Morphometry, Topography and Arterial Supply of the Thyroid Gland in Brazilian Shorthair Cats

Anieli Vidal Stocco, Shirley Viana Peçanha, Renata Medeiros Nascimento, Carlos Augusto dos Santos-Sousa, Paulo Souza Júnior, Marcelo Abidu Figueiredo

Abstract


 

Background: Thyroid gland diseases are the most common endocrinopathies in feline practice. Diagnosis and surgical treatment must base on solid anatomical knowledge about the gland size, localization, and blood supply. However, some textbooks provide a general anatomical description of the thyroid gland of domestic carnivores. Thus, specific details of the feline gland are missing. The present study aimed to investigate the dimensions, topography, and arterial supply of the thyroid gland in Brazilian shorthair cats and, therefore, provide additional data to diagnose and treat feline thyroid diseases.

Materials, Methods & Results: Thirty Brazilian shorthair cats formalin-fixed cadavers (15 male and 15 female) were injected with red-stained latex solution by a canula in the thoracic aorta. The necropsy unit of the Rural Federal University of Rio de Janeiro donated the specimens. The study included only adult animals with no history of thyroid disease. After the fixation period, the cadavers were dissected to investigate the measurements (length, width at cranial and caudal poles, and thickness), topography, and in situ arterial supply of the thyroid lobes. The mean measurements of the length, cranial pole width, caudal pole width, and thickness in the right lobe were 19.39 ± 3.10 mm, 5.36 ± 1.40 mm, 3.67 ± 0.93 mm, and 1.30 ± 0.29 mm, respectively; and 20.29 ± 3.35 mm, 4.85 ± 1.58 mm, 3.88 ± 0.91 mm, 1.64 ± 0.65 mm in the left lobe, respectively. There were no statistical differences (P > 0.05) in the comparison of the measures between sexes or antimers (sides). Pearson's linear correlation detected a positive, moderate (r = 0.55), and significant (P < 0.05) correlation between the right and left lobe lengths. In 70% of the cats, both left and right lobes had the cranial poles located at the same level. Typically, the lobes extended between the first to the eighth tracheal ring. However, the cranial pole of some lobes located as cranially as the cricoid cartilage level, and the caudal pole as caudally as the 12th tracheal ring. Fifty-six percent of the cats had a ventrally located isthmus. In all the sampling, one single thyroid artery emerged as a branch of the common carotid artery and provided branches directly to the thyroid lobe, isthmus and the adjacent muscles and esophagus.

Discussion: Besides establishing average dimensions of normal thyroid lobes in Brazilian shorthair cats, this study detected no significant difference between the average measurements of right and left lobes. Also, a positive linear correlation between the length and width of the right and left lobes became evident. Therefore, the practitioner must consider suspicious any length asymmetry between right and left thyroid lobes until further endocrine test proves otherwise. Most of the cats had the right and left thyroid lobe positioned at the same transversal level; however, positional asymmetries are not uncommon. Unlike dogs, Brazilian shorthair cats have only a single artery to supply each lobe: the thyroid artery. In a feline thyroidectomy, the surgeon must avoid blindly ligating the thyroid artery since this vessel also provided numerous branches to adjacent muscles and esophagus. In a bilateral thyroidectomy, the ventral region between lobes should be thoroughly inspected for the common presence of an isthmus. Sometimes, the surgeon may need to extend the incision caudally beyond the 12th tracheal ring level to visualize the gland tissue entirely.

Keywords: endocrinology, feline anatomy, morphometrics, thyroidectomy.


Full Text:

PDF

References


Barberet V., Baeumlin Y., Taeymans O., Duchateau L., Peremans K., Van Hoek I., Daminet S. & Saunders J.H. 2010. Pre- and post-treatment ultrasonography of the thyroid gland in hyperthyroid cats. Veterinary Radiology & Ultrasound. 51(3): 324-330. DOI: doi.org/10.1111/j.1740-8261.2009.01656.x

Barone R. & Simoens P. 2010. Glandes Endocrines. In: Anatomie Comparée de Mammifères Domestiques: Neurologie II. Paris: Vigot, pp.415-428.

Birchard S. J. & Brito Galvão J.F. 2014. Thyroidectomy in the Dog and Cat. In: Bojrab M.J. (Ed). Current Techniques in Small Animal Surgery. 5th edn. Jackson: Teton Newmedia, pp.558-563.

Borges A.P.S., Menezes L.T., Santos L.A., Herrera G.C., França G.L., Paula S.Y.A., Hiraki K.R.N & Silva F.O.C. 2019. Topography, irrigation, and histology of the thyroid gland of New Zealand rabbits (Oryctolagus cuniculus Linnaeus, 1758). International Journal of Advanced Engineering Research and Science. 6(3): 225-229. DOI: https://doi.org/10.22161/ijaers.6.3.29.

Cartee R.E., Bodner S.T.F & Gray B.W. 1993. Ultrasound Examination of the Feline Thyroid. Journal of Diagnostic Medical Sonography. 9(6): 323-326. DOI: https://doi.org/10.1177/875647939300900606.

Carvalho S.F.M., Santos A.L.Q., Andrade M.B., Magalhaes L.M., Ribeiro F.M, Cruz G.C. & Malta T.S. 2003. Morfometria e vascularização arterial da glândula tireóide do gato mourisco, Herpailurus yagouaroundi (Severtzow, 1858) Felidae. Ars Veterinaria. 19(3): 216-218.

Covey H.L., Chang Y.M., Elliott J. & Syme H.M. 2019. Changes in thyroid and renal function afterbilateral thyroidectomy in cats. Journal of Veterinary Internal Medicine. 33(2): 508-515. DOI: https://doi.org/10.1111/jvim.15450.

Dyce K.M., Sack W.O. & Wersing C.J.G. 2019. Glândulas Endócrinas. In: Tratado de Anatomia Veterinária. 5.ed. Rio de Janeiro: Elsevier, pp.356-358.

Flanders J.A. 1994. Surgical therapy of the thyroid. Veterinary Clinics of North America: Small Animal Practice. 24(3): 607-621.

Fossum T.W. 2013. Surgery of the Endocrine System. In: Small Animal Surgery. 4th edn. Philadelphia: Elsevier, pp.668-679.

Garcia-Reyero N. 2018. The clandestine organs of the endocrine system. General and Comparative Endocrinology. 257: 264-271.

Hullinger R. L. 2020. The Endocine System. In: Hermanson J.W., De Lahunta A., Miller H.E. & Miller E. (Eds). Anatomy of the Dog. 5th edn. St. Louis: Elsevier, pp.412-416.

International Committee on Veterinary Gross Anatomical Nomenclature. 2017. Nomina Anatomica Veterinaria. 5th edn. Hanover: Editorial Committee, pp.64-65.

König H.E. & Liebich H.G. 2016. Gândulas Endócrinas. In: Anatomia dos Animais Domésticos: Texto e Atlas Colorido. 6.ed. Porto Alegre: Artmed, pp.571-575.

Lima E.M.M., Ferreira P.M., Silva L.R.E, Vianna A.R.C.B., Santana M.I.S., Silva F.O.C.E. & Severino R.S. 2009. Morfometria e suprimento arterial da glândula tireoide em ovinos da raça Santa Inês. Veterinária Notícias. 15(1): 35-40.

Loftus J.P., Derosa S., Struble A.M., Randolph J.F. & Wakshlag J.J. 2019. One-year study evaluating efficacy of an iodine-restricted diet for the treatment of moderate-to-severe hyperthyroidism in cats. Veterinary Medicine. 10: 9-16. DOI: 10.2147/VMRR.S189709.

Lovelace K. 2009. Comparing thyroid palpation techniques. Journal of Feline Medicine and Surgery. 11(6): 525-526. DOI:10.1016/j.jfms.2009.02.002.

Montague M.J., Gandolfi B., Khan R., Aken B.L., Searle S.M., Minx P., Hillier L.W., Koboldt D.C., Davis B.W., Driscoll C.A., Barr C.S., Blackistone K., Quilez J., Lorente-Galdos B., Marques-Bonet T., Alkan C., Thomas G.W., Hahn M.W., Menotti-Raymond M., Brien S.J., Wilson R.K., Lyons L.A., Murphy W.J. & Warren W.C. 2014. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proceedings of the National Academy of Sciences. 111(48): 17230-17235. DOI: 10.1073/pnas.1410083111.

Naan E.C., Kirpensteijn J., Kooistra H.S. & Peeters M.E. 2006. Results of Thyroidectomy in 101 Cats with Hyperthyroidism. Veterinary Surgery. 35(3): 287-293. DOI:10.1111/j.1532-950x.2006.00146.x.

Nicholas J. S. & Swingle W.W. 1925. An experimental and morphological study of the parathyroid glands of the cat. American Journal of Anatomy. 34(3): 469-509. DOI: doi:10.1002/aja.1000340304.

Novo A.C.M.P., Carvalho C. & Alves R.B.M. 2009. Ultrassonografia das glândulas tireóideas em cães (Canis familiaris, Linnaeus, 1758). Jornal Brasileiro de Ciência Animal. 2(3): 135-149.

Nussey S. & Whitehead S. 2001. The thyroid gland. In: Endocrinology: An Integrated Approach. Oxford: BIOS Scientific Publishers, pp.2-11.

Paepe D., Smets P., Van Hoek I., Saunders J., Duchateau L. & Daminet S. 2008. Within- and between-examiner agreement for two thyroid palpation techniques in healthy and hyperthyroid cats. Journal of Feline Medicine and Surgery. 10(6): 558-565. DOI: 10.1016/j.jfms.2008.03.009.

Plitman L., Cern A.P., Farnworth M.J., Packer R.M.A. & Gunn-Moore D.A. 2019. Motivation of Owners to Purchase Pedigree Cats, with Specific Focus on the Acquisition of Brachycephalic Cats. Animals. 9(7): 1-18. DOI: 10.3390/ani9070394.

Radlinsky M.G. 2007. Thyroid surgery in dogs and cats. Veterinary Clinics of North America: Small Animal Practice. 37(4): 789-798.

Rodrigues A.B.F., Costa N.Q., Aguiar R.R., Di Filippo P.A. & Almeida AJ. 2016. Análise morfológica, topográfica e vascularização da glândula tireóide em cães (Canis familiaris). Revista Brasileira de Medicina Veterinária. 38(3): 316-322.

Santos A.L.Q., Maximiano-Neto A., Moura L.R., Pereira H.C. & Silva Júnior L.M.D.A. 2008. Vascularização arterial, forma, topografia e morfometria da glândula tireóide em fetos de bovinos com sangue europeu. Veterinária Notícias. 14(1): 63-70.

Silva S.C., Stocco A.V., Santos Sousa C.A., Estruc T.M., Marques L.E., Souza-Junior P. & Abidu-Figueiredo M. 2019. Morphometry and vascularization of the thyroid glands in rabbits (Oryctolagus cuniculus). International Journal of Morphology. 37(4): 1404-1408.

Volckaert V., Vandermeulen E., Daminet S., Saunders J. & Peremans K. 2016. Hyperthyroidism in cats, part I: anatomy, physiology, pathophysiology, diagnosis and imaging. Vlaams Diergeneeskd Tijdschr. 85(5): 255-264. DOI: 10.21825/vdt.v85i5.16317.

Yamasaki M. 1990. Comparative anatomical studies of thyroid and thymic arteries: I. Rat (Rattus norvegicus albinus). American Journal of Anatomy. 188(3): 249-259. DOI: 10.1002/aja.1001880304.

Yamasaki M. 1993. Comparative anatomical studies on the thyroid and thymic arteries. II. Polyprotodont marsupials. Journal of Anatomy. 183(Pt. 2): 359-366.

Yamasaki M. 1995. Comparative anatomical studies on the thyroid and thymic arteries. III. Guinea pig (Cavia cobaya). Journal of Anatomy. 186(Pt. 2): 383-393.

Yamasaki M. 1996. Comparative anatomical studies on the thyroid and thymic arteries. IV. Rabbit (Oryctolagus cuniculus). Journal of Anatomy. 188(Pt. 3): 557-564.

Yamasaki M. 1997. Comparative anatomical studies on the thyroid and thymic arteries. V. House musk shrew (Suncus murinus). Okajimas Folia Anatomica Japonica. 73(6): 293-300. DOI: 10.2535/ofaj1936.73.6_293.

Yamasaki M. 2016. Comparative anatomical studies on the thyroid and thymic arteries. VI. Diprotodont marsupials. Anatomical Science International. 91: 258-273. DOI: 10.1007/s12565-015-0293-y




DOI: https://doi.org/10.22456/1679-9216.114452

Copyright (c) 2021 Anieli Vidal Stocco, Shirley Viana Peçanha, Renata Medeiros Nascimento, Carlos Augusto Santos-Sousa, Paulo Souza Júnior, Marcelo Abidu Figueiredo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.