Plant Poisoning Containing Hydrocyanic Acid in Cattle in Southern Brazil

Anderson Gris, Lucas Henrique Bavaresco, Fernanda Felicetti Perosa, Teane Milagres Augusto Gomes, Nei Fronza, Juliano Rossi de Oliveira, Vanessa Peripolli, Cesar Rodrigo de Souza Surian, André Luís de Gasper, Ricardo Evandro Mendes

Abstract


Background: Cyanogenic plants accumulate cyanogenic glycosides and release hydrocyanic acid (HCN). In Brazil, there have been reports of several plants that cause HCN poisoning in animals and lead to a fast death with few clinical signs and lesions on post-mortem examination. Some cultivars of Cynodon spp. grasses cause HCN poisoning in cattle in Brazil. The objectives of this work were to report the occurrence of deaths by HCN poisoning in cattle as diagnosed by the veterinary pathology laboratory, describe the quantity of HCN in some cultivars of Cynodon spp., as well as, to describe one cultivar of genus Cynodonnever reported as poisonous.

Materials, Methods & Results: The archives of the Veterinary Pathology Laboratory (LPV) at the Concórdia Campus of the Instituto Federal Catarinense (IFC) were reviewed, seeking cases with a diagnosis of hydrocyanic acid poisoning in cattle after post mortem examination. The amount of HCN present in some cultivars of the Cynodon genus was quantified due to the high frequency of poisoning cases. From the 1,235 post mortem examinations of cattle 28 (2.27%) were diagnosed with spontaneous hydrocyanic acid poisoning, 17 cases (60.7%) due to ingestion of Prunus sp. or Manihot sp., and 11 cases (39.3%) of Cynodon dactylon ingestion. Most animals were found dead, normally having presented no clinical signs. Macroscopic evaluation mainly showed a severe amount of unchewed and undigested leaves or grass mixed in the ruminal content presenting a bitter almond odor. It was possible to infer that, among cultivars of the Cynodon genus, Florakirk showed the highest levels of HCN compared (P < 0.05) with Star of Puerto Rico, Tifton 68, Tifton 44, and Coast-Cross. Furthermore, Tifton 85 and Jiggs showed undetected levels of HCN. Leaves showed the highest HCN levels when comparing different parts of the plant. Regarding conservation methods, hay showed undetectable levels of HCN.

Discussion: To the best of our knowledge, this work is the first description of HCN poisoning in cattle due to ingestion of Cynodon dactylon cultivar Florakirk. This condition is described with a fast-clinical course, with animals found dead with no premonitory clinical signs. Poisoned animals did not develop macroscopic or microscopic specific lesions. Poisoning can be suspected when animals die suddenly, with absence of lesions under necropsy, and large amounts of unchewed and undigested leaves or grass inside their forestomaches. The diagnosis can be established performing the Picrosodic paper test, either in the pasture, or in the ruminal content. Occasionally however, HCN can go undetected when this chemical compound volatilizes between death and necropsy after several hours. Of all the Cynodon cultivars evaluated, Florakirk was the most dangerous for animals. In contrast, Tifton 85 and Jiggs released no HCN. Leaves were the part of the plant presenting the highest concentration of HCN. This is a defense mechanism that the plant develops against the ingestion by animals. This condition can cause great economic losses to farmers with the loss of animals and the need for prevention by using cultivars without HCN or hay, as 2.27% (28) of deaths diagnosed by the Veterinary Pathology Laboratory in the west of Santa Catarina, Brazil, were due to HCN poisoning. Notably, Florakirk cultivar was identified as the most dangerous cultivar tested, with higher levels compared with Tifton 68. The Star of Puerto Rico cultivar showed similar levels of HCN as Tifton 68. Both cultivars are commonly cultivated in many farms in the south of Brazil.


Full Text:

PDF

References


Amorim S.L., Medeiros R.M.T. & Riet-Correa F. 2006. Intoxication by cyanogenic plants in Brazil. Ciência Animal. 16(1): 17-26.

Andrade C.M.S., Hessel C.E. & Valentim J.F. 2009. Valor nutritivo e fatores antinutricionais nos capins estrela-africana, Tangola e Tanner-grass nas condições ambientais do Acre. Amazônia: Ciência & Desenvolvimento. 4(8): 273-283.

Bosak P.A., Lustosa S.B.C. & Sandrini J.M.F. 2017. Bovine intoxication by cyanogenic acid and nitrite/nitrate in pastures of intense management. Pubvet. 11(10): 1008-1014. DOI:< https://doi.org/10.22256/PUBVET.V11N10.1008-1014>

Broll, F., Bavaresco L.H., Piva M.M., Carneiro D.C.S., Gris A., Cechin R.A., Werlang R.A., Gimenes I., Chiocca R., Gomes T.M.A., Casagrande R.A. & Mendes R.E. 2018. Intoxicação por ácido cianídrico no alto uruguai catarinense: estudo retrospectivo (2013-2017). Boletim de diagnóstico do laboratório de patologia veterinária. 2(1): 51-60. DOI:

Câmara A.C.L., Dalcin L. & Soto-Blanco B. 2014. Pathogenesis, clinical signs and epidemiology of the poisoning by cyanogenic plants in the Brazilian northwest. Semina: Ciências Agrárias. 35(4): 1961-1972. DOI:

Canella C.F.C., Döbereiner J. & Tokarnia C.H. 1968. Intoxicação experimental pela “Maniçoba” (Manihot glaziovii Muell. Arg.) em bovinos. Pesquisa agropecuária brasileira. 3(1): 347-350.

Carneiro C., Schwertz C.I., Henker L.C., Rhoden L.A., Piva M.M., Gabriel M.E., Lucca N.J., Baldi K.R.A., Casagrande R.A., Gomes T.M.A. & Mendes R.E.M. 2018. Doenças diagnosticadas pelo laboratório de patologia veterinária no quinquênio 2013-2017. Boletim de diagnóstico do laboratório de patologia veterinária. 2(1): 33-48. DOI:

Francisco I.A. & Pinotti M.H.P. 2000. Cyanogenic glycosides in plants. Brazilian Archives of Biology and Technology. 43(5): 487-492. DOI:

Galindo C.M., Hemckmeier D., Biondo N., Parizotto L.H., Ogliari D. & Gava A. 2017. Intoxicação espontânea e experimental por tifton 68 (Cynodon nlemfuensis Vanderyst) em bovinos. Pesquisa Veterinária Brasileira. 37(5): 441-446. DOI:

Gava A., Pilati C., Cristani J., Simões J. & Simões L. 1998. Intoxicação cianogênica em bovinos alimentados com Tifton (Cynodon sp.). In: Anais VIII Ciclo de Atualização em Medicina Veterinária (CAMEV)-UDESC (Lages, Brazil). p.119.

Haque M.R. & Bradbury J.H. 2002. Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chemistry. 77(1): 107-114. DOI:

Huzar T.F., George T. & Cross J.M. 2013. Carbon monoxide and cyanide toxicity: etiology, pathophysiology and treatment in inhalation injury. Expert Review of Respiratory Medicine. 7(2): 159-170. DOI:

Juffo G.D., Pavarini S.P., Wouters F., Oliveira L.G.S., Antoniassi N.A.B., Cruz C.E.F. & Driemeier D. 2012. Spontaneous poisoning by Sorghum sudanense in dairy cattle in Rio Grande do Sul. Pesquisa Veterinária Brasileira. 32(3): 217-220. DOI:

Martin J.H., Couch J.P. & Briese R.R. 1938. Hydrocyanic Acid Content of Different Parts of the Sorghum Plant. Agronomy Journal. 30(9): 725-734. DOI:

Molossi F.A., Ogliari D., Morais R.M., Wicpolt N.S., Gheller E., Weber L. & Gava A. 2019. Cyanogenic poisoning by spontaneous ingestion of star grass (Cynodon nlemfuensis var. nlemfuensis cv. ‘Florico’) in cattle. Pesquisa Veterinária Brasileira. 39(1): 20-24. DOI:

Nascimento M.P.S.C.B., Nascimento H.T.S. & Leal J.A. 2002. Comportamento de cultivares de Cynodon no Piauí. EMBRAPA-Meio Norte, Comunicado Técnico 146. 3p. Available in: < https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAMN-2009-09/17159/1/CT146.pdf>.

Nicholson S.S. 2012. Cyanogenic plants. In: Gupta R.C. (Ed). Veterinary Toxicology: Basic and Clinical Principles. 2nd edn. Hopkinsville: Academic Press, pp.1113-1116.

Oliveira N.T., Uchôa S.C.P., Alves J.M.A., Sediyama T., Albuquerque J.A.A., Souza E.D. & Melville C.C. 2012. Hydrocyanic acid content in cassava tissues as a function of evaluation time and nitrogen fertilization. Pesquisa Agropecuária Brasileira. 47(10): 1436-1442. DOI:

Radostits O.M., Gay C.C., Hinchcliff K.W. & Constable P.D. 2012. Cyanogenic glycoside poisoning (Cyanide, hydrocyanic acid). In: Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats. 10th edn. Philadelphia: Saunders Elsevier, pp.1852-1855.

Tamassia L.F.M. 2000. Produção, composição morfológica, químico-Bromatológica, digestibilidade in vitro do capim de Rhodes (Chloris gayana Kunth.) em diferentes idades de crescimento. 152f. Piracicaba, SP. Dissertação (Mestrado em Ciência Animal e Pastagens) - Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo.

Tokarnia C.H., Brito M.F., Barbosa J.D., Vargas P.V. Peixoto P.V. & Döbereiner J. 2012. Plantas cianogênicas. In: Plantas Tóxicas do Brasil para Animais de Produção. 2.ed. Rio de Janeiro: Helianthus, pp.443-460.

Vieira A.C. 1998. Efeito da idade de corte sobre a produção, composição químico-bromatológica, digestibilidade in vitro e teor de ácido cianídrico de Cynodon dactylon (L.) Pers. Cv. Florakirk. 117f. Piracicaba, RS. Dissertação (Mestrado em Ciência Animal e Pastagens) - Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo.

Ziech M.F., Olivo C.J., Ziech A.R.D., Paris W., Agnolin C.A. & Meinerz G.R. 2015. Nutritive value of pastures of Cynodon mixed with forage peanut in southwestern Paraná State. Acta Scientiarum. Animal Sciences. 37(3): 243-249. DOI:




DOI: https://doi.org/10.22456/1679-9216.109475

Copyright (c) 2021 Anderson Gris, Lucas Henrique Bavaresco, Fernanda Felicetti Perosa, Teane Milagres Augusto Gomes, Nei Fronza, Juliano Rossi de Oliveira, Vanessa Peripolli, Cesar Rodrigo de Souza Surian, André Luís de Gasper, Ricardo Evandro Mendes

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.