Cardiac, Energy and Hormonal Blood Markers, and Lactatemia in Cows with Displaced Abomasum

Ana Clara Sarzedas Ribeiro, Gliére Silmara Leite Soares, Luiz Teles Coutinho, Jobson Filipe de Paula Cajueiro, Rodolfo José Cavalcanti Souto, Bruna Higino de Souza Silva, Pierre Castro Soares, Carla Lopes de Mendonça, José Augusto Bastos Afonso


Background: Displaced abomasum (DA) is a common and economically important disorder that affects dairy cattle. Nutritional factors and adaptive responses that occur in the peripartum play a central role in the pathogenesis. The measurement of blood metabolites represents a useful tool for monitoring and prognostic determination in affected animals. Therefore, the objective was to evaluate cardiac, energy and hormonal blood markers, lactatemia, and insulin sensitivity in cows diagnosed with right displaced abomasum (RDA) and left displaced abomasum (LDA), comparing them with each other.

Materials, Methods & Results: Nineteen cases of abomasum displacement in cows were studied, including 9 cases of RDA and 10 cases of LDA. The diagnosis was established by means of physical examination and measurement of the concentration of chlorides in the ruminal fluid (> 30mEq/L). After diagnosis, clinical-surgical therapeutic management was instituted. At the time of diagnosis (M1) and at the resolution of the case (M2), blood samples were collected to assess the variables: non-esterified fatty acids (NEFA), beta hydroxybutyrate (βHB), L-lactate, creatine kinase (CK), creatine kinase MB (CK-MB), cardiac troponin I (cTnI), lactate dehydrogenase (LDH), glucose, insulin, and cortisol. In addition, insulin sensitivity was estimated using the Revised Quantitative Insulin Sensitivity Check Index (RQUICKI) and RQUICKI-βHB. The means of the variables were compared, separating the effects of groups (RDA and LDA) and moments (M1 and M2), at the level of 5% probability. The concentrations of NEFA, CK-MB, L-lactate, glucose, insulin, and cortisol were higher at M1 and the RQUICKI and RQUICKI-βHB indices were lower at this moment. L-lactate, CK, and CK-MB were higher in the RDA group, while cTnI, βHB, and LDH did not present a group or moment effect. Cardiac markers correlated with the energy profile metabolites, L-lactate, and cortisol.

Discussion: The high concentrations of NEFA at M1 reflected the condition of negative energy balance. βHB concentrations were stable, that may be related to the number of days postpartum in which the animals were diagnosed. The hyperglycemic condition and the increase in serum cortisol concentrations found at M1 can be induced by the condition of metabolic stress resulting from the disease. Hyperinsulinemia were recorded in the present study could be an important factor related to the pathogenesis of DA, since there seems to be a correlation between hyperinsulinemia and decreased abomasal emptying rate. The RQUICKI and RQUICKI-βHB indices was significantly lower at M1, which may indicate lower sensitivity of peripheral tissues to insulin at this time. Changes in serum activity of LDH and CK may result from tissue damage due to organ displacement, in addition to damage associated with surgery and the administration of injectable drugs, mainly intramuscularly. The elevation in plasma L-lactate at M1 and in the RDA group may be associated with abomasal hypoperfusion. The high positive correlations found between L-lactate and the variables glucose, insulin, and cortisol reinforcing the association between the concentration of L-lactate and the moment of greatest stress. The increase in cardiac biomarkers may be related to the occurrence of ischemia/reperfusion injury in the abomasum, which involves oxidative stress and the production of inflammatory mediators. The hyperglycemic condition and the higher concentrations of NEFA can also contribute to the occurrence of myocardial injury. The correlations found between cardiac biomarkers and plasma L-lactate, strengthen the idea that there is a relationship between L-lactate and myocardial injury. In this sense, the measurement of blood concentrations of cTnI, CK-MB, and L-lactate could contribute as severity markers and prognosis indicators in cattle with DA.


Full Text:



Alatassi A., Habbal M., Tamim H., Sadat M., Al Qasim E. & Arabi Y.M. 2018. Association between troponin-I levels and outcome in critically ill patients admitted to non-cardiac intensive care unit with high prevalence of cardiovascular risk factors. BMC Anesthesiology. 18(1): 1-11. DOI: 10.1186/s12871-018-0515-7

Allen S.E. & Holm J.L. 2008. Lactate: physiology and clinical utility. Journal of Veterinary Emergency and Critical Care. 18(2): 123-132. DOI: 10.1111/j.1476-4431.2008.00286.x

Bakker J., Nijsten M.W. & Jansen T.C. 2013. Clinical use of lactate monitoring in critically ill patients. Annals of Intensive Care. 3(1): 12. DOI: 10.1186/2110-5820-3-12

Bartlett P.C., Kopcha M., Coe P.H., Ames N.K., Ruegg P.L. & Erskine R.J. 1995. Economic comparison of the pyloro-omentopexy vs the roll-and-toggle procedure for treatment of left displacement of the abomasum in dairy cattle. Journal of the American Veterinary Medical Association. 206(6): 1156-1162.

Boulay G., Francoz D., Doré E., Dufour S., Veillette M., Badillo M., Bélanger A.M. & Buczinski S. 2014. Preoperative cow-side lactatemia measurement predicts negative outcome in Holstein dairy cattle with right abomasal disorders. Journal of Dairy Science. 97(1): 212-221. DOI: 10.3168/jds.2013-6898

Brett J., Gerlach H., Nawroth P., Steinberg S., Godman G. & Stern D. 1989. Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. The Journal of Experimental Medicine. 169(6): 1977-1991. DOI: 10.1084/jem.169.6.1977

Buczinski S., Boulay G. & Francoz D. 2015. Preoperative and Postoperative L-Lactatemia Assessment for the Prognosis of Right Abomasal Disorders in Dairy Cattle. Journal of Veterinary Internal Medicine. 29(1): 375-380. DOI: 10.1111/jvim.12490

Bulger E. & Maier R. 2001. Antioxidants in Critical Illness. Archives of Surgery. 136(10): 1201. DOI: 10.1001/archsurg.136.10.1201

Câmara A.C.L., Afonso J.A.B., Costa N.A., Mendonça C.L., Souza M.I. & Borges J.R.J. 2010. Fatores de risco, achados clínicos, laboratoriais e avaliação terapêutica em 36 bovinos com deslocamento de abomaso. Pesquisa Veterinária Brasileira. 30(5): 453-464. DOI: 10.1590/S0100-736X2010000500014

Cardoso F.C., Esteves V.S., Oliveira S.T., Lasta C.S., Valle S.F., Campos R. & González F.H.D. 2008. Hematological, biochemical and ruminant parameters for diagnosis of left displacement of the abomasum in dairy cows from Southern Brazil. Pesquisa Agropecuária Brasileira. 43(1): 141-147. DOI: 10.1590/S0100-204X2008000100018

Dirksen G. 1993. Sistema Digestivo. In: G. Dirksen G., Günder H.D. & Stöber M. (Eds). Rosenberger Exame Clínico dos Bovinos. 3.ed. Rio de Janeiro: Guanabara Koogan, pp.163-224.

Djoković R., Dosković V., Cincović M., Belić B., Fratrić N., Jašović B. & Lalović M. 2017. Estimation of Insulin Resistance in Healthy and Ketotic Cows during an Intravenous Glucose Tolerance Test. Pakistan Veterinary Journal. 37(4): 387-392.

Fartashvand M. & Haji-Sadeghi Y. 2017. Evaluation of serum cardiac biomarkers in sheep with acute lactic acidosis. Journal of the Hellenic Veterinary Medical Society. 68(2): 219-224. DOI: 10.12681/jhvms.15608

Figueiredo M.D., Nydam D.V., Perkins G.A., Mitchell H.M. & Divers T.J. 2006. Prognostic Value of Plasma L-Lactate Concentration Measured Cow-Side with a Portable Clinical Analyzer in Holstein Dairy Cattle with Abomasal Disorders. Journal of Veterinary Internal Medicine. 20(6): 1463-1470. DOI: 10.1111/j.1939-1676.2006.tb00767.x

Gerede D.M., Kozluca V., Esenboğa K., Aydoğan B.İ. & Tutar E. 2016. Markedly Elevated Troponin in Diabetic Ketoacidosis without Acute Coronary Syndrome. Turkish Journal of Endocrinology and Metabolism. 20(2): 58-60. DOI: 10.4274/tjem.2997

Holtenius K., Sternbauer K. & Holtenius P. 2000. The effect of the plasma glucose level on the abomasal function in dairy cows. Journal of Animal Science. 78(7): 1930-1935. DOI: 10.2527/2000.7871930x

Itoh N., Koiwa M., Hatsugaya A., Yokota H., Taniyama H., Okada H. & Kudo K. 1998. Comparative Analysis of Blood Chemical Values in Primary Ketosis and Abomasal Displacement in Cows. Journal of Veterinary Medicine Series A. 45(1-10): 293-298. DOI: 10.1111/j.1439-0442.1998.tb00830.x

Kawase T., Toyofuku M., Higashihara T., Okubo Y., Takahashi L., Kagawa Y., Yamane K., Mito S., Tamekiyo H., Otsuka M., Okimoto T., Muraoka Y., Masaoka Y., Shiode N. & Hayashi Y. 2015. Validation of lactate level as a predictor of early mortality in acute decompensated heart failure patients who entered intensive care unit. Journal of Cardiology. 65(2): 164-170. DOI: 10.1016/j.jjcc.2014.05.006

Konturek P.C., Duda A. & Brzozo T. 2000. Activation of Genes for Superoxide Dismutase, Interleukin-1ß, Tumor Necrosis Factor-a, and Intercellular Adhesion Molecule-1 during Healing of Ischemia-Reperfusion-Induced Gastric Injury. Scandinavian Journal of Gastroenterology. 35(5): 452-463. DOI: 10.1080/003655200750023697

Kwiecień S., T. Brzozowski & S.J. Konturek. 2002. Effects of reactive oxygen species action on gastric mucosa in various models of mucosal injury. Journal of Physiology and Pharmacology. 53(1): 39-50.

LeBlanc S.J., Leslie K.E. & Duffield T.F. 2005. Metabolic Predictors of Displaced Abomasum in Dairy Cattle. Journal of Dairy Science. 88(1): 159-170. DOI: 10.3168/jds.S0022-0302(05)72674-6

Maden M., Ozturk A.S., Bulbul A., Avci G.E. & Yazar E. 2012. Acute-Phase Proteins, Oxidative Stress and Enzyme Activities of Blood Serum and Peritoneal Fluid in Cattle with Abomasal Displacement. Journal of Veterinary Internal Medicine. 26(6): 1470-1475. DOI: 10.1111/j.1939-1676.2012.01018.x

van Meirhaeghe H., Deprez P., van den Hende C. & Muylle E. 1988. Plasma Glucose Clearance and Insulin Response in Cows with Abomasal Displacement*. Journal of Veterinary Medicine Series A. 35(1-10): 221-228. DOI: 10.1111/j.1439-0442.1988.tb00026.x

van Meirhaeghe H., Deprez P., van den Hende C. & Muylle E. 1988. The Influence of Insulin on Abomasal Emptying in Cattle. Journal of Veterinary Medicine Series A. 35(1-10): 213-220. DOI: 10.1111/j.1439-0442.1988.tb00025.x

Niehaus A.J. 2016. Surgical Management of Abomasal Disease. Veterinary Clinics of North America: Food Animal Practice. 32(3): 629-644. DOI: 10.1016/j.cvfa.2016.05.006

Ormazabal V., Nair S., Elfeky O., Aguayo C., Salomon C. & Zuñiga F.A. 2018. Association between insulin resistance and the development of cardiovascular disease. Cardiovascular Diabetology. 17(1): 122. DOI: 10.1186/s12933-018-0762-4

Radcliffe R.M., Divers T.J., Fletcher D.J., Mohammed H. & Kraus M.S. 2012. Evaluation of L-lactate and cardiac troponin I in horses undergoing emergency abdominal surgery. Journal of Veterinary Emergency and Critical Care. 22(3): 313-319. DOI: 10.1111/j.1476-4431.2012.00744.x

Silva Filho A.P., Mendonça C.L., Souto R.J.C., Silva R.J., Soares P.C. & Afonso J.A.B. 2017. Indicadores bioquímico e hormonal de vacas leiteiras mestiças sadias e doentes durante o final da gestação e o início da lactação. Pesquisa Veterinária Brasileira. 37(11): 1229-1240. DOI: 10.1590/s0100-736x2017001100007

Singh V., Martinezclark P., Pascual M., Shaw E.S. & OʼNeill W.W. 2010. Cardiac biomarkers – the old and the new: a review. Coronary Artery Disease. 21(4): 244-256. DOI: 10.1097/MCA.0b013e328338cd1f

Soares G.S.L., Ribeiro A.C.S., Paula J.F.C., Souto R.J.C., Oliveira Filho E.F., Soares P.C., Mendonça C.L. & Afonso J.A.B. 2019. Cardiac biomarkers and blood metabolites in cows with clinical ketosis Biomarcadores cardíacos e metabólitos sanguíneos em vacas com cetose clínica. Semina: Ciências Agrárias. 40(6): 3525-3540. DOI: 10.5433/1679-0359.2019v40n6Supl3p3525

Stengärde L., Holtenius K., Tråvén M., Hultgren J., Niskanen R. & Emanuelson U. 2010. Blood profiles in dairy cows with displaced abomasum. Journal of Dairy Science. 93(10): 4691-4699. DOI: 10.3168/jds.2010-3295

Suzuki H., Nishizawa T., Tsugawa H., Mogami S. & Hibi T. 2011. Roles of oxidative stress in stomach disorders. Journal of Clinical Biochemistry and Nutrition. 50(1): 35-39. DOI: 10.3164/jcbn.11-115SR

Valberg S.J. 2008. Skeletal Muscle Function. In: Kaneko J.J., Harvey J.W. & Bruss M.L. (Eds). Clinical Biochemistry of Domestic Animals. 6th edn. San Diego: Elsevier, pp.459-484.

Varga A., Angelos J.A., Graham T.W. & Chigerwe M. 2013. Preliminary investigation of cardiac troponin i concentration in cows with common production diseases. Journal of Veterinary Internal Medicine. 27(6): 1613-1621. DOI: 10.1111/jvim.12213

Wende A.R. & Abel E.D. 2010. Lipotoxicity in the heart. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1801(3): 311-319. DOI: 10.1016/j.bbalip.2009.09.023

van Winden S.C.L. & Kuiper R. 2003. Left displacement of the abomasum in dairy cattle: recent developments in epidemiological and etiological aspects. Veterinary Research. 34(1): 47-56. DOI: 10.1051/vetres:2002060

Wittek T., Constable P.D. & Furll M. 2004. Comparison of abomasal luminal gas pressure and volume and perfusion of the abomasum in dairy cows with left displaced abomasum or abomasal volvulus. American Journal of Veterinary Research. 65(5): 597-603. DOI: 10.2460/ajvr.2004.65.597

Zadnik T. 2003. A comparative study of the hemato-biochemical parameters between clinically healthy cows and cows with displacement of the abomasum. Acta Veterinaria. 53(5-6): 297-310. DOI: 10.2298/AVB0306297Z


Copyright (c) 2020 Ana Clara Sarzedas Ribeiro, Gliére Silmara Leite Soares, Luiz Teles Coutinho, Jobson Filipe de Paula Cajueiro, Rodolfo José Cavalcanti Souto, Bruna Higino de Souza Silva, Pierre Castro Soares, Carla Lopes de Mendonça, José Augusto Bastos Afonso

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.