Automatic identification of knowledge related to dengue cases in the state of Piauí in public databases using Filtered-Association Rules Networks




Association Rules, Dengue, Epidemiological surveillance, Knowledge Discovery, Networks


Dengue is an endemic disease in Brazil since the 1980s and since 1996 in Piau ́ı. The number of cases increases each year, with the incidence of more severe symptoms. This research aimed to evaluate the use of an automatic knowledge identification technique in factors related to the number of dengue occurrences. We built a dataset formed by data available in the Information System for Notifiable Diseases (SINAN) and meteorological data of the municipalities of the coastal plain of Piau ́ı. The technique used was that of Filtered Association Rules Networks, which allows visual analysis of knowledge through the use of network structures and rules filtering. As a main result, we confirmed the understanding that the most significant number of cases occurs in May, as it is the moment when the rainfall indexes are decreasing, besides that socio-cultural and race factors do not interfere in the identification of the population of higher risk. This research presents the innovation of the use of a computational technique of automatic knowledge discovery that can assist in the elaboration of prevention actions by epidemiological surveillance.


Download data is not yet available.

Author Biographies

Jâina Carolina Meneses Calçada, Universidade Estadual Vale do Acaraú

Mestra em Saúde da Família

Solange Oliveira Rezende, Universidade de São Paulo

Possui graduação em Licenciatura em Ciências Habilitação Matemática pela Universidade Federal de Uberlândia (1986), mestrado em Ciências de Computação e Matemática Computacional pela Universidade de São Paulo (1990) e doutorado em Engenharia Mecânica - São Carlos pela Universidade de São Paulo (1993). Realizou pós-doutorado na Universidade de Minnesota, USA (1995-1996). É professora associada no Departamento de Ciências de Computação do Instituto de Ciências Matemáticas e de Computação (ICMC) da Universidade de São Paulo (USP). Tem experiência na área de Ciência da Computação, com ênfase em Inteligência Artificial, atuando principalmente nos temas relacionados com Mineração de Dados e Textos e Sistemas de Recomendação.

Dario Brito Calçada, Universidade Estadual do Piauí

Doutor em Computação e Matemática Computacional pela Universidade de São Paulo (USP) no Instituto de Ciências Matemáticas e de Computação (ICMC). Mestre em Biotecnologia pela Universidade Federal do Piauí com ênfase em Inteligência Computacional aplicada à nanotecnologia e biotecnologia. Bacharel em Ciências da Computação pela Universidade Estadual do Piauí. É professor desde 1998 e tem experiência na área de Ciência da Computação, além de Matemática e Física. Atua como professor de matemática e física em cursos pré-vestibulares. Atualmente é professor efetivo da Universidade Estadual do Piauí e atua em projetos de pesquisa e extensão nas áreas de Inteligência Computacional Aplicada a Saúde e Ciências Agrárias, Mineração de Dados e Textos e Ciências de Dados, além de Projetos Sociais junto às Obras Sociais Luz da Esperança


WHO. Dengue and severe dengue. 2019. Disponível em:

FARES, R. C. G. et al. Epidemiological Scenario of Dengue in Brazil. BioMed Research International, Hindawi Limited, v. 2015, p. 1–13, 2015. Disponível em:

BRAGA, I. A.; VALLE, D. Aedes aegypti: histórico do controle no Brasil. Epidemiologia e Serviços de Saúde, SciELO, v. 16, p. 113 – 118, 06 2007. Disponível em:

MONTEIRO, E. S. C. et al. Aspectos epidemiológicos e vetoriais da dengue na cidade de Teresina, Piauí-Brasil, 2002 a 2006. Epidemiologia e Serviços de Saúde, SciELO, v. 18, p. 365 – 374, 12 2009. Disponível em:

HII, Y. L. et al. Forecast of dengue incidence using temperature and rainfall. PLOS Neglected Tropical Diseases, Public Library of Science, v. 6, n. 11, p. 1–9, 11 2012. Disponível em:

THOMSON, M. C. et al. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. The American journal of tropical medicine and hygiene, ASTMH, v. 73, n. 1, p. 214–221, 2005.

DEGALLIER, N. et al. Toward an early warning system for dengue prevention: modeling climate impact on dengue transmission. Climatic Change, Springer, v. 98, n. 3-4, p. 581–592, 2010.

WANG, J.; OGDEN, N. H.; ZHU, H. The impact of weather conditions on culex pipiens and culex restuans (diptera: Culicidae) abundance: a case study in peel region. Journal of medical entomology, Oxford University Press Oxford, UK, v. 48, n. 2, p. 468–475, 2011.

SINAN. Sistema de Informação de Agravos de Notificação. 2016. Disponível em:

TRINDADE, C. M. Identificação do Comportamento das Hepatites Virais a partir da exploração de bases de dados de Saúde Pública. 2005, 139f. Tese (Doutorado) — Dissertação (Mestrado em Tecnologia em Saúde)-Pontifícia Universidade Católica do Paraná, PUCPR, 2005., 2005.

ANGUERA, A. et al. Applying data mining techniques to medical time series: an empirical case study in electroencephalography and stabilometry. Computational and Structural Biotechnology Journal, Elsevier BV, v. 14, p. 185–199, 2016. Disponível em:

FATHIMA, A. S.; MANIMEGALAI, D.; HUNDEWALE, N. A review of data mining classification techniques applied for diagnosis and prognosis of the arbovirus-dengue. International Journal of Computer Science Issues (IJCSI), Citeseer, v. 8, n. 6, p. 322, 2011.

CALÇADA, D. B.; PADUA, R. de; REZENDE, S. O. Asymmetric Objective Measures applied to Filter Association Rules Networks. In: XLIV Latin American Computer Conference (CLEI) Asymmetric. São Paulo: [s.n.], 2018. p. 258–267.

WENG, C.-H. Identifying association rules of specific later-marketed products. Applied Soft Computing, Elsevier, v. 38, p. 518–529, 2016.

CALÇADA, D. B. Redes de regras de associação filtradas e multialvo. 199 p. Tese (Doutorado) — Universidade de São Paulo, 2019.

BUCZAK, A. L. et al. Prediction of High Incidence of Dengue in the Philippines. PLoS Neglected Tropical Diseases, Public Library of Science (PLoS), v. 8, n. 4, p. e2771, abr. 2014. Disponível em:

STOLERMAN, L. M.; MAIA, P. D.; KUTZ, J. N. Forecasting dengue fever in Brazil: An assessment of climate conditions. PLOS ONE, Public Library of Science (PLoS), v. 14, n. 8, p. e0220106, ago. 2019. Disponível em:

SANTOS, C. A. G. et al. Correlation of dengue incidence and rainfall occurrence using wavelet transform for João Pessoa city. Science of The Total Environment, Elsevier BV, v. 647, p. 794–805, jan. 2019. Disponível em:

XU, H.-Y. et al. Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore. PLoS Neglected Tropical Diseases, Public Library of Science (PLoS), v. 8, n. 5, p. e2805, maio 2014. Disponível em:

VALDEZ, L.; SIBONA, G.; CONDAT, C. Impact of rainfall on Aedes aegypti populations. Ecological Modelling, Elsevier BV, v. 385, p. 96–105, out. 2018. Disponível em:

FAYYAD, U.; PIATETSKY-SHAPIRO, G.; SMYTH, P. From data mining to knowledge discovery in databases. AI magazine, v. 17, n. 3, p. 37–37, 1996.

OLARU, C.; GEURTS, P.; WEHENKEL, L. Data mining tools and application in power system engineering. In: TRONDHEIM, NORWAY. Proceedings of the 13th Power System Computation Conference, PSCC99. [S.l.], 1999. p. 324–330.

AGRAWAL, R.; SRIKANT, R. et al. Fast algorithms for mining association rules. In: Proc. 20th int. conf. very large data bases, VLDB. [S.l.: s.n.], 1994. v. 1215, p. 487–499.

PANDEY, G. et al. Association Rules Network: Definition and Applications. Statistical Analysis and Data Mining, v. 1, n. 4, p. 260–179, 2009.

SAHAR, S. What is interesting: studies on interestingness in knowledge discovery. Phd Thes, Tel-Aviv University The, Citeseer, 2003.

FUKUDA, T. et al. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. Acm Sigmod Record, ACM, v. 25, n. 2, p. 13–23, 1996.

BASTIAN, M.; HEYMANN, S.; JACOMY, M. Gephi: an open source software for exploring and manipulating networks. In: Third international AAAI conference on weblogs and social media. [S.l.: s.n.], 2009.




How to Cite

Silva, J. D. S., Calçada, J. C. M., Rezende, S. O., & Calçada, D. B. (2020). Automatic identification of knowledge related to dengue cases in the state of Piauí in public databases using Filtered-Association Rules Networks. Revista De Informática Teórica E Aplicada, 27(3), 40–49.



Regular Papers