Fatty Acid Profile and Anti-Inflammatory Activity of Fixed Plant Oils

Selena Maia de Morais, José Eranildo Teles do Nascimento, Antonio Adailson de Sousa Silva, José Eduardo Ribeiro Honório Junior, Diana Célia Sousa Nunes Pinheiro, Ricardo Vasconcelos de Oliveira

Abstract


Background: Many seed oils have been used as anti-inflammatory agents, administred by ingestion or topical application in traditional medicine. The objective of this research was to perform a chemical analysis of fatty profile and a pharmacological study through a topical experiment of TPA-induced ear edema test and an internal assay - acetic acid-induced vascular permeability in Swiss mice of some fixed oils popularly used for inflammatory problems, trying to confirm their action.

Materials, Methods & Results: Fixed lipids of Ouratea fieldingiana (batiputá), Caryocar coreaceum (pequi), Annacardium occidentale (cashew-nuts), Cocos nucifera (coco-da-bahia), Byrsonima crassifolia (murici) e Elaeis guineenses (palm) were selected for the identification of fatty acids profile by gas chromatography coupled to mass spectrometry (GC/MS) analysis and evaluation of anti-inflammatory activity by TPA-induced ear edema test and acetic acid-induced vascular permeability in Swiss male mice. The oils were purchased in local markets or extracted in Soxhlet apparatus with hexane. The oils of cashew nut, murici fruit, and pequi nut presented a high percentage of unsaturated fatty acids (81.80, 74.46 and 60.72 %, respectively). In the oils of batiputá and murici, linoleic acid was the main unsaturated fatty acid (45.06% and 74.66%, respectively) and oleic acid was main constituent in cashew nut, pequi and palm seed oils. Batiputá and palm oils exibit approximately equivalent content of saturated and unsaturated fatty acid and coconut oil more saturated fatty acids (80.72%) with predominance of lauric acid. The result of TPA-induced ear edema test revealed that all oils presented similar anti-inflammatory activity. In the acetic acid-induced vascular permeability model, the oil of O. fieldingiana was the only one who showed anti-inflammatory activity, while C. coreaceum and B. crassifolia oils showed pro-inflammatory activities. The presence of phenols and flavonoids was evaluated in the O. fieldingiana oil by spectrophometric methods.

Discussion: All the oils showed anti-inflammatory action in the TPA-induced ear edema, probably the action of unsaturated fatty acids was more important in topical application, nevertheless in internal inflammation process the presence of antioxidant phenolic compounds could contribute to the higher activity of the oil from O. fieldingiana. The effect of linoleic and oleic acids was demonstrated on the inflammatory response of the skin during the healing process and on the release of pro-inflammatory cytokines by rat neutrophils in a prevoius study using sunflower oil. Both oleic and linoleic acids increased the wound healing tissue mass. The total protein and DNA contents of the wounds were increased by the treatment with linoleic acid. This pro-inflammatory effect of oleic and linoleic acids may contribute to the wound healing process. In this study with six plant oils, some of them have higher content in linoleic acid and others oleic acid is the major constituent so the antiinflamatory action on ear edema can be associated to these two unsaturaded fatty acids mechanism of action. In the internal model, probably other chemical constituents revealed in Ouratea fieldingiana as phenols, condensed tannins, flavones and flavanones, could contribute to the anti-inflammatory activity.


Keywords


phytotherapy; fixed oils; inflammation.

Full Text:

PDF

References


Camurça-Vasconcelos A.L.F., Morais S.M., Santos L.F.L., Rocha M.F.G. & Bevilaqua C.M.L. 2005. Validação de plantas medicinais com atividade anti-helmíntica. Revista Brasileira de Plantas Medicinais. 7: 97-106.

Carvalho A.V., Alves B.J.R. & Reis V.M. 2006. Resposta do dendezeiro à adição de nitrogênio e sua influência na população de bactérias diazotróficas. Pesquisa Agropecuária Brasileira. 41(2): 293-300.

Cuzzocrea S., Riley D.P., Caputi A.P. & Salvemini D. 2001. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacological Review. 53: 135-159.

Fidelis Q.C., Ribeiro T.A.N., Araújo M.F. & Carvalho M.G. 2014. Ouratea genus: chemical and pharmacological aspects. Revista Brasileira de Farmacognosia. 24: 1-19.

Funari C.S. & Ferro V. 2006. Análise de Própolis. Ciência e Tecnologia de Alimentos, Campinas. 26: 171-178.

Guissoni A.C.P., Silva I.G., Geris R., Cunha L.C. & Silva H.H.G. 2013. Atividade Larvicida de Anacardium occidentale Como Alternativa ao Controle de Aedes aegypti e Sua Toxicidade em Rattus norvegicus. Revista Brasileira de Plantas Medicinais. 15(3): 363-367.

Kubo I., Muroi H & Himejima M. 1993. Structure - Antibacterial activity relationships of anacardic acids. Journal of Agricultural and Food Chemistry. 41: 1016-1019.

Lima A., Silva A.M.O., Trindade R.A., Torres R.P. & Mancini-Filho J. 2007. Composição Química e Compostos Bioativos Presentes na Polpa e na Amêndoa do Pequi (Caryocar brasiliense, Camb.). Revista Brasileira de Fruticultura. 29(3): 695-698.

Marques S.R., Peixoto C.A., Messias J.B., Albuquerque A.R. & Silva Junior V.A. 2004. The effects of topical application of sunflower-seed oil on open wound healing in lambs. Acta Cirúrgica Brasileira. 19(3): 196-209.

Martinez-Vasques A.R.M., Gonzales-Esquinca L., Cazares L.M., Gutiérrez N.M. & Garcia-Argaez A.N. 1999. Antimicrobial Activity of Byrsonima crassifolia (L.) H.B.K. Journal of Ethnopharmacology. 66: 79-82.

Matos F.J.A. 2004. Constituintes químicos ativos e propriedades biológicas de plantas medicinais brasileiras. Fortaleza: Editora UFC, 448p.

Medeiros K.C.P., Monteiro J.C., Diniz M.F.F.M., Medeiros I.A., Silva B.A. & Piuvezam M.R. 2007. Effect of the activity of the Brazilian polyherbal formulation: Eucalyptus globulus Labill, Peltodon radicans Pohl and Schinus terebinthifolius Radd in infl ammatory models. Revista Brasileira de Farmacognosia. 17(1): 23-28.

Oliveiros L.B., Vedela A.M., Ramirez D.C. & Gimenez M.S. 2003. Dietary fat saturation produces lipid modifications in peritoneal macrophages of mouse. Journal of Nutritional Biochemistry. 14: 370-377.

Oliveira M.S.C., Morais S.M., Magalhães D.V., Batista W.P., Vieira I.G.P., Craveiro A.A., Menezes J.E.S.A., Carvalho A.F.U. & Lima G.P.G. 2010. Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Tropica. 117: 165-116.

Pereira L.M., Hatanaka E., Martins E.F., Oliveira F., Liberti E.A., Farsky S.H., Curi R. & Pithon-Curi T.C. 2008. Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochemistry and Function. 26(2): 197-204.

Rezende C.M. & Fraga S.R.G. 2003. Chemical and aroma determination of the pulp and seeds of murici (Byrsonima crassifolia L.). Journal of Brazilian Chemical Society. 14(3): 425-428.

Saraiva R.A., Araruna M.K., Oliveira R.C., Menezes K.D., Leite G.O., Kerntopf M.R., Costa J.G., Rocha J.B., Tomé A.R., Campos A.R. & Menezes I.R. 2011. Topical anti-inflammatory effect of Caryocar coriaceum Wittm. (Caryocaraceae) fruit pulp fixed oil on mice ear edema induced by different irritant agentes. Journal of Ethnopharmacology. 136: 504-510.

Singh S., Nair V., Jain S. & Gupta Y.K. 2008. Evaluation of anti-inflammatory activity of plant lipids containing alpha-linolenic acid. Indian Journal of Experimental Biology. 46(6): 453-456.

Sousa C.M., Silva H.R.E., Vieira-Jr G.M., Ayres M.C.C., Costa C.L.S., Araújo D.S., Cavalcante L.C.D., Barros E.D.S., Araújo P.B.M., Brandão M.S. & Chaves M.H. 2007. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quimica Nova. 30: 351-355.

Suzart L.R., Daniel J.F.S., Carvalho M.G. & Kaplan M.A.C. 2007. Biodiversidade flavonoídica e aspectos farmacológicos em espécies dos gêneros Ouratea e Luxemburgia (Ochnaceae). Química Nova. 30: 984-987.

Velandia J.R., Carvalho M.G., Braz Filho R. & Werle A.A. 2002. Biflavonoids and a glucopyranoside derivative from Ouratea semiserrata. Phytochemical Analysis. 13: 283-292.

Werner S. & Grose R. 2003. Regulation of Wound Healing by Growth Factors and Cytokines. Physiological Reviews. 83: 85-870.




DOI: https://doi.org/10.22456/1679-9216.79403

Copyright (c) 2018 Selena Maia de Morais, José Eranildo Teles do Nascimento, Antonio Adailson de Sousa Silva, José Eduardo Ribeiro Honório Junior, Diana Célia Sousa Nunes Pinheiro, Ricardo Vasconcelos de Oliveira

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.