Influence of Injectable Progesterone on the Pregnancy Rate of Heifers Receiving Bovine Embryos

Caio Cezar da Silva, Hélton Aparecido Garcia Gregianini, Jennifer Teodoro Ferreira Gregianini, José Antônio Dell’Aqua Junior, Jefferson Viana Alves Diniz, Gerbson Francisco Nogueira Maia, Renato Mesquita Peixoto, Rafael Augusto Satrapa

Abstract


Background: In vitro embryo production (IVEP) allows the spread of superior animal genetics, but pregnancy rates show a high variability with this biotechnique. In the initial stage of pregnancy, progesterone plays a fundamental role in uterine preparation, acting on embryonic growth, implantation, and development. However, on the day of the IVEP transfer to the recipients, progesterone levels may be lower than that expected, influencing the uterine environment and, consequently, the pregnancy rate. Therefore, the objective of this study was to evaluate the pregnancy rate in heifers after the administration of injectable progesterone (P4) in the fixed-time embryo transfer (FTET) protocol.

Materials, Methods & Results: The experiment was conducted inside a rural property near the city of Rio Branco, Acre, Brazil. The experimental group consisted of 232 animals, including 78 zebuine (Bos indicus) and 154 mixed (½ blood B. indicus and ½ blood B. taurus) animals, aged between 16 and 24 months, with a mean weight of 300 and 330 kg for zebuine and mixed animals, respectively. The selected animals were previously synchronized using the progesterone-estrogen-prostaglandin-estrogen protocol. Embryo transfer was performed on day 18 of the protocol, which was 9 days after the removal of intravaginal progesterone implant. On day 15 of the protocol, that is, 144 h (6 days) after the device removal, the animals were randomly distributed into two experimental groups: Control Group (CG; 0.5 mL of 0.9% saline solution, intramuscular) and Treated Group (P4G; 0.5 mL of injectable P4, 150 mg, intramuscular). Chi-square test was used for the statistical analysis of the pregnancy rate at a 5% probability. After 23 days of embryo transfer, pregnancy was diagnosed by ultrasonography. The general pregnancy rate, considering all groups (CG and P4G) and breeds included, was 55.17% (128/232). The pregnancy rates of the P4G and CG groups, regardless of breeds, were 55.08% (65/118) and 55.26% (63/114), respectively, with no statistical difference (P = 0.8344). Angus animals presented a similar pregnancy rate in the P4G and CG groups of 54.93% (39/71) and 57.83% (48/83), respectively. Furthermore, similar results were found for the Nellore breed, with no difference in pregnancy rate between the CG (55.81%, 24/43) and P4G (48.57%, 17/35) groups.

Discussion: The strategy of using P4 to increase the pregnancy rate is very widespread in fixed-time artificial insemination (FTAI) protocols, although differences still exist. The literature presents zero or negative effects, as in this study, when exogenous P4 was used to increase endogenous P4 concentrations and, consequently, the pregnancy rate. However, some studies demonstrated the beneficial effects of increasing blood P4 concentrations, and that the increased fertility depends on the method and time of P4 supplementation and the animal’s physiological state. In this context, the fact that the injectable progesterone supplementation did not increase the pregnancy rate in this study is justified mainly by factors such as the animal category used (heifers), time of P4 supplementation (day 4 after ovulation), biotechnology used (FTET), and the heterogeneous characteristics related to phases of the estrous cycle of heifers. Supplementation with 150 mg of injectable long-acting progesterone intramuscularly did not interfere in the pregnancy rate of Angus and Nellore heifers receiving bovine embryos.


Full Text:

PDF

References


Batista E.O.S., Cardoso B.O., Oliveira M.L., Cuadros F.D.C., Mello B.P., Sponchiado M., Monteiro B.M., Pugliesi G. & Binelli M. 2019. Supplemental progesterone induces temporal changes in luteal development and endometrial transcription in beef cattle. Domestic Animal Endocrinology. 68: 126-134.

Carter F., Forde N., Duffy P., Wade M., Fair T., Crowe M.A., Evans A.C.O., Kenny D.A., Roche J.F. & Lonergan P. 2008. Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reproduction, Fertility and Development. 20: 368-375.

Couto S.R.B., Guerson Y.B., Ferreira J.E., Silva O.R., Silenciato L.N., Barbero R.P. & Mello M.R.B. 2019. Impact of supplementation with long-acting progesterone on gestational loss in Nelore females submitted to TAI. Theriogenology. 125: 168-172.

Galimberti A.M., Fonseca F.A., Araújo M.C.C., Costa E.P., Freitas C., Guimarães J.D. & Ferreira A.M. 2001. Taxa de prenhez e Níveis Plasmáticos de Progesterona, em Receptoras de Embrião Bovino, Tratadas com Buserelina após a Inovulação. Revista Brasileira de Zootecnia. 30(2): 353-359.

Gonçalves R.L.R. & Viana J.H.M. 2019. Situação atual da produção de embriões bovinos no Brasil e no mundo. Revista Brasileira de Reprodução Animal. 43(2): 156-159.

Hansen P.J. & Ealy A.D. 1991. Effects of heat stress on the establishment and maintenance of pregnancy in cattle. In: Anais do 9º Congresso Brasileiro de Reprodução Animal (Belo Horizonte, MG, Brazil). pp.108-119.

Khurana N.K. & Niemann H. 2000. Effects of oocyte quality, oxigen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology. 54(5): 741-756.

Kenyon A.G., Mendonça L.G.D., Lopes Junior G., Lima J.R., Santos J.E.P. & Chebel R.C. 2013. Minimal progesterone concentration required for embryo survival after embryo transfer in lactating Holstein cows. Animal Reproduction Science. 136(4): 223-230.

Larson J.E., Lamb G.C., Stevenson J.S., Johnson S.K., Day M.L., Geary T.W., Kesley D.J., DeJarnette J.M., Schrick N., DiCostanzo A. & Arseneau J.D. 2006. Synchronization of estrus in suckled beef cows for detected estrus and artificial insemination and timed artificial insemination using gonadotropin-releasing hormone, prostaglandin F, and progesterone. Journal of Animal Science. 84(2): 332-342.

Lemes K.M. 2017. Comparação da eficiência de diferentes formulações à base de progesterona para indução da puberdade e desempenho reprodutivo em novilhas da raça Nelore. 79f. Tese (Doutorado) - Universidade de São Paulo. Faculdade de Medicina Veterinária e Zootecnia.

Lonergan P. 2011. Influence of progesterone on oocyte quality and embryo development in cows. Theriogenology. 76(9): 1594-1601.

Mann G.E & Lamming G.E. 2001. Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows. Reproduction. 121(1): 175-180.

Martins T., Pugliesi G., Sponchiado M., Cardoso B.O., Gomes N.S., Mello B.P., Celeghini E.C.C. & Binelli M. 2018. Supplementation with long-acting progesterone in early diestrus in beef cattle: I. effect of artificial insemination on onset of luteolysis. Domestic Animal Endocrinology. 67: 63-70.

Martins T., Pugliesi G., Sponchiado M., Cardoso B.O., Silva K.R., Celeghini E.C.C. & Binelli M. 2018. Supplementation with long-acting progesterone in early diestrus in beef cattle: II. Relationships between follicular growth dynamics and luteolysis. Domestic Animal Endocrinology. 68: 1-10.

Mehni S.B., Shabankareh H.K. Kazemi-Bonchenari M. & Eghbali M. 2012. The comparison of treating Holstein dairy cows with progesterone, CIDR and GnRH after insemination on serum progesterone and pregnancy rates. Reproduction in Domestic Animals. 47(1): 131-134.

Nishimura T.K. 2018. Influências da condição corporal e atividade ovariana sobre a taxa de prenhez de vacas de corte suplementadas com progesterona de longa ação após a IATF. 72f. Dissertação (Mestrado) - Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo.

Nonato Jr. I., Rufino F.A., Sanches B.V., Pontes J.H.F., Uvo S., Ereno Jr. J.C. & Seneda M.M. 2004. Produção de embriões em vacas nelore com a utilização associada de FIV e TE. In: Resumo da 18ª Reunião Anual da Sociedade Brasileira de Tecnologia de embriões (Barra Bonita, RS, Brazil). p.95.

O'Hara L., Forde N., Duffy P., Randi F., Kelly A.K., Valenza A., Rodriguez P., & Lonergan P. 2014. Effect of exogenous progesterone combined with luteotrophic support via equine chorionic gonadotropin (eCG) on the development of the corpus luteum, circulating concentrations of progesterone and embryonic development in cattle. Reproduction, Fertility and Development. 28(3): 269-277.

Pugliesi G., Oliveira M.L., Scolari S.C., Lopes E., Pinaffi F.V., Miagawa B.T., Paiva Y.N., Maio J.R.G., Nogueira G.P. & Binelli M. 2014. Corpus Luteum Development and Function after Supplementation of Long-Acting Progesterone During the Early Luteal Phase in Beef Cattle. Reproduction in Domestic Animals. 49(1): 85-91.

Pugliesi G., Santos F.B., Lopes E., Nogueira E., Maio J.R.G. & Binelli M. 2016. Improved fertility in suckled beef cows ovulating large follicles or supplemented with long-acting progesterone after timed-AI. Theriogenology. 85(7): 1239-1248.

Scanavez A.L., Campos C.C. & Santos R.M. 2013. Taxa de prenhez e de perda de gestação em receptoras de embriões bovinos produzidos in vitro. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 65(3): 722-728.

Santos J.E.P., Thatcher W.W., Chebel R.C., Cerri R.L.A. & Galvão K.N. 2004. The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Animal Reproduction Science. 82: 513-535.

Silva J.C., Costa L.L. & Silva J.R. 2002. Plasma progesterone profiles and factors affecting embryo-fetal mortality following embryo transfer in dairy cattle. Theriogenology. 58(1): 51-59.

Stevenson J.S., Portaluppi M.A., Tenhouse D.E., Lloyd A., Eborn D.R., Kacuba S. & DeJarnette J.M. 2007. Interventions after artificial insemination: conception rates, pregnancy survival, and ovarian responses to gonadotropin-releasing hormone, human chorionic gonadotropin, and progesterone. Journal of Dairy Science. 90(1): 331-340.

Wiltbank M.C., Lopez H., Sartori R., Sangsritavong S. & Gümen A. 2006. Changes in Reproductive Physiology of Lactating Dairy Cows Due to Elevated Steroid Metabolism. Theriogenology. 65(1): 17-29.

Wiltbank M.C., Souza. A.H., Carvalho P.D., Cunha A.P., Giordano J.O., Fricke P.M., Baez G.M. & Diskin M.G. 2014. Physiological and practical effects of progesterone on reproduction in dairy cattle. Animal. 8(1): 70-81.

Woclawek-Potocka I., Brzezicka E. & Skarzynski D.J. 2009. Lysophosphatic acid modulates prostaglandin secretion in the bovine endometrial cells differently on days 8-10 of the estrous cycle and early pregnancy. Journal of Reproduction and Development. 55(4): 393-399.




DOI: https://doi.org/10.22456/1679-9216.104573

Copyright (c) 2020 CAIO CEZAR SILVA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.