Use of infrared thermography to evaluate the influence of the of Climatic Factors in the Reproduction and Lactation of Dairy Cattle

Marcelo George Mungai Chacur, Guilherme Pepino Bastos, Dougles Sanches Vivian, Leandro da Silva, Luana Nayara de Freitas Chiari, Juliana de Souza Araujo, Camila Dutra de Souza, Luis Roberto Almeida Gabriel Filho


Background: The digital infrared imaging thermography is a non-invasive imaging exam of easy performance accurately to measure temperatures of the areas of the animals body. The objective was to study the physiological variations of the surface temperature of the mammary gland, vulva, pelvis, thorax and abdomen with digital infrared imaging thermography in negative dairy cattle with California mastitis test (CMT) in different seasons, and the influence of climatic factors in these temperatures.

Materials, Methods & Results: Eighteen Holstein cows, pregnant and non pregnant were used, negative for the California Mastitis Test, grazing on Urochloa decumbens pasture, receiving 2 kg of corn / animal / day, mineral mix and ad libitum water. Infrared thermography was performed every 30 days, for five months: January, February, March, April and May with thermographic camera (E40®, FLIR, Sweden) in the areas of the body: vulva, mammary gland, pelvis, abdomen and thorax. The thermal images (thermograms) were processed using the Flir Tools 2.1® program. The climatic factors: room temperature and relative humidity were monitored with globe thermometer (ITitwtg 2000®, Instrutemp, Brazil). Data were analyzed by analysis of variance and the average compared by Tukey test, with level of significance was set at (P < 0.05). For room temperature data, relative humidity, rectal temperature and for the areas of the body we used Pearson correlation (P < 0.05). For climatic factors, among the samples, room temperature and relative humidity, there was a significant difference (P < 0.05). To the skin surface temperatures of the body areas examined: vulva, pelvis, ischium, abdomen, thorax and mammary gland, among the samples, there were differences (P < 0.05) with lower temperatures of the areas in March and May samples, compared to the months of January, February and April. The average temperatures of the surfaces of the examined areas vary for the vulva between 33°C and 38°C; ischium, pelvis and abdomen between 30°C and 37°C; teats between 28°C and 37°C; Cistern of mammary quarter between 32°C and 38°C; and thorax from 31°C to 37°C. There were significant correlations between: rectal temperature x room temperature (r= 0.49; P < 0.01); Rectal temperature x relative humidity (r= -0.37; P < 0.01). To the surface temperatures of all areas of the body examined, there were significant correlations with the room temperature between (r= 0.73 and r= 0.85; P < 0.01); and between (r= - 0.57 and r= - 0.75; P < 0.05) for the relative humidity.

Discussion: The animals showed no behavioral change during the thermography examination. In dairy cattle it is recommended the use of infrared thermography as a routine test to measure the temperatures of the areas of the body. Climatic factors, room temperature and relative humidity influence the rectal temperatures and the body surfaces of the cows. The areas of the body examined by infrared thermography showed different temperatures, in the same data collection, showing physiological temperature variations that assist in the clinical evaluation of each of the areas examined. The thermographic images were saved and processed easily, quickly and in a practical way, recommending the use of thermal imaging by infrared for routine as imaging test complementary to the clinical examination of the mammary gland and of the body areas in dairy cattle.


dairy cattle; thermogram; mammary gland; body temperature.

Full Text:



Alsaaod M. & Büscher W. 2012. Detection of hoof lesions using digital infrared thermography in dairy cows. Journal of Dairy Science. 95(2): 735-742.

Barnabé J.M.C. 2013. Eficiência térmica de materiais utilizados na cobertura de abrigos individuais para bezerras Girolando. 66f. Recife, PE. Dissertação (Mestrado em Engenharia Agrícola) - Programa de Pós-graduação em Engenharia Agrícola da Universidade Federal Rural de Pernambuco.

Barnabé J.M.C., Pandorfi H., Almeida G.L.P., Guiselini C. & Jacob A.L. 2015. Conforto térmico e desempenho de bezerras Girolando alojadas em abrigos individuais com diferentes coberturas. Revista Brasileira de Engenharia Agrícola e Ambiental. 19(5): 481-488.

Berry R.J., Kennedy A.D., Scott S.L., Kyle B.L. & Schaefer A.L. 2003. Daily variation in the udder surface temperature of dairy cows measured by infrared thermography: Potential for mastitis detection. Canadian Journal of Animal Science. (83): 687-693.

Castro F.S.F., Martello L.S., Leme P.R., Silva S.L., Oliveira C.L. & Canata T.F. 2011. Análise do comportamento diurno de temperaturas de superfície corporal de bovinos Nelore por meio da termografia. In: 19º Simpósio Internacional de Iniciação Científica da USP (São Paulo, Brasil). p.122.

Cruz E.A., Daltro D.S., Alfonzo E.P.M., Stumpf M.T., Silva M.V.G., Pereira L. G.R., Fischer V. & McManus C.M. 2014. Correlação entre temperatura do úbere, contagem de células somáticas, estabilidade e produção de leite em vacas sob estresse térmico. In: XXIV Congresso Brasileiro de Zootecnia. (Vitória, Brasil). 1 CD ROM.

Daltro D.S. 2014. Uso da termografia infravermelha para avaliar a tolerância ao calor em bovinos de leite submetidos ao estresse térmico. 66f. Porto Alegre, RS. Dissertação (Mestrado em Zootecnia) em Produção Animal, Universidade Federal Rural do Rio Grande do Sul.

Gaughan J.B., Bonner S., Loxton I., Mader T.L., Lisle A. & Lawrence R. 2010. Effect of shade on body temperature and performance of feedlot steers. Journal of Animal Science. (88): 4056-4067.

Gil Z., Adamczyk K., Zapletal P., Frelich J., Šlachta M. & Andreasik A. 2013. Impact of the location of the dairy cows in the barn on their body surface temperature. Journal of Central European Agriculture. 14(3): 228-237.

Gonçalves C.S.M. 2013. Uso da termografia no diagnóstico precoce da doença respiratória bovina em explorações de engorda. 108f. Lisboa - Portugal. Dissertação (Mestrado em Medicina Veterinária) Faculdade de Medicina Veterinária, Universidade de Lisboa.

Hoffmann G., Schmidt M., Ammon C., Rose-Meierhöfer S., Burfeind O., Heuwieser W. & Berg W. 2013. Monitoring the body temperature of cows and calves using video recordings from an infrared thermography camera. Veterinary Research Communications. 37(2): 91-99.

Kunc P., Knížková I., Přikryl M. & Maloun J. 2007. Infrared thermography as a tool to study the milking process: a review. Agricultura tropica et subtropica. 40(1): 29-32.

Metzner M., Sauter-Louis C., Seemueller A., Petzl W. & Klee W. 2014. Infrared thermography of the udder surface of dairy cattle: Characteristics, methods, and correlation with rectal temperature. The Veterinary Journal. 199(1): 57-62.

Metzner M., Sauter-Louis C., Seemueller A., Petzl W. & Zerbe H. 2015. Infrared thermography of the udder after experimentally induced Escherichia coli mastitis in cows. The Veterinary Journal. 204(3): 360-362.

Montanholi1 Y.R., Swanson1 K.C., Palme R., Schenkel F.S., McBride B.W., Lu D. & Miller S.P. 2010. Assessing feed efficiency in beef steers through feeding behavior, infrared thermography and glucocorticoids. The Animal Consortium. 4(5): 692-701.

Nikkhah A. 2015. Infrared Termography as a Prognostic Livestock Agrotechnology: A Critique. Agrotechnology. 4(1): 111-115.

Okada K., Takemura K. & Sato S. 2013.Investigation of Various Essential Factors for Optimum Infrared Thermography. Journal of Veterinary Medical Science. 75(10): 1349-1353.

Poikalainen V., Praks J., Veermä E.I. & Kokin E. 2012. Infrared temperature patterns of cow’s body as an indicator for health control at precision cattle farming. Agronomy Research Biosystem Engineering Special. 10(1): 187-194.

Roberto J.V.B. & Souza B.B. 2014. Utilização da termografia de infravermelho na medicina veterinária e na produção animal. In: Journal of Animal Behaviour and Biometeorology. 2(3): 73-84.

Roberto J.V.B., Souza B.B., Silva E.M.N. & Silva G.A. 2014. A Medicina Veterinária e o uso da termografia de infravermelho. In: IX Congresso nordestino de produção animal (Ilhéus, Brasil). pp.145-147.

Schaefer A.L., Cook N.J., Bench C., Chabot J.B., Colyn J., Liu T., Okine E.K., Stewart M. & Webster J.R. 2012. The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Research in Veterinary Science. 93(2): 928-935.

Scott S., Kennedy A. & Schaefer A. 2003. Development of an Early Detection Method for Mastitis Using Infrared Thermography. ManitobaAgriculture, Foodand Rural Initiatives, 4p. Disponível em: [Accessed online November 2015]

Stelletta C., Gianesella M., Vencato J., Fiore E. & Morgante M. 2012. In: Thermographic Applications in Veterinary Medicine. Rijeka: Intech, pp.117-140.

Stelletta C., Vencato J., Fiore E. & Gianesella M. 2013. Infrared thermography in reproduction. In: Luzi F., Mitchell M., Costa L.N. & Redaelli V. (Eds). Thermography current status and advances in livestock animals and in veterinary medicine. Rome: Brescia, pp.113-125.

Suthar V.S., Burfeind O., Patel J.S., Dhami A.J. & Heuwieser W.2011. Body temperature around induced estrus in dairy cows. American Dairy Science Association. (94): 2368-2373.

Talukder S. 2015. Oestrus and Ovulation Detection in Pasture Based Dairy Herds: The Role of New Technologies. 286f. Sydney - Australia. Dissertation (Doctor of Philosophy) Faculty of Veterinary Science the University of Sydney.

Talukder S., Kerrisk K.L., Ingenhoff L., Thomson P.C., Garcia S.C. & Celi P. 2014. Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system. Theriogenology. 81(7): 925935.

Talukder S., Thomson P.C., Kerrisk K.L., Clark C.E.F. & Celi P. 2015. Evaluation of infrared thermography body temperature and collar-mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture-based system. Theriogenology. 83(4): 739-748.

Zimbelman R.B. 2008. Management strategies to reduce effects of thermal stress on lactating dairy cattle. 179f. Arizona, USA. Dissertation (Doctor of Philosophy) - Department of Animal Sciences, University of Arizona.

Zotti C.A. 2010. Desempenho, respostas fisiológicas e comportamentais de novilhas leiteiras mantidas em diferentes regimes de ventilação forçada. 63f. Nova Odessa, SP. Dissertação (Mestrado em Produção Animal Sustentável) - Programa de Pós-graduação em Produção Animal Sustentável, Instituto de Zootecnia.


Copyright (c) 2018 Marcelo George Mungai Chacur, Guilherme Pepino Bastos, Dougles Sanches Vivian, Leandro da Silva, Luana Nayara de Freitas Chiari, Juliana de Souza Araujo, Camila Dutra de Souza, Luis Roberto Almeida Gabriel Filho

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.