Left Ventricular Myocardial Function in a Cat with Nonspecific Cardiomyopathy Phenotype

Authors

  • Thaís Gomes Barbosa Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.
  • Mariana de Resende Coelho Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.
  • Ruthnea Aparecida Lázaro Muzzi Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.
  • Ana Flávia Silva Pereira Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.
  • Luiz Eduardo Duarte de Oliveira Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.
  • Claudine Botelho de Abreu Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.

DOI:

https://doi.org/10.22456/1679-9216.104940

Abstract

Background: Non-specific phenotype feline cardiomyopathy (CFNE) is one that does not fit properly in the other categories, and it is necessary to describe in detail the morphology and cardiac function. The causes of CFNE is not very clear, and it may be due to congenital or acquired disease, or also to primary or secondary myocardial dysfunction associated with other conditions. In symptomatic cases, the clinical signs observed are compatible with left congestive heart failure (ICCE). This study reports a CFNE case in an asymptomatic cat, in order to demonstrate the importance of echocardiographic examination in the early diagnosis of the disease.

Case: A 6.5-year-old non-neutered crossbred cat weighing 3.1 kg was seen at the institution's veterinary hospital for routine cardiac evaluation. No clinical signs were reported in the history. On physical examination, the animal presented calm behavior, body score 5/9, heart rate 200 bpm, systolic blood pressure of 102 mmHg, respiratory rate 64 mrp, and other normal parameters. CBC and urinalysis laboratory tests were requested, which were unchanged. The electrocardiogram showed normal patterns. In the conventional echocardiographic examination, a significant increase in the left atrium (LA) was observed, and the LA/Ao ratio was 2.05 and the diastolic function was abnormal. There was no presence of concentric hypertrophy of the left ventricle (LV), the thickness of the ventricular wall measured at different points, in the two-dimensional mode and the M mode, was less than 5 millimeters. Other parameters of conventional echocardiography were within the normal range. Through these echocardiographic findings, the suggestive diagnosis was non-specific phenotype cardiomyopathy, with a significant increase in LA. For the assessment of left ventricular myocardial deformation, the strain (St%) and strain rate (StR 1/s) indexes (which correspond to the percentage and speed at which the myocardial fiber deforms during the cardiac cycle, respectively) were evaluated using two-dimensional feature tracking (2D-FTI), with the aid of Xstrain version 10.1 software, optical flow algorithm (ESAOTE®). This analysis showed a decrease in the overall value of the longitudinal and radial St/StR variables.

Discussion: The CFNE echocardiographic examination can demonstrate several structural cardiac changes that are not characterized in any other category of cardiomyopathy. Although the patient is still asymptomatic, the echocardiogram made it possible to identify structural changes compatible with the reported disease (enlargement of the left atrium and left ventricular myocardial deformation). Using the 2D-FTI technique, the vulnerability of the myocardial fibers in the longitudinal and radial directions of the left ventricle was observed, demonstrating that despite the patient still not showing clinical signs, there were already signs of ventricular dysfunction. These changes observed by the 2D-FTI technique, suggest that the patient may develop clinical signs of ICCE, resulting from pleural effusion and/or pulmonary edema, requiring more frequent reassessments. For this reason, animals with CFNE should undergo periodic cardiac evaluation to monitor the evolution of the patient's clinical condition. The use of more specific tools, such as 2D-FTI, allows an earlier assessment of clinical changes, which provides a faster therapeutic intervention when necessary, preventing the patient from abruptly decompressing.

Downloads

Download data is not yet available.

Author Biographies

Thaís Gomes Barbosa, Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.

Department of Veterinary Medicine

Mariana de Resende Coelho, Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.

Department of Veterinary Medicine

Ruthnea Aparecida Lázaro Muzzi, Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.

Department of Veterinary Medicine

Ana Flávia Silva Pereira, Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.

Department of Veterinary Medicine

Luiz Eduardo Duarte de Oliveira, Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.

Department of Veterinary Medicine

Claudine Botelho de Abreu, Setor de Clínica Médica de Pequenos Animais, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil.

Department of Veterinary Medicine

References

Artis N.J., Oxborough D.L., Williams G., Pepper C.B. & Tan L.B. 2008. Two-dimensional strain imaging: a new echocardiographic advance with research and clinical applications. International Journal of Cardiology. 123(3): 240-248.

Bonagura J.D. 2000. Feline echocardiography. Journal of Feline Medicine and Surgery. 2(3): 147-151.

Boon J.A. 2011. Evaluation of size, function, and hemodynamics. In: Veterinary Echocardiography. 2nd edn. Hoboken: Wiley-Blackwell, pp.206-334.

Chetboul V., Bussadori C. & Madron E. 2016. Normal Echocardiographic Values: TM, 2D, and Doppler Spectral Modes. In: Madron E. (Ed). Clinical Echocardiography of the Dog and Cat. St. Louis: Elsevier, pp.21-37.

Coelho M.R., Muzzi R.A.L., Abreu C.B., Oliveira L.E.D., Dorneles E.M.S. & Furtado L.L.A. 2017. Uso da ecocardiografia feature tracking bidimensional para avaliação de gatos com defeito perimembranoso do septo ventricular. In: XXVI Congresso da Pós-Graduação da UFLA (Lavras, Brasil). pp.183.

Coelho M.R., Muzzi R.A.L., Dorneles E.M.S., Oliveira L.E.D., Abreu C.B., Furtado L.L.A. & Muzzi L.A.L. 2020. Avaliação da deformação miocárdica pela ecocardiografia feature tracking em gatos com defeito perimembranoso do septo ventricular. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 72(3): 807-813.

Del Castillo J.M. & Herszkowicz N. 2008. Strain Bidimensional (X-Strain): utilização do método para avaliação de cardiopatias. Two-dimensional Strain (X-Strain): use of the method for cardiomyopathies assessment. Revista Brasileira de Ecocardiografia. 21(3): 29-35.

Ferasin L. 2012. Feline cardiomyopathy. In Practice. 34(4): 204-213.

Ferasin L., Sturgess C.P., Cannon M.J., Caney S.M.A., Gruffydd-Jones T.J. & Wotton P.R. 2003. Feline idiopathic cardiomyopathy: a retrospective study of 106 cats (1994-2001). Journal of Feline Medicine and Surgery. 5(3): 151-159.

Fuentes V.L., Abbott J., Chetboul V., Côté E., Fox P.R., Häggström J., Kittleson M.D., Schober K. & Stern J.A. 2020. ACVIM consensus statement guidelines for the classification, diagnosis, and management of cardiomyopathies in cats. Journal of Veterinary Internal Medicine. 34(3): 1066-1077.

Hung C.L., Verma A., Uno H., Shin S.H., Bourgoun M., Hassanein A.H. & Solomon S.D. 2010. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. Journal of the American College of Cardiology. 56(22): 1812-1822.

Kienle R.D. 1998. Feline unclassified and restrictive cardiomyopathy. In: Small Animal Cardiovascular Medicine. St. Louis: Elsevier, pp.363-369.

O'Neill D.G., Church D.B., McGreevy P.D., Thomson P.C. & Brodbelt D.C. 2015. Longevity and mortality of cats attending primary care veterinary practices in England. Journal of Feline Medicine and Surgery. 17(2): 125-133.

Riesen S.C., Kovacevic A., Lombard C.W. & Amberger C. 2008. Prevalence of heart disease in symptomatic cats: an overview from 1998 to 2005. Companion Animal Practice. 18(1): 15-20.

Schober K.E. 2010. Conventional and Doppler echocardiography for diagnosing congestive heart failure. In: Proceedings of the 35th World Small Animal Veterinary Association Annual Congress (Geneva, Switzerland). pp.1-4.

Takano H., Isogai T., Aoki T., Wakao Y. & Fujii Y. 2015. Feasibility of radial and circumferential strain analysis using 2D speckle tracking echocardiography in cats. Journal of Veterinary Medical Science. 77(2): 193-201.

Wess G., Keller L.J., Klausnitzer M., Killich M. & Hartmann K. 2011. Comparison of longitudinal myocardial tissue velocity, strain, and strain rate measured by two-dimensional speckle tracking and by color tissue Doppler imaging in healthy dogs. Journal of Veterinary Cardiology. 13(1): 31-43.

Zaky A., Deem S., Bendjelid K. & Treggiari M.M. 2014. Characterization of cardiac dysfunction in sepsis: an ongoing challenge. Shock. 41(1): 12-24.

Published

2020-01-01

How to Cite

Barbosa, T. G., Coelho, M. de R., Muzzi, R. A. L., Pereira, A. F. S., Oliveira, L. E. D. de, & Abreu, C. B. de. (2020). Left Ventricular Myocardial Function in a Cat with Nonspecific Cardiomyopathy Phenotype. Acta Scientiae Veterinariae, 48. https://doi.org/10.22456/1679-9216.104940

Most read articles by the same author(s)