Performance Assessment of a Wireless Mesh Network for Post-harvest Food Quality Traceability of Fruit Products: A Case Study




Wireless mesh networks, ESP8266, PainlessMesh, Performance assessment


This paper presents the performance evaluation of a wireless sensor mesh network, for monitoring temperature and humidity in horticultural products when transported in truck galleys. For this purpose a software solution was proposed using ESP8266 devices powered by batteries. The mesh network was managed by the painlessMesh library. The proposed solution aims to minimize the energy consumption of the sensor nodes. The validation of the solution was performed in an area simulating a galley of a truck, where five sensor nodes and a root node were distributed. The tests were developed considering four different models involving variations in messages delivery confirmation, number of attempts until successful delivery and duty cycle duration of the nodes. The performance evaluation of the solution aimed to determine, connectivity rate, sending rate after connection and delivery rates of the first and second attempts. The results obtained show that the message delivery confirmation does not bring added value to the solution, contributing only to increase energy consumption. The use of synchronous duty cycles also showed worse results than the asynchronous use. These results allow the creation of a knowledge base for the use of this solution in a real context.


Download data is not yet available.


MANDAL, N. C.; UDDIN, G. An empirical study of iot security aspects at sentence-level in developer textual discussions. Information and Software Technology, United Kingdom, v. 150, p. 106970, October 2022.

FURSTENAU, L. B. et al. Internet of things: Conceptual network structure, main challenges and future directions. Digital Communications and Networks, China, p. 1–16, May 2022.

KAKHI, K. et al. The internet of medical things and artificial intelligence: trends, challenges, and opportunities. Biocybernetics and Biomedical Engineering, Poland, v. 42, n. 3, p. 749–771, July 2022.

KAGAN, C. R. et al. Special report: The internet of things for precision agriculture (iot4ag). Computers and Electronics in Agriculture, Netherlands, v. 196, p. 106742, May 2022.

TAN, S. W.; LEE, S. C.; CHAN, C. L. Clonal-selection-based minimum-interference channel assignment algorithms for multiradio wireless mesh networks. In: Bio-Inspired Computation in Telecommunications. Boston, USA: Morgan Kaufmann, 2015. p. 287–321.

PIECHOWIAK, M. et al. Comparative analysis of routing protocols for wireless mesh networks. In: 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). USA: IEEE, 2016. p. 1–5.

LIU, Y. et al. Wireless mesh networks in iot networks. In: 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition. USA: IEEE, 2017. p. 183–185.

SHAO, S. et al. A random switching traffic scheduling algorithm for data collection in wireless mesh network. In: The 16th Asia-Pacific Network Operations and Management Symposium. USA: IEEE, 2014. p. 1–4.

SIMÕES, M. P. et al. Prunuspós—otimização de processos de armazenamento, conservação em frio, embalamento ativo e/ou inteligente, e rastreabilidade da qualidade alimentar no pós-colheita de produtos frutícolas. In: Grupos Operacionais de Fruticultura no período 2018-2022. Portugal: COTHN - Centro Operativo e tecnológico Hortofrutícola Nacional, 2021. p. 404–471.

GO Prunus Pós. Disponível em: <>. Acesso em: 2 de abril de 2022.

SANTOS, L. et al. Performance assessment of esp8266 wireless mesh networks. Information, Switzerland, v. 13, n. 5, p. 1–15, April 2022.

GROKHOTKOV, I. ESP8266 Arduino Core Documentation. Disponível em: <>. Acesso em: 2 de abril de 2022.

PAINLESSMESH Technical Documentation. Disponível em: <>. Acesso em: 13 de junho de 2022.

KUMAR, K. A.; HEGDE, S. Multicasting in wireless mesh networks: Challenges and opportunities. In: 2009 International Conference on Information Management and Engineering. USA: IEEE, 2009. p. 514–518.

PANDI, S.; WUNDERLICH, S.; FITZEK, F. H. P. Reliable low latency wireless mesh networks — from myth to reality. In: 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC). USA: IEEE, 2018. p. 1–2.

KÖBEL, C.; GARCÍA, W. B.; HABERMANN, J. A survey on wireless mesh network applications in rural areas and emerging countries. In: 2013 IEEE Global Humanitarian Technology Conference (GHTC). USA: IEEE, 2013. p. 389–394.

AKYILDIZ, I. F.; WANG, X.; WANG, W. Wireless mesh networks: a survey. Computer Networks, Netherlands, v. 47, p. 445–487, March 2005.

CILFONE, A. et al. Wireless mesh networking: An iot-oriented perspective survey on relevant technologies. Future Internet, Switzerland, v. 11, n. 4, p. 1–35, April 2019.

SHAHDAD, S. Y.; SABAHATH, A.; PARVEEZ, R. Architecture, issues and challenges of wireless mesh network. In: 2016 International Conference on Communication and Signal Processing (ICCSP). USA: IEEE, 2016. p. 557–560.

SICHITIU, M. L. Wireless mesh networks: Opportunities and challenges. In: . [S.l.: s.n.], 2005.

GITLAB. painlessmesh::Mesh< T > Class Template Reference. Disponível em: <>. Acesso em: 2 de abril de 2022.

ARDUINO. Arduino IDE 2 Tutorials. Disponível em: <>. Acesso em: 13 de junho de 2022.

SOLUTIONS, R. L. Tipologia de Camiões. Disponível em: <>. Acesso em: 16 de abril de 2022.

WEMOS. D1 mini Pro. Disponível em:>. Acesso em: 2 de abril de 2022.

WEMOS. LOLIN D1 mini. Disponível em: <>. Acesso em: 2 de abril de 2022.

ARDUINO. Arduino | Software. Disponível em: <>. Acesso em: 2 de abril de 2022.

INC, E. ESP8266 - Low Power Solutions. Disponível em: <>. Acesso em: 2 de abril de 2022.




How to Cite

Costa, T. ., Santos, L. ., Caldeira, J. M. L. P., Soares, V. N. G. J., & Gaspar, . P. D. . (2023). Performance Assessment of a Wireless Mesh Network for Post-harvest Food Quality Traceability of Fruit Products: A Case Study. Revista De Informática Teórica E Aplicada, 30(1), 66–77.



Case Studies

Most read articles by the same author(s)