno A.M., Hidasi H.W., Souza C.A.I. & Knöbl T. 2017. Identificação de Klebsiella spp. em fezes de psitacídeos cativos. Atas de Saúde Ambiental. 5: 189-194.

Krueger W.A., Bulitta J., Kinzig-Schippers M., Landersdorfer C., Holzgrabe U., Naber K.G., George L., Drusano G.L. & Sörgel F. 2005. Evaluation by Monte Carlo Simulation of the Pharmacokinetics of Two Doses of Meropenem Administered Intermittently or as a Continuous Infusion in Healthy Volunteers. Antimicrobial Agents and Chemotherapy. 49: 1881-1889.

Kumar A., Chakraborti S., Joshi P., Chakrabarti P. & Chakraborty R. 2011. A multiple antibiotic and serum resistant oligotrophic strain, Klebsiella pneumoniae MB45 having novel dfrA30, is sensitive to ZnO QDs. Annals of Clinical Microbiology and Antimicrobials. 10: 19.

Langgartner J., Langgartner J., Vasold A., Glück T., Reng M. & Kees F. 2008. Pharmacokinetics of meropenem during intermittent and continuous intravenous application in patients treated by continuous renal replacement therapy. Intensive Care Medicine. 34: 1091-1096.

Lobetti R.G., Joubert K.E., Picard J., Carstens J. & Pretorius E. 2002. Bacterial colonization of intravenous catheters in young dogs suspected to have parvoviral enteritis. Journal of the American Veterinary Medical Association. 220: 1321-1324.

Matsuba C.S.T., Ciosak S.I., Serpa L.F., Poltronieri M. & Oliseski M.S. 2011. Terapia Nutricional: Administração e Monitoramento. In: Sociedade Brasileira Nutrição Parenteral e Enteral; Associação Brasileira de Nutrologia. Diretrizes Brasileiras para Terapia Nutricional Enteral e Parenteral. São Paulo: Associação Médica Brasileira, 12p.

Mouro S., Vilela C.L. & Niza M.M.R.E. 2010. Clinical and bacteriological assessment of dog-to-dog bite wounds.

Veterinary Microbiology. 144: 127-132.

Papini R., Ebani V.V., Cerri D. & Guidi G. 2006. Survey on bacterial isolates from dogs with urinary tract infections and their in vitro sensitivity. Revue de Médecine Vétérinaire. 157(1): 35-41.

Podschun R. & Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Revews. 11: 589-603.

Qureshi Z.A., Paterson D.L., Potoski B.A., Kilayko M.C., Sandovsky G., Sordillo E., Polsky B., Adams-Haduch J.M. & Doi Y. 2012. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrobial Agents and Chemotherapy. 56: 2108-2113.

Seliškar A., Zdovc I. & Zorko B. 2007. Nosocomial Klebsiella oxytoca infection in two dogs. Case Report. Slovenian Veterinary Research. 44(4): 115-122.

Silveira E., Vidor S.B., Dhein J.O., Gonzalez P.C.S., Spanamberg A., Sonne L. & Costa F.V.A. 2018. Otite bacteriana

por Klebsiella sp. como causa de encefalite em um gato. Acta Scientiae Veterinariae. 46(Suppl 1): 274.

Simonato B.S., Teixeira G.C., Rebecca E.S.W., Ross C. & Silva L.L. 2017. Infusão contínua versus intermitente de meropenem na prática clínica. Arquivos de Ciências da Saúde da UNIPAR. 21(1): 59-64.

Singh L., Cariappa M.P. & Kaur M. 2016. Klebsiella oxytoca: An emerging pathogen? Medical Journal Armed Forces India. 72(Suppl 1): S59-S61.

Stock I. & Wiedemann B. 2001. Natural antibiotic susceptibility of Klebsiella pneumoniae, K. oxytoca, K. planticola, K. ornithinolytica and K. terrigena strains. Journal of Medical Microbiology. 50: 396-406.

Straus D.C. 1987. Production of an extracellular toxic complex by various strains of Klebsiella pneumoniae. Infection and Immunity. 55(1): 44-48.

Sykes J.E. 2014. Gram-negative Bacterial Infections. In: Canine and Feline Infectious Diseases. St. Louis: Elsevier, pp.355-363.

Viana F.A.B. 2014. Guia Terapêutico Veterinário. 3 ed. São Paulo: Editora Cem, 560p.

Warren A.L., Towsend K.M., King T., Moss S., O’Boyle D., Yates R. & Trott D.J. 2001. Multi-drug resistant Escherichia coli with extended-spectrum β-lactamase activity and fluoroquinolone resistance isolated from clinical infection in dogs. Australian Veterinary Journal. 79: 621-623.

Weese J.S., Blondeau J.M., Boothe D., Breitschwerdt E.B., Guardabassi L., Hillier A., Lloyd D.H., Papich M.G., Rankin S.C., Turnidge J.D. & Sykes J.E. 2011. Antimicrobial use guidelines for treatment of urinary tract disease in dogs and cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. Veterinary Medicine International. 263768. doi: 10.4061/2011/263768.

Wu S.W., Dornbusch K., Göransson E., Ransjö U. & Kronvall G. 1991. Characterization of Klebsiella oxytoca septicaemia isolates resistant to aztreonam and cefuroxime. Journal of Antimicrobial Chemotherapy. 28: 389-397.

Published

2018-01-01

How to Cite

Aquino, S., & Herzig, K. (2018). Klebsiella oxytoca Multiresistant as an Agent of Disseminated Dermatitis in a Dog. Acta Scientiae Veterinariae, 46, 8. https://doi.org/10.22456/1679-9216.87486