Cholinesterase Activities and Oxidative Stress in Cattle Experimentally Exposed to Nitrate/Nitrite in Cultivated Pasture with Different Fertilization Schemes

Authors

  • Ricardo Christ Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil.
  • Aleksandro Schafer Da Silva Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC.
  • Mateus Eloir Gabriel Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil.
  • Luan Cleber Henker Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil.
  • Renan Augusto Cechin Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil.
  • Manoela Marchezan Piva Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil.
  • Nathieli Bianchin Bottari Department of Biochemistry and Molecular Biology and Department of Microbiology and Parasitology, Meridional Institute (IMED), Passo Fundo, RS, Brazil.
  • Maria Rosa Chitolina Schetinger Department of Biochemistry and Molecular Biology and Department of Microbiology and Parasitology, Meridional Institute (IMED), Passo Fundo, RS, Brazil.
  • Matheus Pedrotti De Cesaro Faculty of Veterinary Medicine, Meridional Institute (IMED), Passo Fundo, RS, Brazil.
  • Vera Maria Morsch Department of Biochemistry and Molecular Biology and Department of Microbiology and Parasitology, Meridional Institute (IMED), Passo Fundo, RS, Brazil.
  • Ricardo Evandro Mendes Laboratory of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil.

DOI:

https://doi.org/10.22456/1679-9216.86680

Abstract

Background: Nitrate and nitrite poisoning is associated with pasture intake that has high nitrate levels and leads to acute methemoglobinemia. Pasture may accumulate nitrate under certain conditions, such as excessively fertilized soil or environmental conditions that enhance the N absorption (rain preceded by a period of drought). After ingestion of plants, this substrate reaches the rumen and, in physiological conditions, is reduced to nitrite and afterward to ammonia. The aim of this study was to evaluate changes in cholinesterase activities and oxidative stress caused by subclinical poisoning for nitrate and nitrite in cattle fed with Pennisetum glaucum in three different fertilization schemes.

Materials, Methods & Results: In order to perform the experimental poisoning, the pasture was cultivated in three different paddocks: with nitrogen topdressing (urea; group 1), organic fertilizer (group 2) or without fertilizer (group 3; control). Nitrate accumulation in forage was evaluated by the diphenylamine test. After food fasting of 12 h, nine bovine were randomly allocated to one of the experimental groups and fed with fresh forage (ad libitum) from respective paddock. In different time points from beginning of pasture intake (0, 2, 4, 6 and 9 h) heart rate and respiratory frequency were assessed, as well as mucous membrane color and behavioral changes. Blood samples from jugular vein into vials with and without anticoagulant were collected. From blood samples, serum nitrite levels, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme activity were evaluated, as well as oxidative stress through the following parameters: levels of nitrate/nitrite (NOx ), thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS), beyond the antioxidant system by enzyme activity measurement of catalase (CAT) and superoxide dismutase (SOD). The diphenylamine test was positive to group 1 and 2, so that the pasture presented 3.16 mg/kg, 2.98 mg/kg and 1.67 mg/kg of nitrate for group 1, 2 and 3, respectively. In addition, cows from group 1 demonstrated increased (P < 0.05) nitrite levels in serum, compared to other groups, and greater heart rate after 9 h (P < 0.05). The AChE and BChE activity in group 1 showed significant increase (P < 0.05) at 4 and 6 h (AChE), and 4 and 9 h (BChE) compared to group 3. Also, NOx levels were lower at 6 and 9 h (P < 0.05) and at 9 h (P < 0.05) for animals of group 1 and 2, respectively, when compared to group 3. Furthermore, in the group 1 levels of ROS and TBARS were significantly higher (P < 0.05) after 2 and 4 h, and 6 and 9 h compared to other groups, respectively. The CAT activity increased significantly (P < 0.05) with 2 and 4 h of the experiment, but on the other hand, decreased at 6 and 9 h in group 1. Nevertheless, the animals from group 2 presented only a significant reduction in this enzyme activity at 9 h. Furthermore, SOD activity was reduced in animals of groups 1 (P < 0.05) at 4, 6 and 9 h, compared to other groups.

Discussion: It was concluded that the nitrate and nitrite poisoning by pasture intake cultivated and fertilized with urea leads to increased levels of serum nitrite, as well as the cholinesterase activity and causes oxidative stress in cattle. It is conjectured that the cholinesterase activity and oxidative stress may assist in understanding the pathophysiology of changes caused by poisoning.

Downloads

Download data is not yet available.

References

Ali Z., Thomas C.L.P. & Alder J.F. 1992. Denuder tube preconcentration and detection of gaseous ammonia using a

coates quartz piezoeletric crystal. Analyst. 117(5): 899-903.

Al-Qudah K.M. 2010. Oxidative stress resulting from subclinical nitrite poisoning in cattle. Toxicological & Enviromental Chemistry. 92(2): 351-358.

Bass D.A., Parce J.W., Dechatelet L.R., Szejda P., Seeds M.C. & Thomas M. 1983. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. Journal of Immunology. 130(4): 1910-1917.

Bondan C., Soares J.C.M., Cecim M., Lopes S.T.A., Graça D.L. & Rocha R.X. 2005. Oxidative stress in the erythrocytes of cattle intoxicated with Senecio sp. Veterinary Clinical Pathology. 34(4): 353-357.

Boudinot E., Bernard V., Camp S., Taylor P., Champagnat J., Krejci E. & Foutz A. S. 2009. Influence of differential expression of acetylcholinesterase in brain and muscle on respiration. Respiratory Physiology. 165(1): 40-48.

Carrigan M.J. & Gardner I.A. 1982. Nitrate poisoning in cattle fed sudax (Sorghum sp. hybrid) hay. Australian Veterinary Journal. 59(5): 155-157.

Costagliola A., Roperto F., Benedetto D., Anastasio A., Marrone R., Perillo A., Russo V., Papparella S. & Paciello O. 2014. Outbreak of fatal nitrate toxicosis associates with consumption of fennels (Foeniculum vulgare) in cattle farmed in Campania region (southern Italy). Environmental Science and Pollution Research. 21(9): 6252-6257.

Doyle R.L. 2015. Marcadores de estresse oxidativo e atividade das colinesterases em bovinos experimentalmente infectados por Babesia bovis, Babesia bigemina e Anaplasma marginale. 25f. Santa Maria, RS. Tese (Doutorado em Medicina Veterinária) - Programa de Pós-Graduação em Medicina Veterinária, Universidade Federal de Santa Maria.

Ellman G.L., Courtney K.D., Andres V.J. & Featherstone R.M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. (7): 88-95.

Gebicki J.M. 2016. Oxidative stress, free radicals and protein peroxides. Archives of Biochemistry and Biophysics. (595): 33-39.

Guevara I., Iwanejko J., Dembinska-Kiec A., Pankiewicz J., Wanat A., Anna P., Golabek I., Bartus S., MalczewskaMalec M. & Szczudlik A. 1998. Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clinica Chimica Acta. 274(2): 177-188.

Halliwell B. & Chirico S. 1993. Lipid peroxidation: its mechanism, measurement, and significance. The American

Journal of Clinical Nutrition. 57(Suppl 5): 715S-725S.

Halliwell B., Clement V. & Long L.H. 2000. Hydrogen peroxide in the human body. FEBS Letters. 486(1): 10-13.

Housholder G.T., Dollahite J.W. & Hulse M.T.R. 1966. Dyphenylamine for the diagnosis of nitrate intoxication. Journal of the American Veterinary Medical Association. 148(6): 662-665.

Ibarra G.A.T., Mayorquin A.E.R. & Pérez M.I.G. 2013. Influence of the colinergic system on the imune response of teleost fisches: potential model in biochemical research. Clinical and Developmental Immunology. (2013). Article ID 536534: 1-9.

Jentzsch A.M., Bachmann H., Fürst P. & Biesalski H.K. 1996. Improved analysis of malondialdehyde in human body fluids. Free Radical Biology and Medicine. 20(2): 251-256.

Jönck F., Gava A., Traverso S.D., Lucioli J. & Furlan F.H. 2013. Intoxicação espontânea e experimental por nitrato/ nitrito em bovinos alimentados com Avena sativa (aveia) e/ou Lolium sp. (azevém). Pesquisa Veterinária Brasileira. 33(9): 1062-1070.

Kohn M.C., Melnick R.L., Ye F. & Portier C.J. 2002. Pharmacokinetics of sodium nitrite-induced methemoglobinemia

in the rat. Drug Metabolism and Disposition. 30(6): 676-683.

Kozloski G.V. 2011. Biquímica de ruminantes. 3.ed. Santa Maria: UFSM, 140p.

Li B., Duysen E.G., Volpicelli-Daley L.A., Levey A.I. & Lockridge O. 2003. Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice. Pharmacology Boicheminstry and Behavior. 74(4): 977-986.

McCord J.M. & Fridovich I. 1969. Superoxide dismutase. The Journal of Biological Chemistry. 244(22): 6049-6055.

Medeiros R.M.T., Riet-Correa F., Tabosa I.M., Silva Z.A. & Barbosa R.C. 2003. Intoxicação por nitratos/nitritos em bovinos por ingestão de Echinochloa polystachya (capim-mandante) e Pennisetum purpureum (capim-elefante) no sertão da Paraíba. Pesquisa Veterinária Brasileira. 23(1): 17-20.

Mesulan M.M., Guillozet A., Shaw P., Levey A. & Duysen E.G. 2002. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hidrolise acetylcholine. Neuroscience. 110(4): 627- 639.

Miranda K.M., Espey M.G. & Wink D.A. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric oxide: Biology and Chemistry. 5(1): 62-71.

Nelson D.P. & Kiesow L.A. 1972. Enthalpy of decomposition of hydrogen peroxide by catalase at 25o C (with molar extinction coefficients of H2 O2 solutions in the UV). Analytical Biochemistry. 49(2): 474-478.

O’Hara P.J. & Fraser A.J. 1975. Nitrate poisoning in cattle grazing crops. New Zealand Veterinary Journal. 23(4): 45-53.

Ozmen O. 2003. Nitrate poisoning in cattle fed Chenopodium album hay. Veterinary and Human Toxicology. 45(2): 83-84.

Parada R.N. 1987. Intoxicación por nitrato em bovinos lecheros em una pradera de Ballica Italiana. (Lolium multiflora var. Tama). Avances en Medicina Veterinaria. 2(1): 65-68.

Radi R. 1995. Reactions of nitric oxide with metalloproteins. Chemical Research in Toxicology. 9(5): 828-835.

Radostits O.M., Gay C.C., Blood D.C. & Hinchcliff K.W. 2002. Doenças causadas por toxinas de plantas, fungos, cianofitas, clavibactéria e por venenos de carrapatos e animais vertebrados. In: Clínica veterinária: um tratado de doenças dos bovinos, ovinos, suínos, caprinos e equinos. 9.ed. Rio de Janeiro: Guanabara Koogan, pp.1472-1547.

Reuter S., Gupta S.C., Chaturvedi M.M. & Aggarwal B.B. 2010. Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biology & Medicine. 49(11): 1603-1616.

Schwertz C.I., Mendes R.E., Casagrande R.A., Lucca N.J., Couto C., Galvagni I., Stedille F.A. & Broll F. 2014. Intoxicação espontânea e experimental de bovinos por nitrato/nitrito em pastagem de azevém (Lolium spp.). In: Anais da IV Mostra de Iniciação científica do Instituto Federal Catarinense Câmpus Concórdia (Concórdia, Brasil).

Tokarnia H.C., Brito M.F., Barbosa J.D., Peixoto P.V. & Döbereiner J. 2000. Plantas tóxicas do Brasil para animais

de produção. 2.ed. Rio de Janeiro: Helianthus, pp. 261-264.

Vali V.E.O. 2007. Hematopoietic system In: Pathology of Domestic Animals. 5th edn. vol. 3. Philadelphia: Saunders

Elservier, pp.214, 260-261.

Vliet A., Eiserich J.P., Halliwell B. & Cross C.E. 1997. Formation of reactive nitrogen species during peroxidasecatalyzed oxidation of nitrite. The Journal of Biology Chemistry. 272(12): 7617-7625.

Worek F., Mast U., Kiderlen D., Diepold C. & Eyer P. 1999. Improved determination of acetylcholinesterase activity in human whole blood. Clinica Chimica Acta. 288(1-2): 73-90.

Published

2018-01-01

How to Cite

Christ, R., Da Silva, A. S., Gabriel, M. E., Henker, L. C., Cechin, R. A., Piva, M. M., Bottari, N. B., Schetinger, M. R. C., De Cesaro, M. P., Morsch, V. M., & Mendes, R. E. (2018). Cholinesterase Activities and Oxidative Stress in Cattle Experimentally Exposed to Nitrate/Nitrite in Cultivated Pasture with Different Fertilization Schemes. Acta Scientiae Veterinariae, 46(1), 9. https://doi.org/10.22456/1679-9216.86680

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>