Bacteria Isolated from Free-range Chicken (Gallus gallus domesticus) Eggs Sold in Semiarid Conditions and its One Health Impact

Débora Luise Canuto de Sousa, Hannah Costa Soares, Katianny Bezerra de Medeiros, Meire Maria da Silva, Camila Sousa Bezerra, Clebert José Alves, Sérgio Santos de Azevedo, Carolina de Sousa Américo Batista Santos

Abstract


Background: Food contamination is an important and growing public health concern due to the risk of foodborne illnesses. In this context, the egg, consumed all over the world, stands out. This food has been pointed out as a carrier of several bacteria, causing outbreaks of food toxinfection. The production of free-range chicken eggs (Gallus gallusdomesticus) has been an alternative for generating income for producers in Brazil; however, there is no monitoring of the sanitary quality of this product. The objective of this study was to identify microorganisms in 128 free-range chicken eggs sold in open markets in the semiarid region of Northeastern Brazil.

Discussion: The frequency of bacterial isolation obtained in this study was high and reflects contamination of the eggs, which can occur through the shell, and factors such as air humidity, time and temperature favor the migration of bacteria from the shell to the internal content of egg. Food toxinfection occurs due to improper conditions in food processing, and it is essential to guarantee correct handling, promoting health quality. Therefore, some care related to egg management is necessary, from primary production to commercialization, ensuring food safety for consumers. Another point to be highlighted concerns the way of marketing this product. Eggs from free-range chickens are usually sold in open markets, kept at room temperature from production to final distribution, mainly in the semiarid region of Northeastern Brazil. Temperature, storage time and chicken’s characteristics (lineage, age, nutritional management and health status) are factors that have a direct influence on the quality of the food offered to the consumer. The high frequency of isolated bacteria warns of the implementation of control measures to avoid contamination of this product and the importance of the correct use of antimicrobials in poultry, in order to avoid the spread of resistance-carrying pathogens, minimizing economic, health and environmental impacts.


Full Text:

PDF

References


Alhababi D.A., Eltai N.O., Nasrallah G.K., Farg E.A., Al Thani A.A. & Yassine H.M. 2020. Antimicrobial resistance of commensal Escherichia coli isolated from food animals in Qatar. Microbial Drug Resistance. 26(4): 420-427.

Barancelli G.V., Martin J.G. & Porto E. 2012. Salmonella em ovos: relação entre produção e consumo seguro. Segurança Alimentar e Nutricional. 19(2): 73-82.

Benagli C., Rossi V., Dolina M., Tonolla M. & Petrini O. 2011. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of clinically relevant bacteria. PLoS One. 6(1): e16424. doi: 10.1371/journal.pone.0016424

Brasil. Ministério da Saúde. 2016. Surto Doenças Transmitidas por Alimentos–DTA. Brasília: Sistema de Informação de Agravos de Notificações. Disponível em:

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. 2003. Métodos Analíticos Oficiais para Análises Microbiológicas para Controle de Produtos de Origem Animal e Água. Instrução Normativa n° 62, 26 de Agosto de 2003. Brasília, Brasil. Disponível em:

Brasil. Agência Nacional de Vigilância Sanitária. 2001. Regulamento Técnico sobre padrões microbiológicos para alimentos (Resolução RDC nº 12, de 02/01/2001). Diário Oficial da República Federativa do Brasil, Brasília. Disponível em:

Brazilian Committee on Antimicrobial Susceptibility Testing (BrCAST). 2019. Método de Disco-Difusão para Teste de Sensibilidade aos Antimicrobianos.Disponível em:

Conrad C.C., StanfordK., Narvaez-Bravo C., Callaway T. & McAllister T. 2017. Farm Fairs and Petting Zoos: A Review of Animal Contact as a Source of Zoonotic Enteric Disease. Foodborne Pathogens and Disease. 14(2): 59-73. https://doi.org/10.1089/fpd.2016.2185

Conrad P.A., Meek L.A. & Dumit J. 2013. Operationalizing a One Health approach to global health challenges. Comparative Immunology, Microbiology & Infectious Diseases. 36(3): 21-26.

Costa A.L.P. & Silva Junior A.C.S. 2017. Resistência bacteriana aos antibióticos e Saúde Pública: uma breve revisão de literatura. Estação Científica (UNIFAP). 7(2): 45-57.

Clinical and Laboratory Standards Institute (CLSI). 2019. Performance Standards for Antimicrobial Susceptibility Testing. 29th edn. Wayne: CLSI.

Dedo J.A.F.F., Baroni W.S.G.V., Maffei D.F., Bastos D.H.M. & Pinto U.M. 2019. Overview of Foodborne Disease Outbreaks in Brazil from 2000 to 2018. Foods. 8(10): 434.

Garcia E.R.M., Orlandi C.C.B., Oliveira C.A.L., Cruz F.K., Santos T.M.B. & Otutumi L.K. 2010. Qualidade de ovos de poedeiras semipesadas armazenadas em diferentes temperaturas e temperaturas de estocagem. Revista Brasileira de Saúde e Produção Animal. 11(2): 505-518.

Gole V.C., Chousalkar K.K., Roberts J.R., Sexton M., May D., Tan J. & Kiermeier A. 2014. Effect of Egg Washing and Correlation between Eggshell Characteristics and Egg Penetration by Various Salmonella Typhimurium Strains. PlosOne. 9(3). e90987. doi: 10.1371/journal.pone.0090987

Gomes Filho V.J.R., Teixeira R.S.C., Lopes E.S., Albuquerque A.H., Lima S.V.G., Horn R.V., Rocha-Silva R.C. & Cardoso W.M. 2014. Pesquisa de Salmonella spp. em galinhas criadas em fundo de quintal (Gallus gallus domesticus) e ovos comercializados nas feiras livres na cidade de Fortaleza, Ceará. Semina: Ciências Agrárias. 35(4): 1855-1864.

Jones R.N., Biedenbach D.J., Sader H.S., Fritsche T.R., Toleman M.A. & Walsh T.R. 2005. Emerging epidemic of metallo-β-lactamase-mediated resistance. Diagnostic Microbiology and Infectious Disease. 51(2): 77-84.

Jones D.R., Musgrove M.T. & Northcutt J.K. 2004. Variations in external and internal microbial populations in shell eggs during extended storage. Journal Food Protection. 34(4): 2657-2660.

Medina A., Horcajo P., Jurado S., De la Fuente R., Ruiz-Santa-Quiteria J.A., Domínguez-Bernal G. & Orden J.A. 2011. Phenotipic and genotypic characterization of antimicrobial resistance in enterohemorrhagic Escherichia coli and atypical enteropathogenic E. coli strains from ruminants. Journal of Veterinary Diagnostic Investigation. 23(1): 91-95.

Mendes F.R., Leandro M.S.N., Andrade A.M., Cafe B.M., Santana S.E. & Stringhini H.J. 2014. Qualidade bacteriológica de ovos contaminados com Pseudomonas aeruginosa e armazenados em temperatura ambiente ou refrigerados. Ciência Animal Brasileira. 15(4): 444-450.

Mota A.S.B., Lima P.M.S., Silva D.S., Abreu V.K.G., Freitas E.R. & Pereira A.L.F. 2017. Internal quality of eggs coated with cassava and yam starches. Revista Brasileira de Ciências Agrárias. 12(1): 47-50.

Murray P.R., Rosenthal K.S. & Pfaller M.A. 2014. Microbiologia Médica. 7.ed. Rio de Janeiro: Elsevier, 835p.

Murray P.R., Baron E.J. & Pfaller M.A. 1999. Manual of Clinical Microbiology. American Society for Microbiology. 7th edn. Washington: ASM, pp.325-337.

Newell D.G., Koopmans M., Verhoef G., DuizerE., Aidara-Kane U.M., SprongH., Opsteegh H., Langelaar H., Threfall J., Scheutz F. & van der Giessen J. & Kruse H. 2010. Food-borne diseases-The challenges of 20years ago still persist while new ones. International Journal of Food Microbiology. 3(15): 288-293.

Pavlickova S., Klancnik A., Dolezalova M., Mozina S.S. & Holko I. 2017. Antibiotic resistance, virulence factors and biofilm formation ability in Escherichia coli strains isolated from chicken meat and wildlife in the Czech Republic. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes. 52(8): 570-576.

Pires F.M., Pires S.F., Andrade C.L., Carvalho D.P., Barbosa A.F.C. & Marques M.R. 2015. Fatores que afetam a qualidade dos ovos de poedeiras comerciais: armazenamento, idade, poedeira. Nutritime Revista Eletrônica. 12(6): 4379-4385.

Rabello R.F., Bonelli R.R., Penna B.A., Albuquerque J.P., Souza R.M. & Cerqueira A.M.F. 2020. Antimicrobial resistance in farm animals in Brazil: an update overview. Animals. 10(552): 1-43.

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna: Austria. URL https://www.R-project.org/.

Sellera F.P. & LincopanN. 2019. Zooanthroponotic transmission of high-risk multidrug resistant pathogens: A neglected public health issue. Journal of Infection and Public Health. 12(2): 294-295.

Silva K.C. & Lincopan N. 2012. Epidemiologia das beta-lactamases de espectro estendido no Brasil: impacto clínico e implicações no agronegócio. Jornal Brasileiro de Patologia e Medicina Laboratorial. 48(2): 91-99.

Spisso B.F., Nobrega W.A. & Marques S.A.M. 2007. Resíduos e contaminantes químicos em alimentos de origem animal no Brasil: histórico, legislação e atuação da vigilância sanitária e demais sistemas regulatórios. Ciências e Saúde Coletiva. 14(6): 2091-2106.

Stringhini M.L.F., Andrade M.A., Mesquita A.J., Rocha T.R., Rezende P.M. &Leandro N.S.M. 2009. Características bacteriológicas de ovos lavados e não lavados de granjas de produção comercial. Ciência Animal Brasileira. 10(4): 1317-1327.

Thrusfield M. 2007. Veterinary epidemiology. 3rd edn. Oxford: Blackwell Science, 610p.

Tortora G.J., Funke B.R. & Case C.L. 2017. Microbiologia. 12.ed. Porto Alegre: Artmed, 934p.




DOI: https://doi.org/10.22456/1679-9216.110910

Copyright (c) 2021 Débora Luise Canuto de Sousa, Hannah Costa Soares, Katianny Bezerra de Medeiros, Meire Maria da Silva, Camila Sousa Bezerra, Clebert José Alves, Sérgio Santos de Azevedo, Carolina de Sousa Américo Batista Santos

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.